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A B S T R A C T  
 

 

The recent advances in manufacturing systems motivate several studies to focus on Economic Production 

Quantity (EPQ) problem. Althuogh there are several extentions to the EPQ, this paper provides a new 

extension by considering some of the real world parameters like: (a) shortages in the form of partial 
backordering, (b) inventory can deteriorate stochastically, (c) machine can break down stochastically, 

and (d) machine repair time may change stochastically based on the failure status of machine. As far as 

we know, there is no study treated all these suppositions in an EPQ framework. In addition to this 
development, two forms of uniformly- and exponentially-distributed repair times are formulated and 

necessary convexity conditions are discussed. Then, the corresponding optimality conditions are written 

that lead to finding the roots of two equations. Due to difficulty of achieving a closed-form solution, the 
solution is obtained numerically by means of Newton-Raphson method. Finally, some sensitivity 

analyses are provided to explain the models’ applicability. The practicality and efficiency of the proposed 

method in this context lends weight to development of proposed EPQ with more complex elements and 
its application more broadly. 

doi: 10.5829/ije.2020.33.08b.15 

 

 
1. INTRODUCTION1 
 

Production management is a difficult job when a manager 

should simultaneously consider many conflicting 

parameters through his/her decision making [1]. There 

are many models in the literature that each of them cast 

into specific working conditions of the plant. Economic 

Production Quantity (EPQ) problem is well-studied that 

can be extended into the many different cases in reality. 

For example, there is no inventory deterioration in the 

basic EPQ model. But, it can be observed in many 

products in the forms of decay, spoilage, vaporization, 

obsolescence, etc. In more details, many kinds of food 

and volatile liquids have a natural deteriorate-prone 

characteristic.  

At first, as one of earliest studies, Misra [2] in 1975 

developed an EPQ model with deterioration 

consideration. He studied the model with the fixed and 

variable deterioration rates and derived an estimation of 
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expression for the size of production lot. Then, in 1999, 

Kim and Hong [3] studied EPQ with random process of 

the deteriorating production. They presented three 

deterioration models. Next, in 2004, Samanta [4] 

presented a production inventory model with allowable 

backlogging, where the items deterioration time follow 

the exponential distribution function.  

In a similar manner, Baten and Kamil [5] developed 

the model of a production inventory considering Pareto 

distribution. They assumed that the time of deterioration 

follows from a generalized Pareto distribution with three 

parameters. They also assumed that a firm has no 

shortage and demand rate varies with time. In that model 

Pontryagin maximum principle is used to obtain an 

explicit solution under dealing with continuous review 

policy. In another integrated production-distribution 

system, Yang et. al., [6] did it for a deteriorating 

inventory item through a two-echelon supply chain with 

fixed deterioration rate. They derived the optimal 
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solution based on an algebraic method for the case that 

deteriorating rate is very small. 

Another realistic working condition is that there is 

partial backlogging instead of two extremes of lost sales 

and backlogs. This means that β% of shortages are to be 

satisfied in the future and (1-β)% of the shortages can be 

considered as lost sales. In another word, in real-world 

concepts, a percentage of customers is selected to wait 

for backlogging until next replenishment. This 

backlogging rate depends on waiting time diminished the 

waiting time length. Up to our knowledge, Mak [7] 

proposed partial backorder and formulated a model for a 

production-inventory system. During each period, the 

demand is partially backlogged and the items are 

replenished by assuming a uniform rate. He supposed 

that the willingness for a customer waiting for backorder 

during the period of shortage is declining regarding the 

waiting time length. Later, Balkhi [8] proposed an 

inventory-production system considering deterioration 

and learning effect with allowable partial backorders. 

Next, Lo et. al., [9] introduced a new integration of  

production and inventory model considering the Weibull 

distribution deteriorating items under partial backlogging 

and imperfect production process. Then, as mentioned 

above, Yang et. al., [6] extended the inventory models 

considering deteriorating items along with partial 

backlogging in an inventory lot-size model. 

On the other hand, machine unavailability is an 

inevitable phenomenon in many production industries 

that is the result of three main things; preventive 

maintenance, corrective maintenance and machine 

suddenly breakdown. There are some studies in literature 

in which the machine unavailability has been explored. 

