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A B S T R A C T  

 

One of the main techniques used in data mining is data clustering, which has many applications in 

computer science, biology and social sciences. Constrained clustering is a type of clustering in which 

side information provided by the user is incorporated into current clustering algorithms. One of the well 
researched constrained clustering algorithms is called microaggregation. In a microaggregation 

technique, the algorithm divides the dataset into groups containing at least 𝑘 members, where 𝑘 is a user-

defined parameter. The main application of microaggregation is in Statistical Disclosure Control (SDC) 

for privacy preserving data publishing. A microaggregation algorithm is qualified based on the sum of 

within-group squared error, 𝑆𝑆𝐸. Unfortunately, it has been proven that the optimal microaggregation 

problem is NP-Hard in general, but the special univariate case can be solved optimally in polynomial 
time. Many heuristics exist for the general case of the problem that are founded on the univariate case. 

These techniques order multivariate records in a sequence. This paper proposes a novel method for 

record ordering. Starting from a conventional clustering algorithm, the proposed method repeatedly puts 
multivariate records into a sequence and then clusters them again. The process is repeated until no 

improvement is achieved. Extensive experiments have been conducted in this research to confirm the 

effectiveness of the proposed method for different parameters and datasets. 

doi: 10.5829/ije.2020.33.07a.13 

 

 

1. INTRODUCTION† 
 
Nowadays, there is a considerable demand for real-world 

datasets in various data mining tasks. However, the 

privacy of involved entities usually agitates data owners 

about the usage of such information [1, 2]. Privacy 

preserving data publishing is the task that addresses the 

problem. The problem is also investigated in research 

communities of the Internet of Things (IoT) [3, 4] and 

Statistical Disclosure Control (SDC). Usually, the 

privacy requirement in terms of Disclosure Risk (𝐷𝑅) is 

formalized using a computational privacy model, which 

can then be realized by an implementation method. The 

main idea of different solutions is based on changing the 

original data records to preserve the privacy of involved 

entities. Such changes decrease the utility of published 

data which is stated by Information Loss (𝐼𝐿). It is desired 

to minimize both the competing indices of 𝐷𝑅 and 𝐼𝐿, 

which is a challenging multi-objective optimization task 

 

*Corresponding Author Institutional Email: r_mortazavi@du.ac.ir (R. 

Mortazavi) 

[5]. 

One of the most famous computational privacy 

models is called k-anonymity [6]. In a k-anonymous 

dataset, for each set of identifying attributes, there exist 

at least 𝑘 records. Therefore, an intruder who knows 

some attributes of an entity cannot limit its record data to 

a small group, i.e., a group with less than 𝑘 members. 

Microaggregation is a perturbative approach to realize k-

anonymity. It was initially developed for numerical data 

volumes, while it can also be used for other types of 

datasets [7]. A microaggregation technique tries to cluster 

the dataset records into groups with at least 𝑘 members 

and then aggregates them into their centroids. The 

centroids are then substituted for the original records and 

published for public usage. In other words, the original 

entries are masked using their associated centroids. The 

replacement decreases the details of the published values, 

which results in 𝐼𝐿. For microaggregation algorithms, 𝐼𝐿 

is usually quantified in terms of the sum of within-group 
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squared error (𝑆𝑆𝐸).    

Unfortunately, it has been proven that given the 

privacy parameter 𝑘, the optimal microaggregation 

problem is NP-hard in general [8]. Still, the univariate 

instance can be optimally solved in polynomial time 

using the Mukherjee and Hansen Microaggregation 

(MHM) algorithm [9]. Some heuristic approaches try to 

map the general multivariate microaggregation problem 

to the univariate case [10, 11]. For example, the NPN-

MHM algorithm [10] traverses all records in a Nearest 

Point Next fashion starting from the farthest record from 

the dataset centroid to put them in a sequence and then 

applies MHM on the output ordering. Similarly, MDAV-

MHM [10] clusters the dataset using a traditional 

microaggregation algorithm, Maximum Distance to 

Average Vector (MDAV) [7] and then visits all records, 

group by group. Mortazavi et al. proposed Improved 

MHM (IMHM‡) [11], which accelerates MHM and uses 

it in multivariate microaggregation. However, existing 

techniques are not general and usually suffer from 

increased 𝐼𝐿 when the dataset has an internal structure 

and is naturally clustered. For instance, NPN-MHM is 

more useful in anonymizing datasets with very separated 

clusters, but for clustered data with moderate gaps or 

skewed data, the CBFS–MHM and MDAV–MHM 

produce the best results [10]. Similarly, IMHM [11] is 

more successful when 𝑘 is small and the dataset is 

clustered, but for homogeneous datasets, it produces 

more useful anonymized versions when 𝑘 is large. 

