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A B S T R A C T  
 

 

This research presents a compact and computationally-efficient two-equation compressible-liquid 

model. The model is specifically developed for the numerical computation of hydraulic surges in pipes 
under high fluid pressure where cavitation is absent. The proposed model aims to simplify the three-

equation model of Neuhaus et al. for two-phase cavitational hammers. Compressible effects in liquid 

during the transients are considered by including a suitable equation of state into the model. A tunable 
function of the relative local pressure fluctuation called 'Variable Friction Coefficient' (VFC) for the 

flow transients is also incorporated into the model. For the accurate modeling of wave propagation, the 

split-coefficient matrix (SCM) method for characteristic-direction based splitting of eigenvalues is used 
in the study. The results show that the proposed two-equation model can reproduce the results from the 

three-equation model at a substantially reduced computational cost. The integration of the variable 

friction coefficient into the two-equation compressible-liquid model further improved the solver 
capability.  The results computed using this aggregate solver are superior to the original three-equation 

model and the two-equation model without VFC. The results also suggest that the variable friction 

coefficient imparts adaptive damping capability to the solver model. This feature of the model is visible 
in the improved accuracy in the modeling of decaying pressure waves. The aggregate solver model, i.e., 

`the variable friction coefficient integrated two-equation compressible-liquid model,' offers a greatly 

simplified mathematical model and an inexpensive computational solver for the simulation of hydraulic 
surges in non -cavitating flow transients.  

doi: 10.5829/ije.2020.33.10a.23  
 
1. INTRODUCTION1 

 

The hydraulic surge in pipes is a widely studied flow 

phenomenon in fluid dynamics due to its high practical 

relevance in the safety of water-supply for industrial and 

irrigation applications. Theory and experiments on fluid 

transients in systems and the studies on the various 

parameters affecting water hammer is available in [1]. 

The non-linear oscillations in visco-elastic pipelines 

conveying fluid is mathematically simulated in [2]. 

Modelling and optimizing hydraulic transients in water 

distribution systems, using the classical gradient and 

heuristic optimization techniques is reported in [3]. The 

study [4] analyses and designs surge tank, a device used 

to mitigate the effects of valve closure induced water 

hammer. Measurement systems like the optical-based 
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device presented in [5], shall soon lead to precisely 

recorded hydraulic surge data. Numerical modeling plays 

a significant role in the detection of destruction under the 

influence of cavitation. The pressure fluctuations on the 

bed of the compound flip buckets of a dam spillway are 

experimentally and numerically investigated in [6] and 

[7].  Numerical detection of cavitation damage level and 

location on dam spillways is presented in [8]. Corrosion 

is another factor that determines the safety of pipelines, 

and the protection systems are essential against 

corrosion, especially for oil and gas pipelines [9]. 

In most of the two-phase cavitation models like those 

studied in [10] and [11], the gaseous components are 

modeled as compressible fluids, whereas, the liquid 

component, which is usually water, is invariably treated 

to be incompressible. There are many practical situations 

where considering the liquid compressibility, though 
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mild, may contribute to the completeness of the model. 

Simulation of transient flows in visco-elastic pipes with 

vapor cavitation reported in [12] employs a compressible 

model for both the liquid and gaseous phases.  For 

hydraulic surges arising from sudden valve closures at 

high operating pressures, the cavitation effects are 

generally absent. For such cases, a comparatively simple 

mathematical model is preferred, which drastically 

reduces the computational cost to simulate the flow 

transient.  

In this work, a simplified mathematical model is 

presented, which is computationally inexpensive to 

model non-cavitating hydraulic surges. The prescribed 

model addresses the compressibility effects in the liquid 

handled in addition to the savings offered in computation. 

Another innovation in this work is the incorporation of a 

variable friction coefficient to the model to improve the 

prediction of transient surge pressure variation. This new 

friction coefficient is introduced as a function of local 

pressure fluctuation with the aim to adapt to the local 

requirements of wave damping. 

The following section outlines the research 

methodology employed. The subsequent section presents 

the two-equation model, which includes the details of the 

liquid's compressible treatment and the defining of the 

variable friction coefficient. The mathematical 

formulation and the corresponding computational 

strategy used to develop the solver are detailed in Section 

4. Section 5 describes the problem setup and selection of 

the computational domain. The numerical results for the 

transient cases from the simulation are thoroughly 

analyzed and are compared against their corresponding 

experimental values in the results and discussion section. 

