IJE TRANSACTIONS A: Basics Vol. 33, No. 10, (October 2020) 1951-1958

@ International Journal of Engineering
(JE]

AL Journal Homepage: www.ije.ir

Seamless Transition in Grid-connected Microgrid System using Proportional Resonant

Controller

V. Lavanya*, N. Senthil Kumar

School of Electrical Engineering, Vellore Institute of Technology, Chennai, Tamilnadu, India

PAPER INFO

Paper history:

Received 28 December 2019
Received in revised form 14 July 2020
Accepted 07 August 2020

Keywords:
Grid-connected
Microgrid

Seamless Transition
Distributed Generation
Indirect Current Control
Proportional Resonant

ABSTRACT

In this paper, the design of an inverter control structure based on the Proportional Resonant (PR)
controller is dealt with in detail for attaining smooth transitions between the operating modes of a grid-
connected microgrid system. The control strategy applied for the inverter is cascaded three-loop control
viz., the grid current, voltage across the load, and the inverter output current loops. The inverter control
is mainly focused to retain the voltage magnitude within the prescribed set limits and to have a good
quality of the voltage across the load under all the modes of operation. A proportional resonant controller
is designed by considering the transients and stability criteria into account under varying modes of
operation. The design procedure of the Proportional resonant controller is given in detail. The three-
phase grid-connected microgrid system considered under study is simulated in MATLAB/Simulink
environment to operate under islanding condition as well as grid-connected condition and also changing
modes from islanding to grid connected and vice versa. The simulation results are presented under
various modes of operation to validate the controller design for a smooth transition between the modes

of operation.
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1. INTRODUCTION

Renewable energy sources (RES) based power
generation becomes a more and more viable solution for
meeting the increase in the energy demand of today’s
electricity market. The power electronic interfaces such
as boost converters, inverters are used as intermediate
structures to connect the Distributed Energy Resources
(DER) like Solar PV, Wind, fuel cells, etc., to the grid. A
microgrid (MG) is one that comprises a low voltage (LV)
or medium voltage (MV) group of DERs which are
controlled locally. A MG may look like a single power
producer or a load [1-4] when considered from the grid’s
perspective. A MG can operate in conjunction with the
utility to feed in a fraction of the total load while
operating in grid connected condition and feeds critical
loads in islanded mode i.e. when the utility grid is lost
during any abnormal conditions [5]. The islanding state
can be detected by islanding detection methods [6].
Under islanded mode, the microgrid feeds the critical
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loads while preserving the load voltage as well as the
frequency within the limits, hence improving the
reliability of the system [7]. The inverter which is
between the sources and the loads and its control plays a
vital role in the environment of a distributed generation
when dealing with voltage quality and hence power
quality.

The three-phase inverter of the DG system should be
controlled to be operated under both grid-connected and
islanded mode. The design of the inverter control is to be
focused on the operating modes of the MG system and
also it needs to take care of the smooth transition among
the different states of microgrid operation like grid on and
grid off, to reduce the voltage fluctuations across the
critical loads when islanded and any sort of sudden
changes in the current that is fed to the grid in grid-
connected mode [8].

There are different control structures proposed in the
literature for achieving fluctuations free transfer between
the operating modes [9-21] to retain the power quality
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during the transfers. Conventionally, an inverter that is
connected to the grid is controlled as PQ control to
feed/take power to/from the utility, and when the inverter
gets disconnected from the grid \V/f control is used for the
maintenance of voltage across the load. When there is a
need for switching between the modes, then switching
between the controllers has to take place, which may lead
to large transients and further may lead to system
collapse. The inverter, when being operated as utility
connected, is to be treated as a current source and when
it gets disconnected from the utility, it is operated as a
voltage source [9-11]. A droop characteristic adjustment
based control scheme has been proposed in [12]. An
inverter control technique with an inner voltage control
loop and outer current control loop has been discussed in
[13] for seamless transfer in microgrids. In [14], the
output current of the inverter is controlled to regulate the
current fed to the grid, at the same time the load voltage
is maintained without any variation.