Additionally, comparing the results of some recent 

heuristics with proved lower bounds of the problem [12] 

shows large gaps in some cases.     

The primary contribution of this paper is to propose 

an innovative ordering technique in which multivariate 

data records are ordered in a sequence while considering 

the internal structure of the dataset using a conventional 

clustering method. Additionally, it is shown that the 

process of converting the output of a clustering algorithm 

to a sequence can be repeated that in turn results in 

considerable improved 𝐼𝐿.  Extensive experiments in this 

research show the advantage of the proposed method in 

terms of data utility in comparison with similar previous 

techniques. 

The remainder of the paper is structured as follows. 

Section 2 formalizes the microaggregation problem. 

Section 3 reviews some related microaggregation 

algorithms. Section 4 describes the proposed method. 

Experimental results are reported in Section 5. Finally, 

Section 6 concludes the paper. 

 

 

2. MICROAGGREGATION PROBLEM 
 

In this section, the problem of microaggregation is 

 
‡ The pseudo-code of the IMHM is described briefly in the Appendix. 

formalized. Assume a dataset 𝑇 of 𝑛 numerical records in 

a 𝑑-dimensional space, i.e., 𝑇 = {𝑥1, 𝑥2, … , 𝑥𝑛} where 

𝑥𝑖 ∈  ℝ𝑑. Given an input value 𝑘 as the privacy 

parameter, the microaggregation algorithm aims to 

partition the whole dataset 𝑇 into 𝑐 non-overlapping 

groups 𝐺1, . . . , 𝐺𝑐  each with at least 𝑘 members. The 

objective of microaggregation techniques as an 

optimization problem is to minimize the 𝑆𝑆𝐸, which aims 

to obtain clusters of similar records. This measure is 

shown in Equation (1). 

𝑆𝑆𝐸 = ∑ ∑ (𝑥𝑝𝑗 − 𝑥𝑝̅̅ ̅)
𝑇

(𝑥𝑝𝑗 − 𝑥𝑝̅̅ ̅)
|𝐺𝑝|

𝑗=1
𝑐
𝑝=1   (1) 

In Equation (1), 𝑥𝑝𝑗 is record 𝑗 of group 𝐺𝑝, and 𝑥𝑝 

denotes the centroid of 𝐺𝑝, i.e., 𝑥𝑝 = ∑ 𝑥𝑝𝑗
|𝐺𝑝|

𝑗=1
|𝐺𝑝|⁄ . The 

value is usually divided by the Sum of Squares Total 

(𝑆𝑆𝑇) to normalize 𝐼𝐿. 𝑆𝑆𝑇 is related to the dataset itself 

and is invariant to the microaggregation algorithm or the 

privacy model parameters. It is formulated in Equation 

(2). 

𝑆𝑆𝑇 = ∑ (𝑥𝑖 − 𝑥̅)𝑇(𝑥𝑖 − 𝑥̅)𝑛
𝑖=1   (2) 

In Equation (2), 𝑥̅ is the centroid of the whole dataset, 

i.e., 𝑥̅ = ∑ 𝑥𝑖
𝑛
𝑖=1  𝑛⁄ . The normalized measure 𝐼𝐿 =

𝑆𝑆𝐸/𝑆𝑆𝑇 ∗ 100% is always between 0 and 100%, where 

lower values of 𝐼𝐿 indicate less utility degradation due to 

microaggregation. 
 
