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A B S T R A C T  
 

 

Porous materials especially closed-cell metallic foams play important roles among novel materials 

because of their good characteristics e.g. high strength to weight ratio and crashworthiness. On the other 
hand, mechanical behavior determination and detailed characterization are essential in efficient 

manipulation and material tailoring. In the present research especial hybrid experimental-numerical 

approach is used for aluminum foam behavior determination as to the main goal, i.e. continuous 
deformation field measurement using digital image correlation (DIC) and finite element analysis (FEA) 

on porous specimen’s surface.  To overcome the 3D modelling problem of closed-cell foams structure, 

we present the method based on CT-scan and digital optic microscope imaging combination. In the 
experimental part of the study, aluminum foams and proper specimens are manufactured, and then high-

resolution digital imaging and illumination setup are employed. Finally, the deformation field is obtained 

using DIC. On the other hand, measurement verification and DIC parameters optimization processes are 
conducted using ABAQUS 2019 with comprehensive mesh independency study and response surface 

methodology (RSM) respectively as major research achievement. Finally, correlation equations based 

on high regression models are obtained. Using detailed geometrical micro-model and optimal DIC 
parameters yields to good numerical-experimental accordance. The novel approach of combined CT and 

digital microscope imaging instead of industrial micro-CT lowered imaging costs while yielded to 

accurate numerical results. 

doi: 10.5829/ije.2020.33.10a.25 
 

 

NOMENCLATURE 

𝑢, 𝑣 Displacement concerning x and y axes 𝐻 Shannon entropy (bit/pixels) 

�⃗�  Displacement vector 𝐷𝐿𝑃 Dose length product (mGy.cm) 

𝐿𝑆 Least squares correlation 𝐶𝑇𝐷𝐼 CT-scan dose index (mGy) 

𝑓, 𝑔 Gray level function in reference and current configurations 𝐿𝑠 Scan length (cm) 

𝑛 Subset size (pixels) 𝐻𝑈 Hounsfield unit 

𝐻(�⃗� ) Hessian operator 𝑆𝑁𝑅 Signal to noise ratio 

𝐸 Small strain tensor 𝑆𝑠𝑢𝑏𝑠𝑒𝑡 Subset size (pixels) 

𝜀 Strain tensor 𝑅𝑠𝑢𝑏𝑠𝑒𝑡 Subset radius (pixels) 

𝑍𝑁𝐶𝐶 The zero-mean normalized sum of squared differences 𝑆𝐹𝑂𝑉 Scan field of view 

 
1. INTRODUCTION1 
 

Novel methods of experimental stress and strain analysis 

play an important role in material behavior 
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characterization. For instance, using rosettes were the 

most reliable approach in mechanical parameters 

extraction. Although they had several problems such as 

adhesive effect, discrete strain filed determination, high 
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operational cost, impossible to use on porous surfaces, 

etc. Digital image correlation (DIC) is one of the most 

efficient approaches that overcome many of the 

mentioned disadvantages. Digital image correlation is a 

technique that attempts to find correlations and 

similarities between the reference image segment and 

deformed configuration. Skozrit et al. [1] investigated 

elastic-plastic and failure of various aluminum alloys 

both numerically and experimentally. They conducted 

static and dynamic tensile tests and also three-point 

bending experiment with different strain rates. They 

manipulated the two-dimensional plane stress finite 

element analysis. For validation purposes in the 

displacement and strain field, they performed several 

DIC measurements. Also, they used infrared 

thermography as an efficient tool for damage propagation 

survey. The digital correlation technique also used for 

material parameter identification as well [1]. Begonia et 

al. [2] studied strain and displacement field in mouse 

forearm bone using a non-contact DIC method under 

uniaxial compression loading. The digital image 

correlation method is employed on mechanical 

characterization and deformation measurement of two 

dimensional SiC/SiC composite pipes [3]. Mehdikhani et 

al. [4]studied the deformation field and whole strain 

tensor of the composite cross-section and its fibers in the 

micro-scale. Their investigations are focused on using the 

DIC technique with the SEM images for three-point 

bending tests of fiber-reinforced laminates.  

Due to the brilliant high-temperature behavior of 

ceramic matrix composites, Whitlow et al. [5] conducted 

comprehensive in-situ health monitoring of SiC/SiC and 

their service life using the DIC method. They studied the 

ultimate strength and effects of fiber properties on it. 

Gerbig et al. [6] coupled the conventional finite element 

method with the DIC technique. The estimated material 

parameters corresponded to the non-uniform 

displacement distribution in the tensile test specimen. 