 

 
2. RESEARCH METHODOLOGY 

 
A three-equation model is presented by Neuhaus et al. in 

[13] for calculations of thermo-hydraulic pressure surges 

in pipes. A modification to this model, a two-equation 

single-phase model, is presented in this study for 

hydraulic surge estimation for high-pressure flow cases 

where cavitation effects are negligible. The proposed 

single-phase model incorporates an equation of state 

(EOS) to take into account the compressibility effects of 

the liquid. The EOS relates the fluid density and signal 

wave speed to its pressure. The specific EOS we have 

used is the Modified Noble-Abel Stiffened Gas equation 

of state (Modified NASG EOS) [14], which is a highly 

accurate non-isothermal EOS for liquid water. The work 

also presents a variable friction coefficient, defined in the 

form of a tunable function of local pressure, to improve 

the accuracy of the numerical solver.  

The computational model presented in the study is 

used to simulate the hydraulic surge and related flow 

transients associated with sudden valve closure 

experiments conducted at the Pilot Plant Pipework (PPP) 

test rig of Fraunhofer, UMSICHT, Germany [15]. The 

Split-Coefficient Matrix (SCM) method [16], which uses 

characteristic direction based splitting, is used for 

modeling the wave propagation during the fluid transient. 

This powerful solution technique for wave propagation 

related fluid flow problems, is used for the numerical 

solution of two-phase flow equations in [17], and for the 

study of axially coupled vibration response of a fluid-

conveying pipeline excited by water hammer in [18]. 

The proposed computational model is validated 

against the experimentally measured values reported in 

[15]. The two-equation model is compared to the original 

three-equation model to showcase the model 

simplification and improvements in saving the cost of 

computation. The flow chart below shows the research 

methodology used. 
 

 

Selection of a 3-equation model for cavitating hydraulic 

surges. 

 

Simplifying this mathematical model to a new 2-

equation model for non-cavitating hydraulic surges for high 

operating pressures. 

 

Enhancing this new model by compressible treatment of 

the liquid using suitable EOS. 

 

Defining the variable friction coefficient (VFC) based 

on relative local pressure fluctuation in the flow field. 

 

Incorporating the VFC into the 2-equation compressible 

-liquid model to provide adaptive damping capability. 

 

Developing a computational strategy for using this 

mathematical model to simulate practical flow cases. 

 

Numerically solving transient, non-cavitating hydraulic 

surges at different operating pressure ranges. 

 

Analyzing the numerical results against the experimentally 

measured values and the computed values from the original 3-

equation model, to establish the novelty of the new model. 

 

 

3. THE TWO-EQUATION COMPRESSIBLE-LIQUID 
MODEL 
 
A three-equation two-phase model is proposed in [13] for 

numerical simulation of the cavitational hammer and 

related thermo-hydraulic pressure surges. The three 

equations used in this mathematical model are: the 

conservation equations for mass for the liquid phase, the 

gas phase (air-vapour mixture), and a combined 

momentum equation for both the phases. 

The flow model also incorporates steady and unsteady 

friction models, as well as the effects of degassing. The 

results from this mathematical model are validated 
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against a series of experiments at the Pilot Plant Pipework 

(PPP), Fraunhofer UMSICHT. The report [15] shows the 

results from the three-equation mathematical model 

performing well with two-phase flow cases at low 

operating pressures. For high operating pressures 

reported in [15], this model performs satisfactorily only 

with the incorporation of FSI into the model. 

Here we propose a two-equation single-phase model 

as a modification to the three-equation model described 

in [13], for flow situations where no cavitation effects are 

present. The proposed model tries to simulate the flow 

physics without using the FSI algorithm in the model, 

which considerably reduces the computational 

complexity. For single-phase flow in a horizontal pipe, in 

the absence of cavitation effects, the three-equation 

model [13] discussed above reduces to a two-equation 

system as follows.  

1

𝑎2

𝜕𝑝

𝜕𝑡
+

𝑢

𝑎2

𝜕𝑝

𝜕𝑥
+ 𝜌

𝜕𝑢

𝜕𝑥
= 0  (1a) 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+

1

𝜌

𝜕𝑝

𝜕𝑥
= −

4𝜏

𝜌𝑑
  (1b) 

where 𝑝, 𝑢, and 𝜌, and are respectively the pressure, 

axial velocity and density of the flow. The symbol 𝑎 

represents the speed of propagation of wave in the 

medium and 𝜏 is the shear force due to skin friction and 

𝑑 is the pipe diameter. The variables 𝑥 and 𝑡 denotes the 

spatial and temporal coordinates.  

Equation (1a) represents the mass balance for the 

liquid, and the Equation (1b) represents the momentum 

balance for the liquid phase. The mass balance for gas 

phases identically satisfies due to the single-phase 

consideration. Equations (1a) and (1b) form a system of 

PDEs with the dependent variables 𝑢, 𝑝, and 𝜌. The 

temperature is assumed to be constant during the flow 

process, and the energy balances are thus automatically 

satisfied. The density 𝜌 of the liquid is treated as a 

variable using an appropriate compressible model, as 

discussed in section 3.1, and the shear stress 𝜏 is 

estimated using an unsteady friction model, as explained 

in section 3.2. 