 

3. RELATED WORKS 
 

It was shown by Domingo-Ferrer and Mateo-Sanz that in 

an optimal constrained size clustering, each group 

contains at most 2𝑘 − 1 records [13]. A polynomial-time 

technique was developed by Hansen and Mukherjee for 

univariate microaggregation that is called MHM [9]. The 

MHM first sorts univariate records and then creates a 

directed acyclic graph in which each arc in the graph 

matches a valid group that may be a cluster in the optimal 

solution. The authors showed that the optimal univariate 

microaggregation problem is reduced to computing the 

shortest path in the graph. A cluster exists in the optimal 

partition if its equivalent arc is in the computed shortest 

path. The complexity of the technique is 

𝑂(max(𝑛 log 𝑛 , 𝑘2𝑛)). Mortazavi et al. introduced an 

improved implementation of the MHM called IMHM 

[11] that makes use of incremental weight computation 

of graph arcs to improve the complexity of graph 

construction to 𝑂(𝑘𝑛) operations. The authors 

generalized the application of IMHM for multivariate 

datasets in an iterative optimization process, but the 

experiments show that the user has to carry out different 

experiments with multiple parameters, which is a time-

consuming task. 
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The optimal property of MHM provides a hopeful 

tactic to solve the challenging problem of the multivariate 

microaggregation. However, sorting multivariate records 

for optimal microaggregation is not well-defined. 

Therefore, different heuristics are devised in literature to 

sequence multivariate records. Domingo-Ferrer et al. 

[10] proposed some heuristics, such as the Nearest Point 

Next MHM (NPN-MHM), MDAV-MHM, and Centroid-

Based Fixed-Size MHM (CBFS-MHM) to order records 

and form a sequence of them. Then, MHM is applied to 

records on the path. However, their reports show that 

their approach is usually far from optimal, especially for 

clustered datasets. Monedero et al. used two projection 

methods, i.e., Principal Component Analysis (PCA) and 

Z-score, to reduce the dimension of the underlying 

dataset to one [14]. In the PCA technique, the first 

principal component of the dataset is utilized to sort data 

records. The Z-score algorithm orders multivariate 

records based on the sum of their Z-scores. Again, there 

is a significant distance to optimal solutions in both 

methods. Soria-Comas and Domingo-Ferrer presented a 

method to satisfy the differential privacy requirement 

[15] through univariate microaggregation [9]. 

Additionally, Mortazavi and Jalili introduced the Fast 

Data-oriented Microaggregation algorithm (FDM) [16] 

that produces an optimal assignment of records with 

respect to their Travelling Salesman Problem (TSP§) tour 

for a continuous range of the privacy parameter 𝑘. 

However, the running time to compute the TSP tour of 

multivariate records is considerable. More recently, 

Khomnotai et al. devised the Iterative Group 

Decomposition (IGD) technique [17] to refine the 

solution of a microaggregation algorithm by either 

shrinking or decomposing its clusters. Unfortunately, 

none of the mentioned methods can achieve near-optimal 

solutions. They are usually useful for particular datasets 

with pre-specified data distribution or very limited ranges 

of 𝑘. Moreover, the methods in the literature are 

somehow hard-coded with complex parameters that limit 

their flexibility in practice. It is therefore desired to 

devise a general method that can produce more useful 

anonymized datasets, which is addressed in the next 

section.   

 

 

4. PROPOSED MICROAGGREGATION ALGORITHM 
 
In this section, the Repeated record Ordering heuristic for 

multivariate Microaggregation, RepOrdMic is detailed.  

Briefly, the algorithm accepts an initial clustering of 

records and traverses all records group-by-group to 

complete a sequence (ordering) of all records. In each 

group, all records are visited using a TSP heuristic, and 

 
§ Please recall that given a list of points, the TSP is to find the shortest 

possible route that visits each point and returns to the origin [16]. 

then the nearest unexplored group is processed. After all 

records were added to the sequence, the IMHM is utilized 

to produce a (constrained) clustering. The process is 

repeated until no significant improvement is achieved. 

Algorithm 1 shows the pseudo-code of the proposed 

method**. The algorithm accepts the normalized dataset 

𝑇, the privacy parameter 𝑘, and an initial clustering 
label 𝑙𝑏𝑙𝑖𝑛 as inputs, and produces the perturbation error 