They also used an optimization approach for validation 

purposes. Engqvist et al. [7] studied strain filed and 

deformation mode of loaded glass polycarbonate using 

DIC. They loaded novel specimen bi-axially for localized 

strain investigations. Opera et al. [8] used infra-red 

thermography and image processing in metal dynamic 

yield behavior determination. For comparison purposes, 

they used 3D digital image correlation. Ceramic blocks 

and composite resins are widely used in dentistry. Jiang 

et al. [9] studied the stress intensity factor in these 

materials using the DIC method. In such small parts, it is 

impossible to use conventional stress analysis and 

standard specimens. Nguyen et al. [10] investigated the 

mechanical behavior of cortical bone using a multi-scale 

micro-macro method and DIC technique. They captured 

images in both scales during the loading condition. The 

main goal is to determine material properties on several 

scales. A wide range of composite applications and 

complex nature of fatigue and crack growth using 

classical methods are the main research idea. Aparna et 

al. [11] studied cracking and stress intensity 

measurement using DIC in the fatigue test of GFRP. Feng 

et al. [12] studied the effects of fiber reinforced polymer 

confinement technique to overcome the drawbacks of 

rubberized concrete. Statistical models were also 

developed based on experimental using response surface 

methodology (RSM). Finally, the regression analysis was 

performed to develop response equations based on 

quadratic models. Obianyo et al. [13] investigated the 

efficiencies of sedimentation tanks with horizontal and 

vertical baffle mixers, and also determined the optimal 

values of factors of clarification in the sedimentation 

tanks. Response surface methodology was further used 

for the present analysis of data in this study for more 

reliable study because it optimized the responses of 

variables. Sharif et al. [14] studied the use of cellulose 

dust produced in the drying section of paper mills as a 

potential adsorbent to remove methylene blue dye. They 

manipulated the RSM or simply the response surface 

methodology with CCD which stands for central 

composite design. Yang et al. [15]investigated the effect 

of using aluminum foam in sound absorption application 

for mining industry. They showed that using this kind of 

porous material yielded to the noise reduction in mining 

chute. In addition to, the aluminum foam has major 

positive effect on vibration reduction. Hosseini Ravandi 

et al. [16] manipulated the image processing technique 

for lightness change of fabric appearance. He also used 

ANOVA technique for correlation measurment purposes. 

Fattahzade et al. [17] presented the new approach of 

monitoring using sequential images. They used statistical 

methods and measured correlation between images for 

defect detection process.  

In the present paper, digital images captured during 

the uniaxial compression test of aluminum foams are 

analyzed using the DIC technique. So continuous 

displacement and strain fields are measured on the 

external surface of the specimen. These results could be 

used in the stress field, energy absorption capacity, and 

also material parameters identification. The procedure is 

categorized into several steps such as specimen 

manufacturing and preparation for a compression test, 

imaging system and illumination setup, DIC-based 

measurement using initial setting, DIC parameters 

optimization using RSM, and validation process using FE 

simulations. Also, an analysis of variance is used for 

response regression and significant factors 

determinations. For high accuracy FE analysis, micro-

structural foam modeling is performed using CT-scan 

and digital optic microscope. Because micro CT is an 

expensive procedure, we used a conventional CT-scan 

device. To enhance the modeling resolution, mesh 

refinement technique is employed using the optical 

microscope imaging. Using CT-scan instead of micro-CT 
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for geometric modeling with acceptable accuracy is 

considered as a novelty. Furthermore, using RSM-based 

optimization enhances the deformation field estimation 

with high desirability value. Finally, FE results and DIC 

measurement calculations are in good agreement. The 

whole research process and methodology is illustrated in 

the following flowchart (see Figure 1). After the 

introduction section which consists of literature review 

and process flowchart, the materials and methods section 

is appeared. This section consists of sample preparation 

process and uniaxial test method, DIC method theoretical 

aspects and modeling techniques using CT-scan. The 

next section consists of results interpretation and 

discussion, verification methodology, and parametric 

study and optimization using DOE and RSM techniques. 

The last section consists of conclusions and major 

research findings. 

 

 

2. MATERIALS AND METHODS 
 
2. 1. Specimen Preparation and Uniaxial 
Compression Test            Aluminum foams are employed 

as the main material used in the present research. The 

mentioned Alporas foams are manufactured using liquid 

state method with 2% TiH2 and 1.5% Calcium. Additives 

are used as the blowing agent and viscosity enhancer 

respectively, at 680 deg. Manufactured blocks have 

100×50×10 cm dimensions. Precision sizing of 

specimens is performed by CNC milling. Finally, several 

aluminum foam specimens are prepared and sized for 

compression tests. Present foam specimen densities are 

generally 300 and 500 kg/m3 depending on the location 

in the manufactured block. Because of the melt 

hydrostatic pressure and bubble growth, the bottom half 

of the block has 500 and the top half has 300 kg/m3 

densities respectively. Standard uniaxial tension test is 

conducted to determine the mechanical properties of 

aluminum foam, according to ASTM B557. Mechanical 

behavior analysis of cubic closed-cell aluminum foam 

specimens is performed using quasi-static compression 

testing using ZWICK 100 apparatus with a five mm/min 

loading rate. Prepared specimens and loading device are 

shown in Figure . Prepared specimens have 

approximately 40×40×40 mm dimensions to ensure at 

least six complete cells in each direction. This guarantees 

rather a uniform deformation without localized failure 

and collapses. Furthermore, specimens are prepared large 

enough for better imaging and illumination during 

compressive loading. Specimen density in the present 

research is 500 kg/m3. 

 

2. 2. Digital Image Correlation Technique 
Implementation         Digital image correlation is a 

technique of finding correlation and similarities between 

the reference image and deformed configuration in 

loading conditions. So, images are discretized initially to 

several subsets. Comparing reference and possible 

current subsets lead to displacement vector calculation. 

Using small deformation assumption in any increments, 

we have equations for displacement vector components 

in every pixel as below (Equations (1)-(3)) [18].  

 

 

 
Figure 1. Research process and methodology flowchart 
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(b) (a) 
Figure 2. Zwick100 loading device (a), and prepared 

specimens for uniaxial compression test (b) 
 

 

(1) 𝑢𝑠 = 𝑢 +
𝜕𝑢

𝜕𝑥
Δ𝑥 +

𝜕𝑢

𝜕𝑦
Δ𝑦 

(2) 𝑣𝑠 = 𝑣 +
𝜕𝑣

𝜕𝑥
Δ𝑥 +

𝜕𝑣

𝜕𝑦
Δ𝑦 

Furthermore, the main DIC objective is focused on 

displacement vector determination �⃗�  (Equation (3)). 

(3) �⃗� = {𝑢,
𝜕𝑢

𝜕𝑥
,
𝜕𝑢

𝜕𝑦
, 𝑣,

𝜕𝑣

𝜕𝑥
,
𝜕𝑣

𝜕𝑦
}
𝑇

= {𝑃𝑖}
𝑇 , 𝑖 = 0,… ,5  

There are several correlation definitions such as cross-

correlation, CC and least squares, LS (Equation (4)). In 

the present paper, the least square method is used to 

obtain accurate results. Furthermore, we manipulate 

ZNCC correlation formulation to lower the noise 

sensitivity problem. Hence:  

(4) 𝐿𝑆 =
∑ {𝑓(𝑥, 𝑦) − 𝑔(𝑥∗, 𝑦∗)}2+(𝑛−1) 2⁄

𝑖,𝑗=−(𝑛−1) 2⁄

∑ 𝑓(𝑥, 𝑦)2+(𝑛−1) 2⁄
𝑖,𝑗=−(𝑛−1) 2⁄

 

In which 𝑛 is subset size, and 𝑖 and 𝑗 are pixel counters. 