For example, Cheung and Hausman [10] introduced an 

unreliable production system to illustrate a balance 

between the costs of safety stock and preventive 

maintenance. They considered the time to failure by 

Weibull and Gamma distributions and solved it with 

exponentially and constant repair time. Independently, 

Abboud [11] considered a production-inventory system 

considering exponential machine breakdown and general 

machine repairing time. They supposed that no 

backordering is allowed.  

Later, Arreola-Risa et al. [12] studied an inventory 

problem. They assumed that the supply of the products 

was arbitrarily disrupted with regrads to the random 

duration periods. They entered partial backorder and lost 

sales in to their proposed model. In a different research, 

Giri et al. [13] proposed two mathematical models for 

EPQ problem with unreliable production and 

maintenance cost. The main difference of their research 

was the consideration of the production rate as a decision 

variable. Afterward, Chakraborty et al. [14] introduced 

an EPQ considering machine breakdown and 

deterioration. They considered preventive and corrective 

maintenance, simultaneously. The same authors [15] one 

year later, proposed an integration of production, 

inventory and maintenance activities in a manufacturing 

system to study the joint impacts of inspections, machine 

breakdown and process deterioration on the decisions of 

the optimal lot sizing.  

From the last decade, several studies have focused on 

various modifications and improvements of EPQ with 

regards to uncertain parameters. In 2010, Widyadana and 

Wee [16] studied an EPQ to deteriorate the items with 

stochastic repair time and machine breakdown. They 

determined the production time and the lost sales, 

optimality. They added a deteriorating product item and 

price dependent demand in to their model. They proposed 

two models with uniform and exponential distributions 

for machine repair time. Because of the complexity of the 

given problem a Genetic algorithm (GA) is employed to 

address it optimally. The same authors [17] one year 

later, extended their paper by using an optimization 

technique to derive an optimal solution but for the case 

of constant and non-price dependent demand rate. In the 

same way, in 2011, Chung et al. [18] expanded the work 

of Widyadana and Wee [17]. They assumed that the lost 

sales takes place when an urgent need is requested by the 

buyer who cannot wait for the next replenishment. They 

considered the backorder taking the place when the buyer 

can wait for the next replenishment. In 2012, for a 

production system, Chiu et al. [19] obtained the optimal 

replenishment run time considering failure for reworking 

and machine breakdown. They studied the effect of 

Poisson breakdown on the replenishment run time.  

Furthermore, Taleizadeh et al. [20] suggested a multi-

product single-machine inventory-production model 

with production capacity and service level limitation 

while considering partial backlogging. After that in 2013, 

Sarkar [21] developed a production-inventory model for 

a deteriorating item. He considered three types of 

statistical functions including the Uniform, Triangular, 

and Beta for deterioration. However, the shortage was not 

allowed. An algebraically solution is applied to find the 

minimum total cost of these models. Subsequently, 

Chang [22] extended the work of Sarkar and Sarker [23] 

by developing an improved solution method. They [23] 

presented an Economic Manufacture Quantity (EMQ) 

with deterioration consideration. They considered 

exponential demand and time varying the production 

rate. The Euler-Lagrange formula of control theory is 

used to derive the maximization procedure. Lastly, the 

same authos [24] developed an inventory model with 

regads to the diversification of  the deteriorating items. 

They assumed that demand is stock-dependent and 

shortage is partial backlogging. 

In 2014, Taleizadeh [25] contributed an Economic 

Order Quantity (EOQ) to evaporate the items with partial 

consecutive prepayments and backordering. They 

applied it to a real case of gasoline stations in Iran. 

Similarly, De et al., [26] considered an EOQ under 
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uncertainty based on the backlogged. In their problem, 

the demand of customers is varied by sold price of the 

items. In addition, the demand in stock out is changed by 

duration of the shortage in each period. The total cost is 

included by set up cost, promotional effort costs, shortage 

cost and the inventory costs. Khan et al., [27], developed 

an integrated supply chain model under the learning 

curve effects in the production process. Also in their 

investigation defective products occur due to human 

errors. They assumed multi delivery EPQ policy for the 

vendor and traditional EOQ policy for the buyer. 

In 2015, De et al., [28] in another work proposed 

EOQ with intuitionistic fuzzy inventory model with the 

possibility of backlogging. They used the score functions 

with the non-membership and membership functions. In 

addition, Palanivel and Uthayakumar [29] proposed an 

extension to the EOQ with non-instantaneous items. 

They contributed the price and advertisement dependent 

demand pattern. These suppositions are under the 

inflation factor and time value over a finite planning 

horizon. 