Indirect current control with Proportional Integral
(PI) controller, which is based on synchronous reference
(d—q) frame, has been used for seamless transfer [15-23],
in which case the grid current is indirectly controlled with
the help of capacitor voltage control. To improve the
dynamics, the damping is introduced with the inverter
side inductor current control loop or the filter capacitor
voltage control loop. Under islanded mode, limiters are
placed to limit the set value of the voltage for the inner
voltage loop. Although seamless transitions between the
modes have been achieved, the quality of the voltage
waveform is a little bit affected as the voltage set value is
limited with the threshold value. Proportional resonant
(PR) control in a stationary reference frame has been
proposed for transient free mode transitions [24-26].

In this paper, indirect current control based seamless
transition is discussed in detail. Also, the design
procedure of the Proportional resonant controller for the
cascaded three-loop inverter control structure is
presented in detail for achieving the smooth transition
between the operating modes of a microgrid system.

2. MODELING AND DESIGN OF GRID CONNECTED
INVERTER SYSTEM
2. 1. Modeling of the Power Stage The power
stage of a three-phase inverter system is modeled based
on a stationary reference frame and is shown in Figure 1.

The input voltage of the inverter is considered as a
constant voltage and therefore, the control structure of
the source side converter like a DC-DC boost converter
[27, 28] that may be required to increase and regulate the
dc-link voltage in a PV based system is not discussed in
this paper.

After the inverter, the output voltage is filtered with
the help of a passive filter of type, inductor-capacitor-

Figure 1. Power stage of a grid-connected inverter system

inductor (LCL) filter and is then connected to the utility
grid. The critical/local loads are connected across the
filter capacitor. The switches on both, grid side and the
inverter side are turned on while operating in grid-
connected condition and the grid side switch is turned off
under faulty conditions leading the system to operate
under islanded mode.

The basic mathematical equations governing the grid-
connected inverter system with an LCL filter are given
by Equations (1) and (2).

v da d iLa iLa Vea
%. db = Lfa l'Lb + Rf l'Lb + | Ven (1)
d. lLc lLc Vee
ia a Vca iLLa L:ga
lp | = Cr.oo| Ve | + | iy |+ tgb 2
e Vec liLe

lgc

These a-b-c reference frame quantities are
transformed into stationary reference frame parameters
with the help of Clarke’s transformation and the

controllers are designed in the a-p reference frame.
2. 2. Design of LCL Filter The specification of the

parameters used in the DG system considered is given in
Table 1.

TABLE 1. Simulation Parameters of the MG System

Parameters Symbol Value
DC link voltage Vac 700 V
Filter inductor Le 3.11mH
Filter capacitor Cr 10 pF
Switching frequency fs 20 kHz
Grid side inductor Ly 3.11mH
Grid frequency fq 50 Hz
Grid voltage /A 220 V(rms)
Rated power of DG Ppg 10 kW

Power rating of Load 1) 5kw
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The filter and the control loop parameters are
designed based on the DG specifications. As the output
from the DG system is to be connected to the load/grid
via a power electronics interface, harmonics gets into the
system parameters. Hence, the inverter output is to be
filtered to remove the harmonics present in it. The
passive filter of type LCL is being used to filter out the
harmonics and is designed to have the harmonics within
the limits for the current as per standard IEEE Standard
519 -2014 [29].

The base impedance and the base capacitance values
are calculated based on the Equations (3) and (4).

_ Vi,
Zbase - P— (3)
nominal
1
Cbase - ©gZpase (4)

The filter capacitance is found out from (5) by
considering the variation seen by the grid as 5%.

Cr = 0.05 * Chase (5)

The current ripple is calculated based on (6) by
considering the ripple present as 10% of the rated current.

Alpax = 10% * gy (6)
where ILq, is given by (7).
— \/ZPnominal
Imax - 3 Vph (7)

The filter inductors, Ly in the inverter side and Ly in the
grid side are calculated based on the Equations (8) and
C)

= Ydo ®)

Ly = 16 f; Almax

Lg =r Lf (9)

where V. is the dc link voltage, f; is the switching
frequency of the inverter switches and r is the ratio
between inverter side inductor and grid side inductor and
the value of r is be considered based on the nominal grid
impedance and the resonant frequency from the transfer
function of the filter. The resonant frequency is specified
by (10) and the constraint is given by (11).