Functions 𝑓 and 𝑔 are gray levels in reference and current 

configuration. Deformed subset finding is equivalent to 

the minimum 𝐿𝑆 value. Newton-Raphson approach is 

employed for the minimization procedure, as formulated 

in Equation (5). So  

(5) 
∇𝐿𝑆 =

𝜕𝐿𝑆

𝜕𝑃𝑘
=

2

∑ 𝑓(𝑥,𝑦)2+(𝑛−1) 2⁄
𝑖,𝑗=−(𝑛−1) 2⁄

∙

∑ {𝑓(𝑥, 𝑦) − 𝑔(𝑥∗, 𝑦∗)}
𝜕𝑔

𝜕𝑃𝑘

+(𝑛−1) 2⁄
𝑖,𝑗=−(𝑛−1) 2⁄   

Using the �⃗� 0 as an initial displacement vector 

components estimates, the general Newton-Raphson 

form appears as below (Equation (6)). 

(6) �⃗� 𝑛+1 − �⃗� 𝑛 = −𝐻(�⃗� 𝑛)
−1

∙ ∇𝐿𝑆(�⃗� 𝑛) 

In which 𝐻 is the Hessian operator. Using the iterative 

procedure, the displacement vector �⃗�  is calculated within 

the desired tolerance [19]. Also, using high-resolution 

images and proper filtering may help increase 

measurement accuracy [20]. After displacement field 

calculation, strain tensor components could be 

determined using kinematic equations as below. Using 

small displacement assumption, these equations reduced 

to (Equations (7)-(9))  

(7) 𝐸𝑥𝑥 =
𝜕𝑢

𝜕𝑥
  

(8) 𝐸𝑦𝑦 =
𝜕𝑣

𝜕𝑦
  

(9) 𝐸𝑥𝑦 =
1

2
{
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
}  

 

2. 3. Noise and Illumination Sensitivity         During 

the experiments and imaging process, noise and light 

illumination variations are inevitable. Hence, using 

correlation criteria with minimum sensitivity to these 

alternations in the DIC method is essential. Main noise 

sources are summarized as light variation during 

specimen deformation, low image resolution, inaccurate 

focus, or even lens distortion effects. There are many 

criteria such as cross-correlation, normalized cross-

correlation, the sum of squared differences, and the zero-

mean normalized sum of squared differences, ZNCC 

(Equations (10), (11). The latter criterion is one of the 

most efficient definitions in noisy conditions. In the 

present paper, ZNCC and LS are used as correlation 

criteria [21]. So,  

 (10) 𝐶𝑍𝑁𝐶𝐶 = ∑ ∑ {
[𝑓(𝑥𝑖,𝑦𝑗)−𝑓𝑚]×[𝑔(𝑥𝑖

∗,𝑦𝑗
∗)−𝑔𝑚]

Δ𝑓Δ𝑔
}𝑀

𝑗=−𝑀
𝑀
𝑖=−𝑀   

In which 𝑀 = (𝑛 − 1) 2⁄ . Also, we have 

(11) 

𝑓𝑚 =
1

(2𝑀+1)2
∑ ∑ 𝑓(𝑥𝑖 , 𝑦𝑗)

𝑀
𝑗=−𝑀

𝑀
𝑖=−𝑀   

Δ𝑓 = √∑ ∑ [𝑓(𝑥𝑖 , 𝑦𝑗) − 𝑓𝑚]
2𝑀

𝑗=−𝑀
𝑀
𝑖=−𝑀   

𝑔𝑚 =
1

(2𝑀+1)2
∑ ∑ 𝑔(𝑥𝑗

∗, 𝑦𝑗
∗)𝑀

𝑗=−𝑀
𝑀
𝑖=−𝑀   

Δ𝑔 = √∑ ∑ [𝑔(𝑥𝑗
∗, 𝑦𝑗

∗) − 𝑔𝑚]
2𝑀

𝑗=−𝑀
𝑀
𝑖=−𝑀   

Subset size plays an important role in DIC calculations. 

Subset size selection is a trade-off between several 

factors such as deformed subset discovery probability 

and results accuracy. In other words, using too small 

subset leads to improper subset finding. On the other 

hand, a large subset size increases the computational 

error. During deformation, it is possible to occur subset 

infinitesimal deformation in the sub-pixel scale. Due to 

the discrete nature of image gray values, sub-pixel 

calculations are meaningless [21]. To overcome the 

mentioned limitation, the bi-cubic interpolation 

technique is employed as shown in Figure . In this figure, 

horizontal x and y plane are pixel coordinates and the 
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vertical axis is gray values related to each pixel. Proper 

bi-cubic interpolation shows good agreement with actual 

gray values. 

 

2. 4. Speckle Pattern Evaluation and Entropy 
Determination          One of the most important factors 

affecting displacement field calculations is speckle 

pattern or simply gray index distribution and 

randomness. Shannon entropy is used to evaluate the 

quality of random patterns. This criterion is actually 

information contents expected value in a gray-scale 

image (Equation (12)). So,  

(12) 𝐻 = ∑ 𝑝𝑘 log (
1

𝑝𝑘
)𝑀

𝑘=0   

In which 𝐻 is Shannon entropy in bit per pixels, 𝑝𝑘 is the 

normalized probability of each gray values, and 𝑀 =
255 is the number of gray value in each pixel, i.e. 2𝛽 − 1 

for 𝛽 -bit images. Parameter 𝑝𝑘 could be obtained using 

the image histogram. To enhance the DIC calculation 

accuracy and proper region-of-interest (ROI) selection, 

entropy values are determined for different sections of 

reference images. Maximum entropy leads to more 

accurate results. In Figures 4 and 5 four different regions 

with high entropy values and their corresponding 

histogram are shown. These regions are chosen to be 

manipulated as optimum ROIs. As shown, entropy values 

are within 7.28 to 7.53. Despite the fact, there are 

approximately random speckle patterns on specimens 

due to the manufacturing process, cutting, machining, 

and grinding, we used several other methods such as 

paint spraying and abrasive papers in order to enhance 

entropy values [22].   