In 2016, Pal et al., [30] developed an EPQ 

improvement by an integration of supplier, manufacturer 

and retailer. They considered the joint economic lot-

sizing approach by considering imperfect quality and 

uncertain demand. Their main difference was to consider 

the production of supplier i.e., the raw material sending 

to the manufacturer as the decision variable. In addition, 

Mohanty et al., [31] offered another EPQ which is a two-

warehouse inventory system with regards to non-

instantaneous deteriorating products under uncertainty. 

They considered the shotages combining partial backlog 

and lost sales.  

In 2017, Chanda and Kumar [32] developed an EOQ 

problem considering a firm selling the technology of the 

products in a finite planning horizon. The demand was 

dynamic and uncertain ceiling on the potential adoptions. 

This factor is sensitive with regards to the unit selling 

price and advertising expenditure. Manna et al., [33] 

extended an EPQ model with allowable shortages. In 

their model, imperfect items are reworked or disposed of 

then to reduce the defective items, the learning effect is 

considered in the production process.  

In 2018, Qiu et al., [34] introduced closed loop 

production rooting problem with remanufacturing and 

reverse logistics activities under the vender managed 

inventory contract. They provided a comparison of 

system costs concerning the different remanufacturing 

parameters. In addition, Marchi et al., [35] offered a two-

level (vendor-buyer) supply chain models considering 

two coordinated policies: classical and vendor-managed 

inventory with consignment stock, where the objective is 

to find the values of the decision variables that yield the 

minimum total supply chain cost. It includes the costs of 

holding inventory, green emissions and tax, energy 

usage, product and process quality, and transportation 

operations. The decision variables are the order quantity, 

the number of shipments, and the production rate.  

More recently in 2019, Marchi et al., [36] investigated 

the learning effect in energy efficiency which is an 

essential factor in many manufacturing companies. 

Therefore, they proposed a lot-sizing problem to 

illustrate the interaction between learning in production 

and energy efficiency directly and indirectly and also an 

appropriate decision about the lot size quantity. Walid et 

al., [37] applied the learning effects in the mean and 

variance of non-conforming items which considered as a 

random variable. Therefore, they decrease under the 

effect of the learning process. Finally, Chen et al., [38] 

considered a firm (e.g., retailer) selling a single 

nonperishable product over a finite-period planning 

horizon. At the beginning of each period, the firm 

determines its selling price and inventory replenishment 

quantity with the objective of maximizing total profit, but 

it knows neither the average demand (as a function of 

price) nor the distribution of demand uncertainty a prior; 

hence, it has to make pricing and ordering decisions 

based on observed demand data.  

Based on the reviewed studies the essential 

parameters should be considered in this problem are: 

shortage, machine breakdown and its repair time and 

deterioration. Also considering the stochastic nature of 

these parameters is an essential necessity to close the 

model to a reality which makes the model applicable to 

every industrial production company which is neglected 

in many previous studies. Our paper is a continuation of 

Chung et al. [18] and Widyadana and Wee [17]. The main 

difference of our paper with them is to consider the 

shortage and inventory levels stochastically for the first 

time. Taken together, as far as we know and based on the 

aforementioned papers, this study provides an extension 

to the EPQ problem by considering the following 

assumptions:  

(a) Shortages are in the form of partial backordering,  

(b) Inventory can deteriorate stochastically,  

(c) Machine can break down stochastically due to its past 

workload, lubrication, etc.  

(d) Machine repair time may change stochastically based 

on the failure status of machine. Also, two cases of 

uniformly- and exponentially-distributed repair times are 

formulated and necessary convexity conditions are 

discussed. Remaining parts of this paper is organized as 

follows: notation and proposed mathematical model is 

presented in section 2, computational results and 

sensitivity analysis are discussed in section 3, and finally 

some concluding remarks and guides for future research 

are given in section 4.  
 

 

2. PROBLEM FORMULATION    
 

The statement of our proposed problem is defined as 

follows: Figure 1 illustrates the variations of inventory/ 
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shortage level during a working cycle for the proposed 

inventory-production model. During production time T1, 

machine breakdown occurs stochastically. If machine 

doesn’t break down over time segment T1, the inventory 

reaches to its maximum level (Im). When machine breaks 

down, the production process is stopped and a corrective 

repair process is started, where the repair time of Tp is a 

stochastic variable. In addition, products deteriorate 

continuously. Since production deterioration, machine 

breakdown and machine repair time are stochastic, 

shortage may occur in terms of partial backorders. In the 

partial backordering, backorders may change to the lost 

sales, stochastically. This section first provides a general 

formulation for the problem. Then, two models will be 

developed for the special cases of uniformly and 

exponentially distributed repair times. 