𝑆𝑆𝐸 and labels of assigned records to constrained size 

groups 𝑙𝑏𝑙𝑜𝑢𝑡 as outputs. The function initially creates an 

empty sequence 𝑆𝑒𝑞 to store the total ordering of 

multivariate records in Step 1. Step 2 finds the farthest 

record 𝑥𝑓 from the whole dataset centroid and then stores 

it in the current record 𝑥𝑐  in Step 3. In Steps 4 to 9, all 

records in 𝑇 are visited group-by-group and the order of 

visiting them is saved in 𝑆𝑒𝑞. In Step 4, the group label 

of 𝑥𝑐 is considered as the current group, 𝐺𝑐. If the current 

group has only one member, the algorithm continues to 

process other groups (Step 6-1). Otherwise, the algorithm 

looks for the most distant point from the current record 

𝑥𝑐 among current group members and adds it to the end 

of 𝑆𝑒𝑞. Other records in the current group will be inserted 

between these two group members. The process utilizes 

an idea inspired by the nearest insertion heuristic to solve 

TSP for entering all records in the current group to the 

𝑆𝑒𝑞. Steps 7 to 9 repeatedly choose an unseen record with 

minimum distance to its nearest neighbor among the 

current group members in 𝑆𝑒𝑞. Then, they insert it 

between the two consecutive records (Figure 1) for which 

such an insertion causes the minimum increase in the 

total sequence length of 𝑆𝑒𝑞. In other words, the insertion 

has to minimize len(𝑆𝑒𝑞) = ∑ 𝐷(𝑆𝑒𝑞[𝑖 + 1],
|𝑆𝑒𝑞|−1
𝑖=1

𝑆𝑒𝑞[𝑖]) where 𝐷(. ) denotes the Euclidean distance 

operator. For example, by inserting 𝑥𝑡 between two 

records 𝑥𝑖 and 𝑥𝑖+1, 𝐷(𝑥𝑖 , 𝑥𝑡) and 𝐷(𝑥𝑡 , 𝑥𝑖+1) are added 

to the total length of Seq, but the distance between 𝑥𝑖 and 

𝑥𝑖+1, i.e., 𝐷(𝑥𝑖 , 𝑥𝑖+1) is subtracted from the total length. 

These cost values are computed in Step 9, and the 

minimum one is added to 𝑆𝑒𝑞 in Step 10. The process 

continues until all records in the current group are added 

to 𝑆𝑒𝑞. In Step 12, if no unseen record remains, the 

algorithm goes to Step 14, otherwise the nearest unseen 

record in the whole dataset to the last record in Seq is 

chosen as the current record in Step 12-2, and the process 

of record ordering continues from Step 3. After ordering 

all records, the algorithm applies the optimal univariate 

microaggregation algorithm IMHM on it to produce a 

clustering that satisfies the size constraint and computes 

its 𝑆𝑆𝐸 in Step 13. This clustering can be fed again to the 

algorithm to reorder all records and improve 𝑆𝑆𝐸 (Step 
15). If 𝑆𝑆𝐸 is not decreased significantly, the function 

terminates, and the last computed 𝑆𝑆𝐸 and the final 

** An illustrative example of the algorithm execution on a small dataset 

is provided in the supplementary document of the paper. 
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clustering labels are returned as the algorithm outputs in 

Step 16.  
 

4. 1. Analysis of the Algorithm       The idea of using 

an initial clustering makes it possible to capture the 

inherent structure of the underlying dataset. Moreover, 

processing all records in a group-by-group fashion 

enables the process to focus on records of the current 

group rather than the whole dataset that makes the 

algorithm more efficient. The proposed method consists 

of repeated steps of record ordering in a sequence and 

applying IMHM. The 𝑆𝑆𝐸 of each iteration of the loop is 

not worse than its value in the previous iteration since the 

ordering procedure meets records in a group-by-group 

manner and IMHM does not change the order of records 

in each group. Therefore, the 𝑆𝑆𝐸 of each iteration 

improves gradually, or no significant decrement occurs 

at the last step, and the algorithm stops. It is also notable 

that the algorithm stops necessarily since the lower-

bounded 𝑆𝑆𝐸 cannot improve infinitely††. 