 

 

 
Figure 3. Bi-cubic interpolation of gray levels used in sub-

pixel displacement determination 
 

 
 ROI #4 ROI #3 ROI #2 ROI #1 

    
Figure 4. Four reference image segments with high entropy  

 
Figure 5. Four reference image segments histograms and 

Shannon entropy 
 

 

2. 5. Micro-Structure Modeling Using Digital 
Images and Computed Tomography       Using 

computed tomography is a newly emerged technique in 

geometric modeling of cellular microstructure. So we use 

the CT-scan device on prepared specimens for modeling 

purposes. As mentioned, using low-cost CT instead of 

micro-CT for 3D modeling is considered as an 

advantage. Furthermore, we choose for several CT 

imaging settings and protocols to enhance the modeling 

quality. Finally, the optimum values for CT imaging 

parameters are obtained. In the present research, the CT-

scan device is GE 16 slices with 0.1 to 0.2 mm slice 

thickness, small scan field of view (SFOV) of 154, 120 

kV voltage, 100 mA current, and 1-s full helical scan 

setting. The mentioned settings are chosen after the 

iterative process of optimization and qualitative 

evaluation of captured images. Significant parameters are 

voltage, current, slice increment, and scan field of view. 

Voltage variation levels are 100, 120, and 140 kV. It is 

seen that decreasing current leads to an increase in image 

noise and artifact. Although the image contrast may 

increase slightly. On the other hand, the increasing 

voltage to 140 kV does not control image noise 

considerably. So the optimum voltage is chosen to be 120 

kV. For the present CT-scan device, there are three 

current options in the aforementioned voltage. The 

proper values are 80, 100, and 120 mA [23]. 

Corresponding to the present scan condition, volumetric 

CT-scan dose index, CTDIvol is 37.17 mGy, dose length 

product, DLP (formulated in Equation (13)) is 297.6 

mGy.cm, dose efficiency is 85.7%, radiation exposure 

time is 14.2 s, and the phantom length is 16 cm [24]. So 

we have: 

(13) 𝐷𝐿𝑃(𝑚𝐺𝑦 ∙ 𝑐𝑚) = 𝐶𝑇𝐷𝐼𝑣𝑜𝑙(𝑚𝐺𝑦) ∙ 𝐿𝑠(𝑐𝑚) 

In which Ls is scan length. The specimen's scan 

dimension is about 8 cm. After scanning with optimum 

settings, the diVision Lite commercial software is used 

for quality evaluation. In Figure 6 one CT-scan slice of 
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two different foam specimens is shown. Artifact 

occurrence is severe in metal CT images especially 

metallic foams. Using optimum settings and proper 

protocol minimizes the undesired effects [25]. Image 

enhancement and noise reduction are achieved using a 

non-linear median filter [20]. Foam specimens used in 

CT-scan imaging have the approximate dimension of 

58×40 ×41 and 46×43×42 mm. We crop desired 

specimens corresponding to the uniaxial compression 

experiments for simulation purposes after 3D modeling. 

The 3D models used in FE simulations are cubes with at 

least approximately 40 mm dimension. Another 

significant parameter affecting 3D geometric 

reconstruction is the CT-scan threshold measured with 

the Hounsfield unit (HU). This index corresponds to the 

distinction capability of metal from voids [26]. Altering 

the HU lead to different model densities. Knowing the 

300 to 500 kg/m3 density range of aluminum foam is 

equivalent to -500 to 500 HU [27].  

The current increase is similar to the voltage 

parameter. So the optimum current value is chosen to be 

100 mA. Goal functions in CT-scan parameters are signal 

to noise ratio, SNR and contrast to noise ratio SNR. The 

scan field of view is chosen corresponding to the 

specimen dimensions. In contrast to mA and kV, an 

increase in SFOV leads to noise increases. The Mimics 

Research 21.0 commercial software is used for modeling 

purposes [28]. In Figure 7 the whole process of 3D 

geometric reconstruction is shown. 

 
2. 6. Mesh Generation Using Voxel and 
Tetrahedral Elements            Mesh generation is the 

most important step in FE simulations. In the present 

research, we used two types of elements for comparison 

 

 

 
Figure 6. CT-scan slice image quality evaluation for two 

different metallic foams in diVision Lite 
 

 
 

Figure 7. Process of 3D model reconstruction in Mimics 

using CT-scan slices 
 

 

purposes, i.e. 8-noded voxel brick and 4-noded 

tetrahedral element with linear interpolation shape 

function. Each approach has its unique merits and 

disadvantages. Voxel elements have a minimum 

computational cost because they have the minimum 

number of nodes and elements. Because they have jagged 

geometry, they did not fit geometry completely. Using 

tetrahedral elements may help overcome this problem 

especially in the curved regions. Although using a 4-

noded element leads to the dramatic increase in 

computational cost. Another disadvantage is related to 

the higher error in deformation field calculations. 

Refining tetrahedral mesh could help to enhance the 

calculations [29]. In Figure  two types of finite element 

models with tetrahedral and brick elements are shown. 

To obtain the optimum mesh density with acceptable 

accuracy and relatively low computational cost, four FE 

models are generated and simulations are performed. In 

Table 1 mesh independency analysis results are shown. 