Based on the above description, the following 

assumptions are existed in this paper: 

• A plant produces a single product with constant rates 

of production and consumption (i.e. demand), where 

production rate is greater than the demand rate.  

• There isn’t any inventory at the start and the end of 

a working cycle. 

• Machine breakdown can occur such that the time 

between two consecutive breakdowns follows from 

exponential distribution with parameter µ.   

• After each breakdown, the machine needs repair 

and/or maintenance. Also, machine repair time is a 

stochastic variable with known distribution function. 

Also it is assumed that the machine repair time is 

independent of the time between two machine 

breakdowns. 

• A fixed fraction of the inventory deteriorates per 

time unit. In addition, no repair or replacement of the 

deteriorated inventory is required during the 

planning period. 

• Inventory deterioration can be considered in both 

production and consumption time of each cycle. 

• The production manager aims to minimize the total 

costs of inventory holding, setups, lost sales, 

backorders and partial backorders. 
The problem can be formulated by means of the 

following parameters and variables: 
 

Input parameters: 

D Demand rate 

P Production rate 
Ө Deterioration rate 

K Setup cost 

H Unit inventory holding cost  
Π Unit lost sales cost  

̂  Unit backorder cost 

C Unit deterioration cost 
M Repair cost of machine  

β  Parameter of partial backorder 

µ 
 

Breakdown rate of machine 
 

Variables: 

Im
 Maximum inventory level of a cycle 

I1 Inventory level in a production period of a cycle 
I2 Inventory level in non-production period of a cycle 

I Total number of inventories per cycle 

R Total number of deteriorated items per cycle 
IL Lost sales level of a cycle 

Ib Backorder level of a cycle 

T1 Production period of a cycle 
T2 Non-production period of a cycle 

T3 Shortage period of a cycle 

Tp Machine breakdown period of a cycle 
 

The initial general calculations based on Widyadana and 

Wee [17] can be reviewed as follows: 

At first, T2 and T3 are derived based on T1. Equations 

(1) and (2) represent the inventory levels in production 

and non-production periods, respectively:  

(1) 1 10 t T 
 

1 1
1 1

1

( )
( )

dI t
I t p d

dt
+ = −

 

(2) 2 20 t T 

 

2 2
2 2

2

( )
( )

dI t
I t d

dt
+ = −

 

 
 

 

Figure 1. A working cycle of the studied inventory system 

T2 T1 T2 T3 T2 T1 
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As shown in Figure 1, inventory level is zero at the 

end of T2. So, inventory level in production and non-

production periods can be formulated as follows: 

(3) 1 10 t T 

 

1
1 1( ) ( ) 1

tp d
I T e





−−  = −
 

 

(4) 2 20 t T 

 

2 2( )
2 2( ) ( 1)

T td
I T e





−
= −

 

At the top of inventory level, while t1 equals to T1 and 

t2 is zero, I1 (T1) and I2 (T2) are equal. Then, we can write: 

1 2(1 ) ( 1)
T Tp d d

e e
 

 

−−
− = −

 
(5) 

Further, ӨT can be approximated by means of Taylor 

expansion. Since the estimation error of the Taylor series 

is negligible after the third term, we can approximate ӨT 

as follows: 

2

1
2

T T
e T 

 + +

 

(6) 

According to Yang and Wee [39], the error of this 

estimation is lower than 0.2%. By replacing 
Te  

approximation in Equation (5), the following equation is 

derived: 

2 2
1 1 2 2

1 1
( ) ( )

2 2

p d d
T T T T 

 

−
− = +

 
(7) 

Since 2T  is a small value, 2
2T  can be eliminated 

in Equation (7). Hence, T2 can be approximated in terms 

of T1 as: 

1 1

2

1
( ) (1 )

2
p d T T

T
d

− −



 

(8) 

Thus, the expected inventory level can be calculated as 

follows: 

2 2
1 2( )

( )
2 2

p d T dT
E I

−
= +

 

(9) 

By replacing T2 from Equation (8) into Equation (9), we 

have:  

2

2 1 1
1

1
( ) (1 )