The space complexity of the proposed method for 

|𝑇| = 𝑛 is 𝑂(𝑛) that is used for storing the ordering of 

records in 𝑆𝑒𝑞 and computing the optimal clustering in 

IMHM. However, the runtime complexity is 

 

 
Algorithm 1. The pseudo-code of the RepOrdMic 

Input: 𝑇 = {𝑥1, 𝑥2, … , 𝑥𝑛}: original dataset, 𝑘: the privacy parameter, 𝑙𝑏𝑙𝑖𝑛: initial clustering labels 

Output: 𝑆𝑆𝐸: microaggregation error, 𝑙𝑏𝑙𝑜𝑢𝑡: the label of records to groups with at least 𝑘 members 

1 Initialize the sequence 𝑆𝑒𝑞 to NULL 

2 Find the farthest record 𝑥𝑓 from the dataset centroid 

3 𝑥𝑐 ← 𝑥𝑓 

4 Set the group label of 𝑥𝑐 as the current group 𝐺𝑐, i.e., 𝐺𝑐 ← 𝑙𝑏𝑙𝑖𝑛[𝑥𝑐] 
5 Add 𝑥𝑐 to the end of 𝑆𝑒𝑞 

6 If the current group size is less than 2 
6-1  Goto Step 12. 

 Else 

6-2  Find the farthest record from 𝑥𝑐 in the current group and add it to the end of  𝑆𝑒𝑞. 

7 Foreach consecutive records of 𝐺𝑐 in 𝑆𝑒𝑞, 𝑥𝑖, and 𝑥𝑖+1  

8  Foreach record 𝑥𝑡 in the 𝐺𝑐 that is not in 𝑆𝑒𝑞 

9   Compute the cost of 𝑥𝑡 addition to 𝑆𝑒𝑞 at position 𝑖, i.e., 𝑐𝑜𝑠𝑡𝑡,𝑖 ← 𝐷(𝑥𝑖 , 𝑥𝑡) + 𝐷(𝑥𝑡, 𝑥𝑖+1) − 𝐷(𝑥𝑖 , 𝑥𝑖+1). 

10 Find the minimum cost, say 𝑐𝑜𝑠𝑡𝑡∗,𝑖∗  and insert 𝑥𝑡∗ between 𝑥𝑖∗ and 𝑥𝑖∗+1. 

11 If there exists any record of the current group that is not in 𝑆𝑒𝑞, Goto Step 7. 

12 If there is not any unseen group 

12-1  Goto Step 14 

 Else 

12-2  From any unseen groups, find the nearest record to the last record in  𝑆𝑒𝑞, set it as the current record 𝑥𝑐, and Goto Step 3. 

13 Apply IMHM to 𝑆𝑒𝑞, to compute information loss and new labels, and save them in 𝑆𝑆𝐸 and 𝑙𝑏𝑙𝑜𝑢𝑡, respectively. 

14 If 𝑆𝑆𝐸 is improved significantly 

15  𝑙𝑏𝑙𝑖𝑛 ← 𝑙𝑏𝑙𝑜𝑢𝑡 

  Goto Step 2 

  Else  
16  Return the last 𝑆𝑆𝐸 and 𝑙𝑏𝑙𝑜𝑢𝑡 

 

 

 

 
Figure 1. Adding 𝒙𝒕 between 𝒙𝒊 and 𝒙𝒊+𝟏 in the current 

group 𝑮𝒄. Dashed green and dotted red lines indicate 

inclusion and removal, respectively 

 
††  Note that the number of different orderings is limited and the 

algorithm visits each ordering at most once, so it has to stop. In practice, 

considerable. It is assumed that an initial clustering is 

provided before the first iteration. This clustering can be 

used for multiple values of the privacy parameter 𝑘 and 

has to be computed once so that its execution time can be 

safely discarded. Finding the farthest record from the 

dataset centroid in Step 2 requires 𝑂(𝑛) operations. In the 

following steps of the algorithm, each iteration orders 

records of each group in a sequence. Except for the first 

step that processes the initial clustering labels, the 

following clustering results have 𝑂(𝑘) records in each 

group since they are the output of IMHM. Therefore, for 

each of 𝑂(𝑘) records in a clustering with 𝑂(𝑛/𝑘) groups, 

the cost values can be computed in 𝑂(𝑘) operations. The 

process has to be repeated 𝑂(𝑘) times in each group to 

cover all records in the group, thus 𝑂(𝑘3) operations are 

the iterations are broken when no significant improvement in 𝑆𝑆𝐸 is 

achieved. 