In this table, computation cost and results agreement 

index are given in normalized form concerning optimum 

 

 

  
Figure 8. Finite element model of cellular solid using CT-

scan images, (a) Voxel brick element and (b) tetrahedral 

element 
 

 
TABLE 1. Mesh independency study for different mesh size  

Mesh geometry Mesh density Voxel size App. Element no. 

(×1000)   
App. Node no. 

(×1000) 
Normalized 

computation time 
Agreement with 

Ref. solution 

Hexahedral brick 

(Voxel) 

fine 1 1169 1817 5.3 1.02 

Relatively fine 2 206 348 1.0 1.0 

Average  3 72 122 0.45 1.56 

Coarse  4 25 42 0.12 0.25 
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mesh density, i.e. relatively fine. As observed, using fine 

mesh leads only 2% results variations but 5 times 

increase in computational cost. On the other hand, using 

average and coarse mesh increase calculation error to 56 

and 75%. 
 
2. 7. Finite Element Simulation Implementation        
Finite element simulation with explicit dynamic step and 

reduced loading rate is performed for quasi-static results 

using ABAQUS commercial software. Optimized mesh 

contained hexahedral brick C3D8 and tetrahedral C3D4 

elements. The universal loading device plateau is 

modeled using R3D4 rigid elements. To obtain smooth 

results with minimum noise, anti-aliasing and 

Butterworth filters with 2kHz cutoff frequency are 

employed [30]. Simulation inputs and material properties 

are obtained using tensile tests with ASTM B577 

standard [31] as shown in Table 2.  

 
 
3. RESULTS AND DISCUSSIONS 
 
3. 1. Displacement And Strain Field Measurement 
Using DIC            In this section, digital images captured 

during the compression test of aluminum foam 

specimens are used to obtain displacement and strain 

field using the DIC technique. Digital image correlation 

outputs are displacement vector (𝑢 , 𝑣) and strain tensor 

(𝜀𝑥𝑥, 𝜀𝑦𝑦, 𝜀𝑥𝑦). The process of field variable 

determination has many parameters affecting output 

accuracy. These parameters are summarized as current 

and reference configuration, ROI, subset size, subset 

spacing, solution tolerance, calibration factor, lens 

distortion factor, strain radius, etc. Generally, predefined 

settings are proper and DIC outputs have a relatively low 

computational error. But DIC implementation for the 

porous surface of foams requires iteration for proper 

settings selection to avoid solution divergence. In Table 

3 initial settings are illustrated. In the later section, we 

employ RSM based optimization to find optimum 

parameters of DIC to achieve minimum error. Altering 

various settings lead to significant parameter 

identification. In brief, the most significant factors in 

displacement field calculation are subset radius and 

subset spacing both in pixels. For strain measurement, 

there is one more factor, i.e. strain radius. For validation 

purposes, displacement vector and the strain tensor 

components are compared with corresponding FEA 

results in a particular point as shown in Figure 9. 

After DIC implementation, horizontal displacement 

𝑢, and vertical displacement 𝑣 are obtained in continuous 

contour form. It is worth noting that 𝑣 displacement 

contour is smoother than 𝑢 contour. It is because of the 

mechanical behavior of porous solids. In other words,  

 

 
TABLE 2. Material mechanical and physical properties used in FE simulation 

Material Mass density (kg/m3) Young’s modulus (GPa) Tangent modulus (GPa) Yield strength (MPa) Poisson’s ratio 

Aluminum 2700 69 0.47 76 0.35 

 

 

TABLE 1. Initial DIC parameters  

ROI size (mm) Subset radius (pixel) Subset spacing (pixel) Strain radius (pixel) Solution tolerance Max. allowable iterations 

20-40 34 1.0 15 1.0e-7 60 

ROI shape Thread No. Seed position Frame No. Loading disp. Solution  

Rectangular 4-8 Quarter ROI 20 0.576 mm direct 
 

 

 
(a)                                                   (b) 

Figure 9. The particular point used for validation purpose 

and field measurement, (a) digital image and (b) filtered 

binary image for FE modeling 

the displacement field in direction of loading is quite 

smooth but because of the low Poisson’s ratio and 

localized cell buckling, there is a non-smooth contour 

and a high amount of computational error in the 

transverse direction. Vertical and horizontal 

displacements are measured using DIC after averaging 

field values in the neighboring region. These values are 

0.35 and 0.07 mm. To ensure the validity of the results, 

three distinct compression experiments are performed 

and their results are reported as an average value. In 

addition, the DIC procedure is done for strain 

measurement calculation. The strain field calculation is 

𝜀𝑥𝑥, 𝜀𝑦𝑦 and 𝜀𝑥𝑦 measurement. Due to the small values, 
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normal strains are reported as percent and shear strain is 

reported as a degree. A higher computational error in 

strains is due to the derivation of the displacement field. 

Although there is a smooth contour in the strain field, 

because of the averaging and interpolation process. The 

contour smoothness in strain calculation is related to the 

strain radius parameter. Normal vertical and horizontal 

strains are -0.7 and 1.2% and shear strain is 1.6.̊ Strain 

field is a combination of both tensile and compressive 

normal strain because of the localized nature cell walls 

and faces deformation. 

 

3. 2. Results Verification Using FEA and DIC        
Because of the porous nature of the metallic foam, it is 

impossible to use contact methods of strain measurement 

such as strain rosettes. Furthermore, many experimental 

methods cannot determine the field variable in 

continuous form. So for verification purposes, FE 

analysis is chosen. In this way, the major requirement is 

accurate geometric modeling and meshing for 

simulation. As mentioned before, CT-scan images and 

digital microscopy techniques are employed in geometric 

reconstruction and modeling. Digital microscopy images 

with 800X zoom are used in micro-structural details 

refinement e.g. cell edge, that rather low-resolution CT-

scan failed to model. In Figure 10 it is shown that cell 

edge thickness varies from 0.2 to 0.4 mm. using this 

method, the FE model updated with actual values of 

micro-structural feature dimensions and hence true foam 

relative densities are obtained in modeling. 