2( ) ( )
2 2

p d T T
T

E I p d d
d


 

− − 
= − +  

  
 

 
(10) 

Since 1T  is very small, Equation (10) can be simplified 

as follows:  

2
2

1( ) (1 )
2

p d
E I T

d p
= −

 
(11) 

Obviously, machine breakdown can affect on the 

expected inventory level. Since expected inventory level 

depends on machine breakdown period, Equation (11) is 

formulated as follows: 

2
2

1

2
2

1 1

(1 )
2

( )

(1 )
2

p p

p

p d
T T T

d p
E I

p d
T T T

d p


− 


 


− 


 
(12) 

The distribution function of machine breakdown 

period is exponential with parameter µ.  By getting the 

integral of the right hand side of Equation (12), the 

expected inventory level can be written as follows: 

1 1
1

2

( )(1 )
( )

T Tp p d e T e
E I

d

 



− −− − −
=

 
(13) 

According to Figure 1, the expected number of 

deteriorated items per cycle is: 

1 1 2( ) ( )E R pT d T T= − +

 
(14) 

By substituting T2 from Equation (8) into relation (14), 

the expected number of deteriorated items per cycle is: 

1 1

1 1

1
( ) (1 )

2( )

p d T T

E R pT d T
d


 

− − 
= − + 

  
 

 
(15) 

   After simplifying Equation (15) and considering 

machine breakdown, the expected number of deteriorated 

items per cycle can be written as follows: 

2
1

2
1 1

(1 )
2

( )

(1 )
2

p p

p

p d
T T T

p
E R

p d
T T T

p






− 


 
 − 


 
(16) 

As Tp follows from exponential distribution, the 

expected number of deteriorated items per cycle can be 

obtained by getting the integral from the right hand side 

of Equation (16) with the use of derivative function as 

follows:  

1 1
1

2

( ) (1 )
( )

T Tp d e T e
E R

  



− −− − −
=

 
(17) 

In the next sub-sections, two cases of exponentially 

and uniformly distributed repair times are considered. 

 

2. 1. Exponential Repair Time            Let the repair 

time follow from an exponential distribution function 

with parameter of λ. The expected shortage time can be 

written as follows: 

( ) ( )
1

2
3 2

0

p

p

T Tt
p

T t T
E T t T e e dt dT

 
 −−

= =
= − 

 
(18) 
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After computing the previous integral, expected 

shortage time is formulated as follows: 

( ) 1 1
11 1

1

( )
12

2 22

3( )

T p Tp d p
TT T

dd d

p
T

d

e e
E T

e

  
 




−   
+ −− + + +   

   

 
+ 

 

−
=

 
(19) 

Since a working cycle is the sum of production, non-

production and shortage periods, then the expected time 

of a working cycle is: 

1 2 3( ) ( ) ( )E T E T T E T= + +

 
(20) 

( ) ( )1 1
1

1

1 1
1

( )
2 11 2 2 2

( )

T TT

p
T

d

p d p T p T
e T ep e d d d

E T
d

e






   
 



−

 
+ 

 

−   
− + + − + −   −

   = +  (21) 

Also, the probability of machine breakdown during 

production period is: 

1( ) (1 )
T

cP M e −
= −

 

(22) 

So, it is clear that the expected repair cost can be 

formulated as follows: 

1( ) (1 )
T

cE M M e −
= −

 

(23) 

Unsatisfied demand is divided into the backorder and 

lost sales. The probability of backlogging is a decreasing 

function of time t, where t is the waiting time up to the 

next replenishment. Conversely, the probability of lost 

sales is an increasing function of time t. The expected 

volume of backlogs and lost sales can be formulated as 

follows, respectively: 

1
2( )

1 2
0

( ) ( ) ( ) p

p p

T Tt T
p

T t T
E S d t T f t e e dtdT

 
 −− −

= =
= − 

 
(24) 

1
2

2

( )
2 2

0
( ) ( ) ( )(1 ) p

p

T Tt T
p

T t T
E S d t T f t e e dtdT

 
 −− −

= =
= − − 

 
(25) 

   Thus, the total expected cyclic costs due to lost sales, 

backorders, setups, repair, inventory holding, and 

inventory deterioration can be written as follows: 

 

1
1 2 1 2ˆ( , ) (1 ) ( ) ( ) ( ) ( )TTC T T E K M e h E I C E R E S E S  −= + − +  +  + +


 

(26) 