_ |Ertlg
Wres = LiLyCs (10)
10fy < fres <0.5f; (11)

2. 3. Controller Design The basic control diagram
representation of the indirect current control scheme
based on the PR controller is shown in Figure 2. The
cascaded three-loop control structure consists of an outer
grid current control loop, inner capacitor voltage control
loop, and an innermost inductor current control loop. The
cascaded loops are designed with proper bandwidth

Figure 2. Indirect current control structure based on the PR
controller

selection. The design of the inner voltage control loop is
done to get the voltage across the load to be maintained
as per the requirement in all the operating modes.

2. 3. 1. Design of Innermost Inductor Current
Control Loop The innermost inductor current
controller structure is shown in Figure 3.

From Figure 3, the plant transfer function is given by
(12) and the open-loop transfer function of the current
control loop is given by (13).

_L®e _ sCr 12
G(S) - Vi(s) - Ssz Cr+1l ( )
K, * Kpyq1xs C
Goric (s) = 7”34 L Cz;1+ 1 L (13)

where ky, is the proportional controller gain and Kpyy is
the gain of the converter and is considered as 1 for
simplicity.
The closed-loop transfer function of the inner current
controller is given by (14).
I (s) — S kpikpwm Cr
I ref(s) 52 Lg Cp +8 kpyKpwiy Cr+1

(14)

The root locus plot is used to design the controller gains
and is shown in Figure 4. From Figure 4, the proportional
gain of the current controller is chosen to be 35.3 as the
oscillations get damped out when the gain k,,, is > 35.3.

2. 3. 2. Design of the Capacitor Voltage Control
Loop The capacitor voltage control loop structure is
shown in Figure 5. The root locus plot is used to find the
values of kp and k; of the PR controller. Figure 6 shows
the root locus plot of the system which is used for finding
the value of k, with ki=0. The value of k; is found to be
0.0285 for a damping ratio of 0.707.

v, G(s) i

iL.ref

J

pl Kpwy

Plant

Figure 3. Innermost inductor current controller
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Figure 4. Root locus plot of the innermost current control
loop
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Figure 5. Capacitor voltage control loop structure
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Figure 6. Root locus plot of voltage controller considering
ki=0

The closed-loop transfer function of the voltage control
loop is given by (15).

(k+ 2 ki wcs ) Iy (s) 1
Vo(s) _ P7 s242wes+wd) I ref(s) sC

Vo,ref (s) 1+( kp+ > 2k wes 2)* LG 1
s2+2 westwg) Iref(s) sC

(15)

Figure 7 shows the root locus plot of the voltage
control loop with kp= 0. The value of k; is found to be
4.86 for a damping ratio of 0.707. The bode diagram of
the open-loop transfer function (OLTF) of PR based
voltage control loop with k,=0.0285 and k; =2.43 is
shown in Figure 8. The gain at the fundamental frequency
is 38.7 dB and the phase margin of the controller is
118.3".

2. 3. 3. Design of the outer Grid Current Control
Loop The outer grid current control loop structure
is shown in Figure 9. The parameters of PR based current
controller are found out to be k;1=6, and ki 1=25 by using
the same procedure as described above. Figure 10 shows
the bode diagram of the OLTF of the grid current control,
which gives the large gain at the fundamental frequency
of 50 Hz and the phase margin of 61°.

The root locus plot and the bode diagram of the
closed-loop transfer function (CLTF) of the overall
system are shown in Figures 11 and 12.

3.SIMULATION RESULTS AND DISCUSSION
The system described in Figure 1 is simulated in

MATLAB / Simulink environment. The parameters used
for simulation studies are specified in Table 1. The
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Figure 7. Root locus plot of voltage controller considering
kp=0
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system is first considered to be connected with the utility,
feeding the local load as well as the grid. Simulation
studies considering intentional and unintentional
islanding have been carried out and the results are
presented in this section.