FE simulation results compared to DIC outputs of 

aluminum foam are shown in Figure 11. In these 

contours, v-displacement and u-displacement are shown. 

 

 
Figure 10. Digital microscope image used in micro-

structural detail measurements with a scale of 0.1 mm 
 

 

These values are approximately 0.4 and 0.083 mm. 

Hence, relate errors corresponded to the DIC 

measurements are 15 and 19% respectively. The error 

values show good agreement between DIC and FEA 

outputs. Furthermore, strain tensor components are 

obtained within the FE analysis. So 𝜀𝑦𝑦, 𝜀𝑥𝑥, and 𝜀𝑥𝑦 are 

-1.08, 0.161, and 2.6̊. DIC relative errors in strain field 

measurements are 55, 34, and 65%. A higher amount of 

error is related to the derivation operator in strain 

calculation from the displacement field.  

As it is mentioned, strain components contour plots 

are FEA and DIC main results. So in Figure 12 the 

normal and shear strain contours are shown. 

Furthermore, the FEA outputs are compared to the DIC 

results. As it is obvious, there are more discontinuity 

rather than displacement contours. It is because of the 

inherent error of derivation operator. It is worth noting 

that normal and shear components of strain tensor are 

measured higher than FEA values. It guarantees that we 

can rely on the DIC values and in this way we are on the 

safe side. 

 

 

  
(b) (a) 

  
(d) (c) 

Figure 11. Displacement field determined by FEA on the porous surface of foam specimen, (a) FEM v-disp., (b) DIC v-disp., (c) 

FEM u-disp., and (d) DIC u-disp 
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(b) (a) 

  
(d) (c) 

   
(f) (e) 

Figure 12. Strain field determined by FEA on the porous surface of foam specimen, (a) FEM 𝜺𝒚𝒚, (b) DIC 𝜺𝒚𝒚, (c) FEM 𝜺𝒙𝒙, (d) 

DIC 𝜺𝒙𝒙, (e) FEM 𝜺𝒙𝒚, (f) DIC 𝜺𝒙𝒚 

 

 

Mehdikhani et al. [4] are also compare the FEA and DIC 

results. But they used 2D cross-sectional model of micro 

fibers. We modeled the porous media with detailed 

micro-structure in 3D space. Also they used free meshing 

technique with the triangular element in contrast to the 

structured voxel mesh in the present research. As a 

comparison to the previous research, it is worth noting 

that Begonia et al. [2] studied porous media also. They 

investigated the mechanical behavior of mouse forearm 

in micro-scale. Also, they studied the method of finding 

proper ROI for DIC implementation. They used the 

iterative approach, while we manipulated the Shannon 

entropy methodology. 
 
3. 3. Experimental Design and DIC Output 
Effective Factors Identification           In the previous 

section, displacement and strain field variables are 

illustrated in the form of contour plots. Variables are 

determined using initial settings. The main goals of the 

design of experiments (DOE) and response surface 

methodology (RSM) implementation are the 

identification of important factors in DIC response and 

also optimizing these factors to obtain measurements 

with minimum error. Using five levels RSM with the 

central composite design approach instead of the 

conventional factorial method helps to decrease the 

number of experiments and also increases the accuracy. 

There are two factors and two responses in DIC 

measurement of displacement, i.e. subset radius and 

spacing as factors and u-disp. and v-disp. as responses. 

For strain measurement, there are three factors and 

responses namely, subset radius, subset spacing, and 

strain radius as factors and 𝜀𝑦𝑦, 𝜀𝑥𝑥, and 𝜀𝑥𝑦 as responses. 

These parameters and their corresponding levels are 

summarized in Table 4.  

Finally, several DOE runs are performed with 

displacement and strain measurements for various factor 

levels. These factors and corresponding responses for 

displacement prediction using DIC are summarized in 

Table 5. Note that the average value of the leverage 

parameter for the whole experimental design is 0.4615. It 

guarantees that no need to repeat any experiment. Due to 

the R2 and adjusted R2 with 0.906 and0.8388 values for 

u-disp. and 0.7911 and 0.6418 for v-disp., the quadratic 
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TABLE 2. Factors and levels used in DOE with RSM 

factor Symbol Brief symbol High (+1) Mean (0) Low (-1) −𝜶 ,+𝜶 (-2,+2) Analysis  

Subset radius 𝑅𝑠𝑢𝑏𝑠𝑒𝑡 A 38 34 30 26, 42 Disp. and strain 

Subset spacing 𝑆𝑠𝑢𝑏𝑠𝑒𝑡 B 3 2 1 0, 4 Disp. and strain 

Strain radius 𝑅𝑠𝑡𝑟𝑎𝑖𝑛 C 20 15 10 5, 25 strain 

 

 
TABLE 3. Experimental design and displacement vector 

responses from DIC 

Std. 

order 

Run 

No. 

𝑹𝒔𝒖𝒃𝒔𝒆𝒕  

(𝒑𝒊𝒙𝒆𝒍) 

𝑺𝒔𝒖𝒃𝒔𝒆𝒕 

(𝒑𝒊𝒙𝒆𝒍) 

𝒖 

(𝒎𝒎) 

𝒗 

(𝒎𝒎) 

4 1 38 3 0.0768 0.3595 

3 2 30 3 0.0663 0.3465 

12 3 34 2 0.0718 0.3545 

11 4 34 2 0.0725 0.3495 

6 5 42 2 0.0886 0.392 

2 6 38 1 0.0793 0.371 

13 7 34 2 0.0742 0.356 

10 8 34 2 0.0686 0.3465 

9 9 34 2 0.0707 0.364 

5 10 26 2 0.0847 0.3745 

7 11 34 0 0.0863 0.399 

1 12 30 1 0.0895 0.4025 

8 13 34 4 0.0779 0.392 

 

 

model is selected. Considering Box-Cox graphs for u-

disp. and v-disp. shows that the optimum 𝜆 values are 1.7 

and -2.5. 