 

 

 

 

 

 

 

 
 

 
 

 

𝑥𝑡 

𝑥𝑖 
𝑥𝑖+1 

𝐺𝑐 

𝑥𝑐 
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needed for each group. Finding the nearest unseen record 

of other groups is accomplished in 𝑂(𝑛) and is repeated 

𝑂(𝑛/𝑘) times. Hence, the ordering is completed in 

𝑂 (
𝑛

𝑘
. 𝑘3 + 𝑛.

𝑛

𝑘
) = 𝑂 (𝑛 . 𝑘2 +

𝑛2

𝑘
) computations. The 

univariate microaggregation algorithm can be 

implemented efficiently in 𝑂(𝑛𝑘) operations. As a result, 

for 𝑙 iterations, the algorithm complexity is 𝑂(𝑙. 𝑛. (𝑘2 +

𝑘 + 𝑛 𝑘⁄ )). However, it is notable that the whole process 

is an offline task, and the runtime is usually not a 

bottleneck, but the quality of the produced clustering in 

terms of 𝑆𝑆𝐸 is more important. 

As a side note, for an efficient implementation of the 

ordering process, it can be seen that after inserting a 

record to sequence 𝑆𝑒𝑞, most of the previously computed 

cost values remain the same and can be reused, but a 

small number of them has to be computed or updated. 

 

 

5. EXPERIMENTAL RESULTS  
 
A prototype of the proposed method was implemented in 

Microsoft Visual C++ 2019 in release mode. All 

evaluations are conducted within Windows 10 operating 

system on a regular laptop with Intel Core i5-8265U 1.60 

GHz CPU and 8 GB of main memory. For initial 

clustering, different outputs of the k-means clustering 

algorithm are used for a number of clusters between 1 

annd 200. Additionally, the iterations are broken when 

Δ𝑆𝑆𝐸 < 1𝑒 − 7.  

Experiments were performed on three real-world 

benchmark datasets that are usually used for the 

evaluation of microaggregation algorithms. Benchmark 

datasets that are used in related previous studies [16, 17] 

are described in Table 1. All datasets contain numeric 

attributes without any missing values.  
Table 2 shows information loss for various values of 

𝑘. The proposed algorithm, namely RepOrdMic, is 

compared with MDAV [11], MDAV-MHM [10], IMHM 

[11], and IGD [17] methods. The results show that 𝐼𝐿 

increases when 𝑘 becomes greater for all 

microaggregation algorithms. For instance, 𝐼𝐿𝑀𝐷𝐴𝑉−𝑀𝐻𝑀 

for Census and 𝑘 = 3 is 5.65, which is increased to 14.22 

for 𝑘 = 10. Additionally, 𝐼𝐿 of Tarragona dataset is 

generally higher than the other two datasets since it is 

known as a sparse dataset, which increases the cost of the  

 

 
TABLE 1. Standard benchmark datasets for microaggregation 

comparison [16] 

Dataset name 
Number of data 

records (𝒏) 

Number of numeric 

attributes (𝒅) 

Tarragona 834 13 

Census 1080 13 

EIA 4092 11 

TABLE 2. Information loss comparison for various standard 

datasets. Best 𝑰𝑳 values are bolded 

Dataset 𝒌 MDAV 
MDAV

-MHM 

Tarragona 

3 16.93 16.93 16.93 15.60 14.80 

5 22.46 22.46 22.18 21.31 21.13 

10 33.19 33.19 30.78 32.87 31.13 

Census 

3 5.69 5.65 5.37 5.33 5.01 

5 9.09 9.09 8.42 8.37 7.94 

10 14.16 14.22 12.23 12.65 12.74 

EIA 

3 0.48 0.41 0.374 0.39 0.369 

5 1.67 1.26 0.76 0.76 0.75 

10 3.84 3.77 2.17 2.02 1.99 

 