1 1 1 1
1

1 1
2 2

2 2

1 1
1 2 2 2

( ) ( )
2 2

0 0

( )(1 ) ( ) (1 )
( , ) (1 )

ˆ ( ) ( )(1 ) ( ) ( ) )p p

p p

T T T T
T

T TT Tt T t T
p p

T t T T t T

p p d e T e p d e T e
TC T T E K M e h C

d

d t T f t e e dtdT d t T f t e e dtdT

   


  

  

 

   

− − − −
−

 − −− − − −

= = = =

 − − − − − −
= + − +  + 




+ − − + − 


   

 (27) 

Consequently, the expected total cost per unit time can be written as: 

1 1
1

1
1

2

1
2 2

2 2

1
2

1 2

2
0

( ) ( )
2 2

0 0
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(28) 

Further, TCT is a convex function of T1 under the 

following condition:  
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A detailed proof is available upon request from 

authors. Then, the optimal value of T1 can be found by 

getting the derivative of Equation (28) with respect to T1 

and equaling the result to zero: 
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where, Ae, Be and Ce are: 
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(32) 

Unfortunately, it is not easy to obtain a closed-form 

solution by finding the parametric roots of Equation (29) 

with respect to T1. Hence, an efficient method such as 

Newton-Raphson or bi-section method should be hired to 

find the solution numerically. 

 

2. 2. Uniform Repair Time            In this section, 

uniform distribution function with 0 and b parameter is 

supposed for repair time. Expected repair time can be 

calculated as follows: 
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Combine Equations (20) and (33), expected time of planning period is as follows: 
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The probability of backlogging is β and the probability of 

lost sales is (1-β). The expected value of backlogging and 

lost sales can be formulated as follows: 
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(36) 

The total cost function of t can be derived as follows: 
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Derivation of Equation (37) from T1 is as follows:  
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where A is as follows: 
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The optimal value of T1 value can be found by using 

Maple software with regards to Equation (38) to zero. 

Like Poisson repair time model, total cost function 

should be convex to deriving T1 value if parameters are 

under this condition: 
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The proof of total cost convexity is shown in appendixes. 
 
 

3. NUMERICAL EXAMPLE  
 

Here, we will do some sensitivities numerically on the 

proposed model. In this regard, a numerical example with 

the following input parameters will be solved in this 

section: 
 

d=7500 h=1  = 2 

P=10000 ˆ 2 =  M=200 

Ө=0.2 = 3 C=5 

K=50 b=0.1 0.2 =  

S=5   

 

Moreover, the Matlab software is used to solve the 

Equation (29) resulting in T1=0.1443. The optimum total 

cost per unit time can be calculated by substituting T1 in 

Equation (28) resulting in TCT= $692.0716. These are 

the result when repair time following Uniform 

distribution and for Exponential distribution according to 

Equation (38) T1=0.2017 and by substituting Equation 

(37) resulting in TCT=$590.9. If the values do not apply 

to the unequal convexity condition of the numerical 

method, Newton -Raphson is used to solve Equations 

(29) and (38), respectively.  

Figure 2 shows the comparison between partial 

backordering and lost sales during different repair time. 

It is illustrated that partial backordering case has less total 

cost, the difference between them are greater by 

increasing the value of production up time. It is 

concluded that partial backordering is more economical 

and pursuant to real world conditions. 
 

 

 
Figure 2. Total cost comparison for different production up 

time 
 

 

4. CONCLUSION AND FUTURE RESEARCH    
 
This paper studied an EPQ problem while considering 

new flavors from real world, including: (a) shortages in 

the form of partial backordering, (b) stochastic inventory 

deterioration, (c) stochastic machine breakdown, and (d) 

two types of stochastic repair time (i.e. uniform and 

exponential distributions). The two cases are formulated 

and necessary convexity conditions are discussed. Then, 

the corresponding optimality conditions are written that 

led to finding the roots of two equations. As it was hard 

to obtain a closed-form solution, the solution is obtained 

numerically by means of Newton-Raphson method. This 

research can be extended in various directions such as: 
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• other types of distributions (e.g. Normal) can be 

considered for repair times, 

• the machine could experience different types of 

modes such as working normally, working 

abnormally by producing a number of defective 

items (i.e. a partial failure), and being unable to 

continue working (i.e. a complete failure) [40], the 

system can hire inspection procedures for 

forecasting future machine failures that can result in 

less number of emergency repairs/ maintenances 

[41]. Other types of inventory deterioration can be 

considered (e.g. fixed life time products) [42], 

multiple items can be produced on the machine, due 

to the complexity of the proposed model, various 

heuristics and meta-heuristics [43-45] and generally 

approximation methods [46-47] can be considered to 

address it optimality demand can be changed 

dynamically and/or stochastically [48-49]. 
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6. APPENDIXES 
 