 

3. 1. The Compressible Model for Water           In the 

present study, water is modeled as a compressible liquid 

as it is subject to high pressures both at operating and 

surge conditions. The density of liquid water is estimated 

using the modified NASG equation of state (EOS) 

proposed in [14]. This EOS relates the pressure 𝑝, the 

specific volume 𝑣, and the specific internal energy 𝜀 of 

the liquid as follows: 

 𝑝 = (𝛾 − 1)
(𝜀−𝑞)

(𝑣−𝑏)
− 𝛾𝑝∞   (2) 

In Equation (2) 𝛾 is the ratio of specific heats, 𝑝∞ is the 

stiffening parameter, 𝑞 is the heat bond of liquid water 

and 𝑏 represents the covolume of the fluid. The relation 

for speed of sound in unconfined liquid compatible with 

the EOS is given by Equation (3) as follows 

𝑐 = √
𝛾𝑣2(𝑝+𝑝∞)

𝑣−𝑏
    (3) 

Radial expansion of the pipe is considered while 

estimating the speed of propagation of wave (𝑎) in water, 

using the following relation 

𝑎 =
1

√
1

𝑐2+(1−𝜈2)
𝜌𝑑

𝐸𝑠

  
(4) 

In Equation (4), 𝜈 and 𝐸 are respectively the Poisson’s 

ratio and the Youngs modulus of pipe material, and 𝑠 is 

the pipe wall thickness. 

 

3. 2. The Variable Friction Coefficient    It is a 

common observation that in the modeling of fluid 

hammer problems, discrepancies arise in the numerically 

computed data over the experimental or field data 

measured while using a steady shear stress model [19, 

20]. Daily et al. [21] conducted laboratory experiments 

and found that these discrepancies are positive for 

accelerating flows and are negative for decelerating 

flows. A detailed review of the wall shear stress models 

used in the modeling of hydraulic transients is available 

in [22]. The relation of energy loss coefficient with 

transition geometry of a pipe, flow Reynolds number, and 

the relative roughness of the wall are outlined in [23]. The 

unsteady shear stress model used with the three-equation 

model in [13] takes the following form for single-phase 

liquid flow case as given by Equation (5). 

𝜏 = (𝑘 
𝜌𝑑

4
𝑎) 𝑠𝑖𝑔𝑛(𝑢)

𝜕𝑢

𝜕𝑥
  (5) 

where 𝑘 is the unsteady friction coefficient accounting 

for damping of pressure waves. 

Daily et al. further showed that, for an unsteady shear 

stress model of the form of Equation (5), the coefficient 

𝑘 is a measure of the deviations due to unsteadiness of 

the wall shear and momentum flux. The extended 

thermodynamics approach by Axworthy et al. [24] 

supports this claim and reports the poor agreement 

between model and data while using a constant 𝑘 value. 

This study is further extended by replacing the 

pressure wave damping coefficient, 𝑘, by a variable 

friction coefficient, 𝑘𝑣. Unlike the constant coefficient, 

𝑘, the new coefficient, 𝑘𝑣, is a function, which uses the 

ratio of the magnitude of local pressure fluctuations to the 

maximum possible pressure fluctuation for the cases 

considered. For the initial operating conditions of 

pressure 𝑝0, density 𝜌0, velocity 𝑢0, and signal speed 𝑎0, 

the magnitude of maximum possible pressure fluctuation 

△ 𝑝𝑚𝑎𝑥  is computed using the well established 

Joukowsky equation as follows: 

△ 𝑝𝑚𝑎𝑥 = 𝜌0𝑎0 △ 𝑢 = 𝜌0𝑎0|𝑢0 − 0| = 𝜌0𝑎0|𝑢0|  (6) 
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The importance of Joukowsky relation given by 

Equation (6) in the theory of water hammer is outlined in 

[25]. A similar non-dimensional parameter is defined in 

[26], using the Joukowsky pressure rise, to study the 

wave attenuation in fluid transients. 