Analysis of variance is used for displacement and 

strain regression. Results show that in v-disp. regression 

subset radius squared and subset spacing squared terms 

are significant because they have the lowest p-values. In 

other words, p-values less than 0.05 and more than 0.1 

have corresponded to the significant and insignificant 

terms respectively. Furthermore, the degree of freedom 

related to both responses is five. So u-disp. and v-disp. 

regression equations (Equations (14), (15)) are as below. 

Note that the brief symbol of each factor is used. 

(14) (u)1.5=0.0192+0.0003A-

0.0015B+0.0022AB+0.0016A2+0.0011B2 

(15) (v)⁻2.5=13.47-0.1300A+0.5247B-0.8608AB-

0.5962A²-0.8096B² 

To guarantee model validity, there are several criteria. 

Four major criteria are the Box-Cox graph, the normal 

plot of residuals, plot of predicted values vs. actual, and 

also residuals vs. predicted values. In Figure 13 four 

important plots are shown for u-disp. response. Firstly the 

Box-Cox offers λ =1.7. Non-curved plot of residuals also 

is required as an index of validation. Also predicted vs. 

actual values show good agreement. Finally, the random 

distribution of externally studentized residuals with -3 to 

+3 values is good enough. In Figure 14 contour plot and 

the spatial surface of u-disp. the response is shown. 

Considering the results shows that there is a 

negligible perturbation in mid-point neighbor. Although, 

the effect of subset spacing is generally descending and 

the effect of subset radius is descending and ascending 

for values less than mid-point and more than mid-point 

respectively. In a small subset radius, the negative slope 

of subset spacing has significant growth. On the other 

hand, in large subset spacing, the ascending effect of the 

subset radius is significant. Analyzing strain responses 

also lead to quadratic model regression. In strain 

regression, minimum R2 and adjusted R2 values are 0.82 

and 0.65. Strain equations with quadratic form have nine 

degrees of freedom. Also, the four aforementioned 

criteria are controlled to ensure the model validity. 

Perturbation plots of strain regressions show that 

horizontal strain sensitivity in mid-point has concave 

upward variation behavior. In vertical strain, there is 

similar behavior for subset radius with horizontal strain. 

In shear strain, subset radius and strain radius have 

ascending and descending variations respectively. Subset 

spacing also has downward convex variation. Strain 

radius has the most significant effect in vertical and shear 

strains. Considering the analysis of variance results 

shows that the most important term in vertical and 

horizontal strains is subset radius squared. In shear strain 

regression, the most important terms are strain radius and 

subset spacing squared. 

 
3. 4. Effective Factors Optimization of Field 
Variables Determination              After modeling 

desired responses using quadratic regression, the 

optimization process is performed to find optimum DIC 

setting parameters to obtain results with minimum error. 

Based on validated and verified FE outputs, these values 

are considered as the goal values. Goal responses are 

0.083 and 0.4 mm for u-disp. and v-disp. Furthermore, 

the optimization constraints are the actual factor ranges 

in DOE. In Table 6 optimization results for displacement 

measurement using DIC are summarized. According to 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 13. Statistical criteria for model evaluation, (a) Box-

Cox plot, (b) normal residuals, (c) actual vs. predicted 

values, and (d) residuals vs. predicted values 

 
(a) 

 
(b) 

Figure 14. Regression of u-disp. response, (a) spatial 

surface representation, and (b) contour plot 
 

 

the optimization results, there are eight solutions with 

desirability from 71 to 41%. Selecting a proper solution 

has corresponded to two aspects, i.e. higher desirability 

and integer number in factors. Another point is that we 

should analyze desirability values according to each 

response separately in addition to combined desirability. 

Considering the whole solutions lead to 𝑅𝑠𝑢𝑏𝑠𝑒𝑡 = 30 

and 𝑆𝑠𝑢𝑏𝑠𝑒𝑡 = 1 for displacement measurement using 

DIC. It is worth noting that the mentioned solution is not 

unique for strain components too. So the optimization 

process is performed for strain measurement. 

Strain factor optimization leads to 53 solutions with 

82 to 31% desirability. The first solution has 82% 

 
TABLE 4. Optimization results for displacement measurement 

using DIC 

desirability v u 𝑺𝒔𝒖𝒃𝒔𝒆𝒕 𝑹𝒔𝒖𝒃𝒔𝒆𝒕 No. 

0.712 0.387 0.086 1.000 30.000 1 

0.707 0.386 0.086 1.024 30.000 2 

0.689 0.383 0.085 1.091 30.000 3 

0.591 0.376 0.080 3.000 38.000 4 

0.574 0.375 0.080 2.963 38.000 5 

0.572 0.375 0.080 3.000 37.864 6 

0.427 0.368 0.077 1.000 38.000 7 

0.413 0.367 0.077 1.000 37.400 8 
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combined desirability. Its corresponding factors are 38, 

1, and 11 pixels for subset radius, spacing, and strain 

radius respectively. To reduce computational costs, we 

can opt for solutions with lower desirability values, e.g. 

solution No. 38 with 68% desirability. Using this 

technique leads to an increase in computational speed 

with the factor of 2. In this way, strain measurement 

desirability has only 3% lowered in contrast to 

displacement optimization. The corresponding strain 

radius is 20 pixels. 

 

 

4. CONCLUSIONS 
 

Novel structures employment requires a good knowledge 

of their behavior and accurate deformation measurement 

under the loading conditions. In the present paper, micro-

structural deformation and field variable measurements 

are performed using digital image correlation during 

uniaxial compression tests. Finite element simulation of 

the actual lattice structure is also implemented for 

verification purposes. Also, CT-scan images and digital 

optical microscope images are used in modeling 

procedure by image processing. RSM and DOE 

techniques are also employed for optimization purposes. 