3. 1. Intentional Islanding and Seamless Transfer
to Grid Connected Mode Initially, the system is
considered to be of grid-connected mode and is moved to
islanded mode intentionally and then brought back to the
grid-connected mode again. The DG system is in grid-
connected mode from 0 — 0.32s and at 0.32s, both the
switches ‘Sq” and Sy’ are opened and the system is
moving to islanded mode. The system is feeding the load
with the demanded power without any interruption. Both
the switches are closed at 0.5s after the confirmation of
synchronization of MG voltage with that of the utility and
hence the DG system is reconnected to the utility at 0.5s.
The waveforms of the voltage at the grid side and current
fed to the grid under different operating conditions are
shown in Figures 13-15.

The grid current falls to zero when moving to islanded
mode, which is presented in Figure 14 and the grid
current increases to the specified value (10A peak) within
2 cyclesi.e., 40ms, immediately after the synchronization
process is done, which is shown in Figure 15. The load
parameters under different operating conditions are
shown in Figures 16 and 17. At the time of moving to
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Figure 14. Grid voltage and grid current waveforms when
mode changes from grid-connected to islanded mode
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Figure 15. Grid voltage and grid current waveforms when
mode changes from islanded to grid-connected mode

islanded mode i.e., at 0.32s, when the switch at the grid
side opens, transient which occurs in the load parameters
are damped and steady-state is reached within 20ms and
the voltage across the load remains almost at the required
steady value of about 220 V (rms) and the current is of
7.57 A (rms). The d-q components of the voltage across
the load are shown in Figure 18 to show the voltage
almost remains the same throughout the operating time.
The power consumed by the load is shown in Figure 19.
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Figure 16. Load voltage and Ioad current under different
operating conditions
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Figure 17. Load voltage and load current while moving to
islanding mode and the grid-connected mode
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Figure 18. d g components of the load voltage
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Figure 19. Real and reactive power consumed by the load

3. 2. Unintentional islanding and Seamless
Transfer to Grid-connected Mode The system is
initially considered to be operating in the grid-connected
mode. A three-phase fault is simulated at 0.32s and the
switch Sy’ at the grid side is opened at 0.32s immediately
after the occurrence of the fault. The switch ‘S;’ in the
inverter side is opened at 0.35 s after detecting the
islanding condition. The duration between 0.32 s and
0.35s is called a Pre-islanded condition where the
terminal voltage is slightly higher than the prescribed
limit which is due to the occurrence of the disturbance.
Then as the switch ‘Si” gets opened, the system enters
into the islanded mode and the load is fed with the desired
voltage and frequency without any distortion. After the
clearance of the fault, the switch ‘Sq’ is closed at 0.55 s
and the grid is restored. The DG can be connected to the
grid only after the synchronization of the voltage at the
DG with that of the grid. Hence after the synchronization
process, the switch ‘Si’ is closed at 0.7 s. The grid current
reference is changed to the set value at 0.75 s and till then
it remains zero. The current fed into the grid gradually
increases and reaches the set value at 0.78s without any
transients in the voltage as well in the current waveform.

The voltage and the current waveform at the grid side
during the changeover of modes are shown in Figure 20
and Figure 21. The load voltage and load current
waveforms are shown in Figure 22. Thus seamless
transition between the modes of operation is achieved
successfully with the help of an Indirect current control
strategy using Proportional resonant controllers.
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Figure 20. Grid voltage and grid current waveforms—grid-
connected mode to islanded mode under unintentional
islanding
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Figure 21. Grid voltage and grid current waveforms —
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Figure 22. Load voltage and load current waveforms from
the islanding mode to grid-connected mode

4. CONCLUSION

A three-phase grid-connected microgrid system has been
designed and simulation studies have been carried out in
MATLAB / Simulink environment. The proportional
resonant controller-based indirect current control
strategy has been designed for achieving the seamless
transfer between the operating modes of a microgrid. The
system considered is simulated in MATLAB/Simulink
environment, under islanded and grid-connected modes
of operation and the results are presented. Simulation
studies have been carried out under intentional islanding
and unintentional islanding conditions. The results
validate the controller design. The PR based controller
for the voltage source inverter works efficiently and
effectively. Thus, the seamless transfer between the
modes of operation with a very minimal transient period
has been attained and the steady-state is reached within
0.04s after the closure or opening of the switches for
changing of modes of operation based on the utility
conditions.
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