The magnitude of fluctuation in pressure at any local 

point `i' is calculated as the absolute value of the 

difference between the local pressure 𝑝𝑖  and the operating 

pressure 𝑝0. The variable friction coefficient, 𝑘𝑣 is thus 

defined as: 

𝑘𝑣 = 𝑚1 [1 − (
|𝑝𝑖−𝑝0|

△𝑝𝑚𝑎𝑥
)
𝑚2

]   (7) 

In Equation (7),  𝑚1 and 𝑚2 are tunable parameters. With 

this definition of the variable friction coefficient, 𝑘𝑣, the 

equation for shear stress can be written as: 

𝜏 = (𝑘𝑣  
𝜌𝑑

4
𝑎) 𝑠𝑖𝑔𝑛(𝑢)

𝜕𝑢

𝜕𝑥
  (8) 

The shear stress computed from Equation (8) is used 

to estimate the source term in Equation (1b). The newly 

introduced variable friction coefficient, which uses the 

ratio of the local pressure fluctuations, which is 

transiently varying quantity, is expected to take care of 

the deviations due to unsteadiness, of the wall shear, and 

momentum flux to some extent. 
 

 

 

4. MATHEMATICAL MODEL AND COMPUTA-
TIONAL STRATEGY 

 

The two-equation model is initially converted to the 

corresponding matrix form, and the resulting matrix 

system is then solved in a two-step process. The process 

involves converting the governing equations into 

characteristic form and solving them using the split 

coefficient matrix technique. The details are as given 

below. 
 

 

4. 1. Mathematical Model in Matrix Form       The 

governing relations of the two-equation model given by 

Equations (1a) and (1b) can be written in the compact 

matrix from as: 

[

1

𝑎2 0

0 1

] [

𝜕𝑝

𝜕𝑡

𝜕𝑢

𝜕𝑡

] + [

𝑢

𝑎2 𝜌

1

𝜌
𝑢

] [

𝜕𝑝

𝜕𝑥

𝜕𝑢

𝜕𝑥

] = [

0

−4𝜏

𝜌𝑑

]  (9) 

Equation (9) is of the form: 

𝐴 
𝜕𝑈

𝜕𝑡
+ 𝐵 

𝜕𝑈

𝜕𝑥
= 𝑆   (10) 

In Equation (10), the matrices and vectors are as in 

Equation (11) 

𝐴 = [

1

𝑎2
0

0 1

] , 𝐵 = [

𝑢

𝑎2
𝜌

1

𝜌
𝑢

] , 𝑆 = [

0

−4𝜏

𝜌𝑑

] , 𝑈 = [
𝑝
𝑢
]  (11) 

Premultiplying Equation (10) by 𝐴−1, we obtain the 

following standard form in Equation (12) 

𝜕𝑈

𝜕𝑡
+ 𝐶 

𝜕𝑈

𝜕𝑥
= 𝐴−1𝑆  (12) 

From the coefficient matrices 𝐴 and 𝐵, the corresponding 

Jacobian matrix 𝐶 and the eigenvalue matrix ∧ are 

obtained as follows: 

𝐶 = 𝐴−1𝐵 = [

𝑢 𝜌𝑎2

1

𝜌
𝑢

]  and  ∧= [
𝑢 − 𝑎 0

0 𝑢 + 𝑎
]  (13) 

Splitting the Jacobian matrix 𝐶 in Equation (13) into left 

and right eigenvectors (𝑍 and 𝑍−1), we obtain 

    𝐶 = 𝑍 ∧ 𝑍−1   

     =  [

−𝜌𝑎 𝜌𝑎

1 1
] [

𝑢 − 𝑎 0

0 𝑢 + 𝑎
]

[
 
 
 −

1

2𝜌𝑎

1

2

1

2𝜌𝑎

1

2 ]
 
 
 

  
(14) 

In the first step of computation, the source term is 

excluded from Equation (12) and the resulting equation 

takes the form 

𝜕𝑈

𝜕𝑡
+ 𝐶 

𝜕𝑈

𝜕𝑥
= 0 (15) 

The split form of the Jacobian matrix 𝐶 from Equation 

(14) is substituted into Equation (15). The resulting 

equation is premultiplied by 𝑍−1 to obtain the following 

equation 

𝑍−1 𝜕𝑈

𝜕𝑡
+∧ 𝑍−1 𝜕𝑈

𝜕𝑥
= 0  (16) 

Defining the characteristic vector 𝑊 as given in [27], 

such that 

𝜕𝑊 = 𝑍−1𝜕𝑈  (17) 

Equation (16) changes to the following relation  

𝜕𝑊

𝜕𝑡
+∧ 

𝜕𝑊

𝜕𝑥
= 0  (18) 

Linearizing Equation (17) similar to [28] we can compute 

the characteristic variable vector 𝑊 using Equation (19) 

𝑊 = 𝑍−1𝑈 = [

−
𝑝

2𝜌𝑎
+

𝑢

2

𝑝

2𝜌𝑎
+

𝑢

2

]  (19) 

Equation (15) is thus transformed to the corresponding 

characteristic form in Equation (18). 
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4. 2. The Two-step Computational Algorithm        
The solution of the two-equation model given by 