6. 1. Appendix A           In order to prove that the 1TCT(t )

is differentiable and also has a single root, firstly the 

following mathematical theory should be regarded: 

Property: If the 
g(x)

f (x)
h(x)

= and the domain and range 

values for both the functions are the same, the f (x) is a 

convex function under the following conditions: 

1. g(x)  is convex on the domain interval and  

g(x) 0  for all x  in this interval. 

2. h(x) is concave on the domain interval and 

h(x) 0 for all x  in this interval. 

3. Both g(x)  and h(x)  functions are differentiable. 

Here  f (x)  is the total cost per unit time, g(x)  is the total 

cost and h(x) is the total replenishment period. Basically 

if g(x)  convex and h(x) is concave then the f (x) will be 

convex. In the following the convexity in presence of the 

small values for ,   is investigated: 

The expected replenishment time can be drived as 

follows: 
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Moreover, the second derivative of the expected 

replenishment time is:  
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This term can be simplified as: 
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So it can be rewritten as following equation: 
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The second term in the mentioned formula can be 

simplified to the following equation:  
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In this term if b aA A  then EdT 
2

0 . Accordingly the 

expected replenishment time is convex if :  
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If  and T1 take small values the above condition can be 

rewritten as follows: 
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And in presence of small values for the ,   and T 1  the 

condition can be simplified as: 
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Here if 
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0 / 5 or
2(p d)

 +
   

−
 the expected 

replenishment time will be convex.  

In the second part the concavity of the total cost function 

is investigated; its function is as follows: 
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Its second derivative is:  
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If , , T  1 are small we will have: 
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So the total cost functions is convex if: 
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So based on the mentioned property, if this condition is 

verified by the problem parameters, the function is 

convex.  

6. 2. Appendix B                 For the total cost function we 

have: 
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The second derivative of the total cost function is as 

follows: 
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If the following condition will be satisfied this equation 

is convex: 
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This equation is convex if: 
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So based on the stated property, in presence of this 

condition the function is convex.  
 
 
 
 
 
 
 
 
 

Persian Abstract 

 چکیده 
مقاله با   ینوجود دارد، ا EPQبخش  ینچند اگرچهکند.  یم یجاد( اEPQ) یاقتصاد یدتول سالهتمرکز بر م یرا برا ی، مطالعات متعدد یدتول  یها یستمدر س یراخ یها یشرفتپ

( دستگاه  جرو به وخامت بگذارد، )  یبه صورت تصادف  واندت  یمکه    ی، ب( موجودیجزئ  بازسفارشمانند: )الف( کمبود به شکل    یواقع  یایدن   یاز پارامترها  یدر نظر گرفتن برخ

 ین د همه ادر مور  یمطالعه ا  یچ، هیمدان  یکند. تا آنجا که م   ییردستگاه تغ   یخراب  یتدستگاه ممکن است بر اساس وضع   یر، و )د( زمان تعمه شودشکستبه طور تصادفی  تواند    یم

مورد بحث قرار  یهمرفت ضرور یطشده و شرا ینشده تدو یعتوز ییو نما یکنواخت یرتوسعه، دو شکل از زمان تعم ینندارد. علاوه بر ا دوجو EPQدر چارچوب  یات فرض

به راه حل با فرم بسته، محلول با استفاده    یابیدر دست  یدشوار  یلشود. به دل  یدو معادله م  یها  یشهر  یافتن شود که منجر به    یمربوطه نوشته م  ینهبه  یطگرفته است. سپس، شرا

 یی و کارا  یکاربرد مدل ارائه شده است. عمل  یتقابل  یحتوض  یبرا  یتحساس  یهایل  و تحل  یهاز تجز  ی. سرانجام، برخیدآ  یبدست م  یرافسون به صورت عدد- یوتناز روش ن

 .شود یجادا یبطور گسترده تر نتر و کاربرد آ یچیدهبا عناصر پ یشنهادیپ  EPQوزن شود   یباعث م ینهزم ین در ا یشنهادیروش پ

 