The most important applications of the present results are 

utilizing the labs with simple portable system to measure 

the deformation, strain, and stress fields, eliminating the 

measurement error of the contact experimental stress 

analysis methods, using DIC as a tool for health 

monitoring, tailoring the cellular solids by accurate 

determination of their mechanical properties, and using 

the present system for failure mode and localization 

determination in microstructures. Furthermore, we 

present the method of mesh and geometry refinement 

using the hybrid approach of CT-scan imaging and 

optical digital microscope image processing.  

It is worth noting that we bridge between experiment-

based measurement method (DIC) and numerical 

simulation (FEA). The main contribution is to present the 

hybrid methodology and strategy of verified 

measurement and field variables determination with 

minimized cost. Also, we present several correlation 

equations with experimental design and statistical 

methods for the main field variables, as well as DIC 

parameters optimization using response surface 

methodology. In addition, we optimize the computed 

tomography settings using the iterative approach. It 

yields to high-quality CT images with minimum artifacts 

to reach enhanced 3D model.  

The main limitations and suggestions for future 

works are summarized below. 

• We should use the controlled environment and dark 

boxes to minimize the illumination noise. 

• The present method could be applied only on 

specimens with high porosity because of their two-

dimensional strain field. 

• Due to a large number of incremental images during 

axial loading, the image processing and DIC 

implementation are time-consuming. 

• We need the accurate micro-structural model in FE 

simulations for verification purposes. 

• Using two or more cameras for 3D strain tensor 

determination could be done in future. 

• Infra-red thermography is also could be added to the 

present system for failure mode and location 

determination. 

The most important results are summarized 

below: 

• During the compression test, comprehensive DIC 

system implementation and analysis are done and 

major effective factors, e.g. illumination, rate of the 

capturing are identified. 

• 3D dynamic FE simulation is performed as a 

verification tool with detailed mesh sensitivity 

analysis for the continuous field calculation. 

•  CT-scan images are obtained and processed and 

detailed 3D cellular models with accurate density 

values are modelled as FEM input.  

• Using CT-scan imaging with optimized settings 

instead of the expensive micro-CT for 3D 

modelling with acceptable accuracy is considered a 

novelty. 

• Digital microscope imaging is employed for foam 

model fine-tuning especially in cell edges and faces 

to reach the highest accuracy. 

• The relative error of DIC measurement and FEA 

results for vertical and horizontal displacements are 

15 and 19%. The corresponding values for normal 

vertical and horizontal strain are 55 and 34%. This 

error for the shear strain is 65%.  

• Higher error for strain tensor is related to the 

numerical problems using derivation operator. 

• Normal vertical and horizontal strain component 

values are -1.08 and 1.6% and the shear strain is 

about 2.6 degrees in FEA. 

• Horizontal displacement is modelled using a 

quadratic correlation with ANOVA approach. To 

obtain higher accuracy results, the corresponding 

transformation power is 1.5.  

• vertical displacement is modelled using a quadratic 

correlation. The corresponding transformation 

power is -2.5. 

• To reduce the number of experiments, the central 

composite design approach of RSM is implemented 

and quadratic regression of displacement and strain 

field is obtained. 
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• Response surface methodology is employed to 

optimize DIC parameters such as subset reduce, 

subset spacing, and strain deduce. 

• The most important factor in normal strain is the 

subset radius squared. Also, the most effective 

terms in shear strain prediction are strain radius and 

subset spacing squared.  

• Displacement measurement optimization leads to 

71% desirability with subset radius and spacing of 

30 and 1 pixels respectively. 

• Strain optimization with the highest desirability 

leads to subset radius, spacing, and strain radius of 

38, 1, and 11. 

• Considering computational cost and desirability of 

68% together lead to similar factors with 

displacement measurement. 
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Persian Abstract 

 چکیده 
ای در میان مواد نوین هستند. از طرف دیگر  هایی مانند نسبت استحکام به وزن و ارزش تصادف بالا، دارای جایگاه ویژهویژگیهای فلزی با توجه به  مواد متخلخل به ویژه فوم

ز جمله  های آلومینیومی ارائه شده است. اباشد. در پژوهش حاضر، متدولوژی ترکیبی خاصی جهت شناسایی رفتار فومیابی دقیق میسفارشی سازی این مواد مستلزم مشخصه

های اساسی گیری پیوسته میدان جابجایی و کرنش اشاره نمود. یکی از چالش توان به ادغام دو روش همبستگی تصاویر و اجزای محدود در اندازهدستاوردهای پژوهشی می 

ستفاده همزمان از تصاویر توموگرافی و میکروسکوپ باشد. برای حل این مشکل نیز از روش اسازی جامدات سلولی، مدلسازی ریزساختار آن و سپس تولید مش میدر شبیه

ها تحت فشار محوری قرار گرفته و تصویربرداری های فوم فلزی و چیدمان سیستم تصویربرداری، نمونهنوری در فرآیند بازسازی هندسی استفاده شده است. پس از تولید نمونه

گیری و با هدف گذاری نتایج اندازهشود. از طرف دیگر به منظور صحهگی، میدان جابجایی و کرنش محاسبه میشود. نهایتاً با استفاده از تکنیک همبستبا کیفیت انجام می 

بندی و متدولوژی سطح پاسخ استفاده شده  افزار آباکوس همراه با مطالعه استقلال مشسازی عددی اجزای محدود با نرمیابی تنظیمات روش همبستگی، به ترتیب از شبیه بهینه

های رگرسیون مراتب بالا استخراج شده است. استفاده از مدل ریزساختاری و نیز پارامترهای بهینه روش همبستگی به تطابق . در نهایت معادلات همبستگی براساس مدلاست

مک تصاویر میکروسکوپ نوری به جای میکرو سازی و تجربی منجر شده است. استفاده از تصویربرداری توموگرافی به همراه اصلاح جزییات به ک مناسب میان نتایج شبیه

 دهد. های تصویربرداری را به نحو چشمگیری کاهش میسی تی، در عین حصول دقت مناسب، هزینه 
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