Equation (10) is obtained in a two-step process. In the 

first step, the system of equations in the characteristic 

form excluding the source terms given by Equation (18), 

is solved for an intermediate time step denoted by`⋆' 

starting from the 𝑛𝑡ℎ time step. The semi-discretized 

form of this equation for the 𝑖𝑡ℎ spatial grid is as follows:  

𝑊𝑖
⋆ = 𝑊𝑖

𝑛 −△ 𝑡 [∧
𝜕𝑊

𝜕𝑥
]
𝑖

𝑛
  (20) 

The split coefficient matrix (SCM) method is used for 

solving the above system in Equation (20). The SCM 

method is used to split the eigenvalue matrix ∧ into 

characteristic speed matrices with the positive and 

negative eigenvalues separated into the respective 

matrices ∧+ and ∧− as follows 

∧+=
∧+|∧|

2
      and      ∧−=

∧−|∧|

2
  (21) 

Using ∧+ and ∧− from Equation (21), the properties are 

updated to the intermediate time step as follows 

𝑊𝑖
⋆ = 𝑊𝑖

𝑛 −
△𝑡

△𝑥
[∧+ (

𝜕𝑊

𝜕𝑥
)
−

+∧− (
𝜕𝑊

𝜕𝑥
)
+
]
𝑖

𝑛

  (22) 

An explicit third-order upwind method is used for spatial 

discretization of the convective terms in Equation (22). 

On completion of the first step of computation, the 

primitive variable vector is recovered from the 

characteristic variable vector as 𝑈𝑖
⋆ = 𝑍𝑊𝑖

⋆. In the 

second step, the effect of the source term is integrated 

into the solution by retaining only the transient and 

source terms in Equation (10) as follows 

𝜕𝑈

𝜕𝑡
= 𝐴−1𝑆   (23) 

and the semi-discretized form of Equation (23) is given 

below in Equation (24) 

𝑈𝑖
𝑛+1 = 𝑈𝑖

⋆ +△ 𝑡[𝐴−1(𝑈𝑖
𝑛)𝑆(𝑈𝑖

𝑛)]  (24) 

Since there is no source term in the mass balance 

equation for liquid, only the momentum equation needs 

to be solved in the source term integration step. From the 

momentum equation, the velocity of flow is updated as 

𝑢𝑖
𝑛+1 = 𝑢𝑖

⋆ −△ 𝑡 (
4𝜏

𝜌𝑑
)  (25) 

In Equation (25), 𝑢⋆ is the component of the primitive 

variable vector 𝑈⋆. 

 

 

5. PROBLEM SET-UP AND COMPUTATIONAL 
DOMAIN 
 

The experimental data used for validation of the 

mathematical model are from two high-pressure 

experiments conducted by Neuhaus et. al [15] at the Pilot 

Plant Pipework (PPP) test rig at Fraunhofer UMSICHT. 

The schematic of the PPP experimental setup with 

measurement points is shown in Figure 1. 

Demineralized tap water from the reservoir B1 is 

pumped into a 110 mm inner diameter and 170 m long 

steel pipeline. This pumping initially pressurizes the 

entire pipeline to the high pressure maintained inside the 

reservoir. The valve located between the pressure 

transducers P02 and P03 closes almost instantaneously at 

𝑡 = 0 while the pump remains running. Due to the 

sudden closure of the valve, a strong rarefaction wave is 

generated towards the downstream of it. This wave 

traverses further downstream towards the reservoir B1. 

Vapor bubbles can form at locations where the fluid 

pressure goes below its vapor pressure. The rarefaction 

waves generated oscillate in the pipe system and undergo 

multiple reflections at the boundaries until they get 

completely dissipated. 

The two high pressure experiments chosen for 

validation of the method are the Experiment No. 415 and 

Experiment No. 347 mentioned in [15]. The details of the 

experiments are provided in Table 1. 

The valve closure Experiments No. 415 and No. 347 

correspond to the operating pressure ranges of 19.65 bar and 

12.50 bar, respectively, with the temperature close to 20∘ C. 

For these two high-pressure experiments, the lowest values 

of transient pressure measured are well above the saturation 

pressure of the liquid, due to which the effects due to 

cavitation are absent. The pressure transducer P03 shown in 

Figure 1, located at a distance of 0.2 m downstream of the 

valve, records the transient pressure data. Numerically 

computed results using the proposed model are validated 

against these experimentally measured data. The single-

phase two-equation model can be used to simulate the 

 

 

 
Figure 1. Schematic of the Fraunhofer UMSICHT PPP 

experimental setup with measurement points 

 

 
TABLE 1. Details of the experimental conditions 

Exp. 

No 

Fluid 

Velocity, 𝑽 

[m/s] 

Flow 

Rate, Q 

[m 3/hr] 

Temperature, 

T[ ∘C] 

Pressure, 

PR [bar] 

415 1.00 33.2 21.9 19.65 

347 1.01 33.4 20.3 12.50 
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hydraulic surges in these two valve closure experiments, as 

both do not report cavitation effects. 

The entire downstream side of the valve up to the 

reservoir B1, which is 149.4 m long, is the chosen 

computational domain. In our model, we have not 

considered the fluid-structure interactions in the pipe flow. 

A simplified one-dimensional straight pipe section of length 

149.4 m is chosen for computation, as shown in Figure 2. 

For the purpose of computation, the one-dimensional 

domain is divided into 747 uniformly sized control volumes, 

each of size △ 𝑥 = 0.2 m. From the stability considerations, 

a CFL number of 0.03 is found to be optimal and the 

corresponding time step size △ 𝑡 is calculated to be close to 

5 × 10−6 s. 

 

 

6. RESULTS AND DISCUSSION 
 

A two-level performance analysis of the proposed two-

equation model is presented in the study. In the first level, 

the two-equation model with compressible formulation for 

the liquid is evaluated against the experimentally measured 

data and the three-equation model of Neuhaus, which treats 

the liquid part as incompressible. In the second level of 

analysis, the variable friction coefficient is integrated into 

the two-equation compressible-liquid model, which is then 

compared for performance against the experimental results 

as well as the numerical results from the three-equation 

model. The detailed analyses of the results are provided 

below. 

 

6. 1. The Two-equation Compressible-liquid Model 
with Constant Friction Coefficient          The transient 

flow problem of sudden valve closure in a steel pipe and the 

associated pressure surge are mathematically formulated 

using the proposed two-equation compressible-liquid 

model. This one-dimensional system of equations is solved 

numerically, and the results are compared against the 

numerical results computed using the existing three-

equation model and with the transient pressure data 

measured experimentally. The experiment data were those 

measured using the pressure transducer P03 for Experiment 

Nos 415 and 347 reported in [15]. In the case of Experiment 

No. 415, the transient data measured for the first 3 s from 

the closure of the valve is used, while for Experiment No. 

347, the measured data for the first 5 s is considered. The 

unsteady friction formulation reported in [13] is used with 

both the computational models. An optimized value of 0.18 

 

 

 
Figure 2. Schematic of the flow domain geometry and 

boundary conditions for computation 

is used for the constant friction coefficient 𝑘 in the 

simulation of these experiments. 

In Figure 3, the continuous black color curve shows the 

experimentally measured transient pressure profile for 

Experiment No. 415. A strong rarefaction wave is generated 

just downstream of the valve immediately after its closure 

as the inertia of moving fluid creates a low-pressure area in 

the downstream region of the valve. The crests (peaks) and 

troughs (anti-peaks) seen from the experimental pressure 

profile indicate the rarefaction waves propagating back and 

forth along the length of the pipe, undergoing multiple 

reflections at the boundaries. 

Due to frictional forces in the pipe flow system, these 

waves lose their energy and dissipate into a steady-state, 

which is evident from the decreasing amplitude of the 

pressure with time. The continuous blue colored curve in 

Figure 3 represents the transient pressure profile computed 

using the three-equation model [15]. Numerical results 

obtained from the present two-equation compressible-liquid 

model are displayed using the magenta colored curve in 

Figure 3. 

For Experiment.No.347, the measured values of the 

transient pressure variation at the location P03 are shown 

using the continuous black curve in Figure 4. 

 

 

 
Figure 3. Comparison of measured and calculated pressure 

at P03 for experiment 415 

 

 

 
Figure 4. Comparison of measured and calculated pressure 

at P03 for experiment 347 
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The numerically computed transient pressure profiles 

using the three-equation and the two-equation models are 

shown in Figure 4 using the green colored and the red 

colored curves, respectively. As observed from Figures 3 

and 4, the transient pressure profile predicted by the two-

equation model proposed is in close agreement to that 

obtained from the existing three-equation model. However, 

one could notice that the two-equation model reproduced 

this numerical solution using a much simplified 

mathematical formulation, which requires considerably 

reduced computational effort.  

On closer observation, one may find that the two-

equation model predicts the peak pressures marginally 

higher than that of the three-equation model throughout the 

transient. This is visible in a better manner with Experiment 

No.415, as seen from Figure 3, which involves a 

comparatively high operating pressure. This increase in the 

pressure magnitude could be attributed to the compressible 

treatment of the liquid, which accounts for the increase in 

the density of the liquid at high pressures. The compressible 

treatment also leads to the accurate estimation of wave 

speeds within the fluid, which adds to the magnitude of the 

calculated surge pressure. 

The computed frequency of the wave propagation is 

observed to be in close agreement with the experimental 

results. However, the amplitude of pressure peaks from the 

numerical results is not in good agreement with the 

measured values. The structural interactions with the fluid 

flow, which are not accounted for in the present model, is a 

possible reason for this disparity in the results.  From the 

experimental and numerical pressure profiles displayed in 

Figures 3 and  4, an important observation is made as 

follows. During the initial phase of the transient, the 

magnitude of the pressure peaks and anti-peaks are highly 

under-predicted, and at the later phase, they are over-

predicted in the numerical results. This observation is due to 

the over-damping induced by the constant friction 

coefficient for the initial transient phase and vice-versa. This 

improper damping technique using a constant friction 

coefficient, adds to the variation of the numerical results 

from the measured values. 

 

6. 2. The Two-equation Compressible-liquid Model 
with Variable Friction Coefficient           A variable 

friction coefficient is proposed in this study to address the 

deficiencies of the constant friction coefficient model. The 

constant value of the friction coefficient, which is applied 

throughout the computation, makes it inflexible to the 

varying flow situations. This fixed amount of damping may 

prove to be excessive for a particular part of the transient 

while it may be insufficient for the rest. The definition of the 

varying friction coefficient 𝑘𝑣, which is a function of the 

relative local pressure fluctuation, has been outlined in 

section 3.2. 

The magenta curve in Figure 5 and the red curve in 

Figure 6 displays the numerical results obtained with the 

two-equation compressible-liquid model using the variable 

friction coefficient 𝑘𝑣 for the Experiments 415 and 347, 

respectively.  

In these figures, the numerical results from the two-

equation model are compared against those computed using 

the three-equation model, and with the measured values 

from the corresponding experiments. The comparison 

reveals that the proposed two-equation model with the 

variable friction coefficient improves the result considerably 

from the three-equation model with a constant friction 

coefficient. This improvement is not only in terms of better 

estimation of peak pressures but also in closely reproducing 

the transient trend observed with experimental pressure 

measurements. The maximum pressure estimated by the 

new computational model using 𝑘𝑣  is 1.18 bar (or 4%) 

higher for Experiment No.415 and by 1.22 bar (or 5.5%) 

higher for Experiment.No.347 when compared to the results 

from the three-equation model, which is reasonable 

improvement in quantitative terms. The proposed two-

equation model can also reproduce the shape of the pressure 

profile much closer to the shape of the experimental profile 

by producing sharper peaks and anti-peaks. Values of the 

parameters  𝑚1  and  𝑚2  in Equation (9) are observed to be 

optimal in the range 0.3-0.5 for such experiments. 
 

 

 
Figure 5. Numerical results from the 2-equation 

compressible model with 𝑘𝑣 for Experiment No. 415 

 

 

 
Figure 6. Numerical results using the 2-equation 

compressible model with 𝑘𝑣 for Experiment No. 347 



2054                                   R. J. Chandran et al. / IJE TRANSACTIONS A: Basics  Vol. 33, No. 10, (October 2020)   2047-2056 
 

The damping provided by the variable friction 

coefficient is adaptive to the magnitude of pressure 

fluctuation at any local point. This capability is imparted 

through the unique function definition for 𝑘𝑣 . It is visible 

from the numerical pressure profiles in Figures 5 and 6 that 

the variable friction coefficient provides low damping at the 

initial stage of the transient where larger pressure peaks are 

existent. Similarly, towards the later phase of the transient, 

the variable friction coefficient adapts to the pressure's 

diminishing magnitude. This adaptive damping capability 

improves the accuracy of the computed transient surge data, 

which is crucial to the pipe structure's safety. The flexibility 

added to the mathematical model by the variable friction 

coefficient to predict the numerical results close to measured 

data is notable, specifically towards the end of the transient 

in Figures 5 and 6. 

The compressible model used for the liquid not only 

helps in the accurate prediction of the fluid density but 

also provides an excellent estimate of the wave speeds, 

both of which are crucial flow parameters varying with 

pressure. The proposed two-equation model, with the 

variable friction coefficient, is a highly simplified 

mathematical model capable of estimating the transient 

pressure variation accurately. This model's ability to 

follow the transient variations in the experimentally 

measured pressure profile, even without the inclusion of 

any fluid-structure interaction (FSI) algorithm, is a 

substantial improvement over the three-equation model. 

There are visible variations in the numerical results 

during the initial stage of the transients. The main reason 

for these is that the effects of pipe mountings and support 

structures are neglected in the computational model. The 

lack of complete information regarding the exact nature 

of valve closure is another cause for any mismatches 

between the simulation results and the measured values. 

As observed from the experimental results, the maximum 

surge in pressure due to the sudden closure of the valve 

reaches much higher magnitudes than the operating 

pressure. The compressible model presented in the study, 

to a particular extent, could take this into account by 

relating these pressures to the corresponding liquid 

density and signal propagation speed. The variable 

friction coefficient also adds novelty to the model 

through the adaptive feature.  Based on the above 

discussions, the proposed model is an efficient 

computational tool for modeling and prediction of 

pressure surges in flow systems where cavitational 

effects are absent. 

 

 

7. CONCLUSIONS 
 

A two-equation compressible-liquid model is developed 

for the simulation of non-cavitating hydraulic surges. The 

proposed model is limited to single-phase non-cavitating 

flow simulations. This model uses a suitable equation of 

state to consider the compressibility effects in the liquid 

at high-pressure ranges. The model has the capability to 

accurately compute the fluctuations in density and wave 

speed in the liquid.  The work also presents a uniquely 

defined variable friction coefficient, which is a function 

of the local pressure fluctuation. This new variable 

friction coefficient is superior to the constant friction 

coefficient that it adaptively damps the numerically 

computed transient pressure fluctuations. This adaptive 

damping capability helps the model to predict the 

transient pressure in a similar trend as observed with the 

experimentally measured data. The analysis reveals that 

the proposed model is computationally inexpensive and 

provides better accuracy in comparison to the three-

equation model. The flexibility offered by a variable 

friction coefficient to the mathematical model in 

selectively treating transient pressure gradients is a 

significant contribution of this study. The two-equation 

compressible-liquid model with the variable friction 

coefficient is thus quantitatively and qualitatively 

superior to the existing model for computational 

applications for high-pressure pipelines for non-

cavitating hydraulic surges. A possible future extension 

of this work is the incorporation of advanced numerical 

techniques for this model to provide high stability for 

transient two-phase flow modeling. The three-equation 

model as well can then be used with compressible-liquid 

and variable friction capabilities to model even cavitating 

hydraulic surges. Extending the use of the variable 

friction coefficient defined in this study to a wide variety 

of transient flow applications is another possible area of 

research. 
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Persian Abstract 

 چکیده 

های های هیدرولیکی در لولهی عددی موجطور خاص برای محاسبهپذیر است. این مدل بهای و محاسباتی کارآ برای یک سیال تراکم تحقیق ارائه یک مدل دومعادلههدف این 

( و همکاران برای  Neuhausای نیوهاوس )دلهمعاتر کردن مدل سه ی این مدل سادهسیال تحت فشار بالا که در آن کاویتاسیون وجود ندارد، ایجاد شده است. هدف از ارائه

شود. یک  ی حالت مناسب در مدل در نظر گرفته می گیری از معادلهپذیری در مایع در طول گذار با بهرهی قوچ )چکش کاویتاسیون( سیال دوفازی است. اثرات تراکمضربه

سازی دقیق انتشار  های گذرا نیز در مدل گنجانیده شده است. برای مدلبرای جریان  (VFC) "یرضریب اصطکاک متغ "پذیر از نوسانات فشار نسبی موضعی به نام تابع تنظیم 

تواند ای پیشنهادی میدهد که مدل دومعادلهبرای تقسیم بر اساس مقادیر ویژه در این مطالعه استفاده شده است. نتایج نشان می   (SCM)موج از روش ماتریس ضریب تقسیم

ای  قابلیت حل پذیر دومعادلهی محاسباتی به دست آورد. ادغام ضریب اصطکاک متغیر در مدل مایع تراکم هاگیری در هزینه ای را با کاهش چشممعادلهه نتایج حاصل از مدل س

برتری دارد. نتایج همچنین   VFCای بدون  ای و مدل دومعادلهمعادلهی کل نسبت به مدل اصلی سهکنندهبخشد. نتایج محاسبه شده با استفاده از این حل را بیشتر بهبود می 

سازی امواج فشار میرا قابل دهد. این ویژگی مدل در بهبود دقت در مدلکننده ارائه می حاکی از آن است که ضریب اصطکاک متغیر قابلیت میرایی سازگاری را با مدل حل 

ی محاسباتی  کنندهای مایع فشارپذیر یک مدل ریاضی بسیار ساده و یک حلدو معادله پارچه مدلضریب اصطکاک متغیر یک "مشاهده است. مدل حل کل به عنوان مثال: 

 دهد. های گذار بدون کاویتاسیون ارائه میهای هیدرولیک در جریان سازی موجقیمت برای شبیهارزان 

 