 

anonymization process. The classic methods MDAV [11] 

and MDAV-MHM [10] are reported as reference 

techniques but do not produce any competing results in 

total. Similarly, the results of IGD are always worse than 

the winner methods. The IMHM [11] is more successful 

in the anonymization of Tarragona and Census for 𝒌 =
𝟏𝟎, while the difference between IMHM and RepOrdMic 

is negligible in these cases. RepOrdMic, the proposed 

method, achieves the best results in other cases. For 

example, for EIA and k=10, RepOrdMic has improved 

the outputs of MDAV, MDAV-MHM, IMHM, and IGD 

by 48.18%, 47.21%, 8.29%, and 1.48%, respectively. In 

brief, the results indicate that RepOrdMic is successful in 

producing more useful datasets in 7 out of 9 experiment 

sets.   
All elapsed times of the proposed method, excluding 

initial clustering, read and write disk operations, and 

(de)normalization are shown in Table 3. These values are 

reported for 200 different number of initial clusters from 

1 to 200 that are produced by k-means seeded with 0. The 

runtime of the algorithm for EIA is much larger than the 

other two cases since EIA is a large clustered numeric 

volume that makes it difficult and time-consuming for the 

algorithm to satisfy the privacy requirement. The 

experiments also show a decreasing runtime trend when 

𝒌 increases since for small values of 𝒌, the runtime of 

Step 12-2 in Algorithm 1 dominates the runtime of other 

parts, but the behavior changes when 𝒌 becomes larger. 

In brief, given an initial clustering, the algorithm is 

efficient and general; it usually terminates in a reasonable 

time regardless of the privacy parameter and underlying 

distribution or structure of the dataset. 

Notably, the experiments can be extended to evaluate 

other important issues about the proposed method such 

as its effect on the proximity-based attack [18], its 

application for anonymization of complex structures such 

as graphs [19], and the impact of using other initial 

clustering techniques such as x-means [20] or consensus 

clustering [21]. 

IMHM IGD RepOrdMic 
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TABLE 3. The runtime of RepOrdMic for 200 initial clustering 

labels. 

Dataset 𝒌 

Total 

time 

(sec) 

Total 

Iterations 

Avg 

Iterations 

per 

clustering 

Time per 

iteration 

(msec) 

Tarragona 

3 5.4 2525 12.63 2.14 

5 4.6 2755 13.78 1.67 

10 5 2988 14.94 1.67 

Census 

3 7.3 2368 11.84 3.08 

5 6.6 2504 12.52 2.64 

10 5.7 2527 12.64 2.26 

EIA 

3 51.3 1643 8.22 31.22 

5 36.8 1811 9.06 20.32 

10 25.9 1922 9.61 13.48 

 

 

6. CONCLUSIONS 

 
This paper presents a novel microaggregation algorithm 

based on the repeated ordering of multivariate records 

and mapping them to optimal univariate 

microaggregation algorithm IMHM. The process of 

ordering and applying IMHM is repeated until no 

significant improvement is achieved in terms of 𝑆𝑆𝐸. The 

output quality of the proposed method is usually better 

than similar methods in terms of 𝐼𝐿. Extensive 

experiments on real-world datasets for different values of 

the privacy parameter 𝑘 confirm that the algorithm is an 

efficient and general approach for practical usages. A 

promising extension of the proposed technique for future 

study is the way the records are ordered in a sequence.  
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8. APPENDIX 
 
THE IMHM ALGORITHM 
 
The appendix presents the pseudo-code of IMHM in 

brief. More details about the algorithm can be found in 

[9,11]. The main idea of IMHM is to calculate grouping 

errors incrementally to improve the time complexity of 

MHM [9]. The pseudo-code of the IMHM is provided in 

Algorithm 2. The algorithm accepts original records (as 

an ordered set) 𝑇, the privacy parameter 𝑘, and outputs 

𝑆𝑆𝐸 and record labels. The trivial case of 𝑛 < 2𝑘 is 

handled in Step 1 in which all records are assigned to one 

group. In Step 2, a directed acyclic graph 𝑀(𝑉, 𝐸) with 

𝑉 = {𝑣0, 𝑣1, … , 𝑣𝑛} is initialized (𝑣0 is a dummy node 

and 𝑣𝑖 represents 𝑋𝑖 in 𝑇 for 0 < 𝑖 ≤ 𝑛). In the following 

steps, some directed arcs are added to 𝑀. The weight of 

each arc equals to the 𝑆𝑆𝐸 of grouping records between 

the start and end nodes of the arc. In Steps 6-7, the 

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 and 𝑆𝑆𝐸 of the first group are calculated. The 

results are stored in Steps 8-9 for later usage. Then, other 

records are added to the cluster until the size of the group 

reaches the limit of 2𝑘 − 1 or no more record remains for 

addition. The weight of each arc is computed 

progressively in Steps 11-21. In Step 22, the shortest path 

from 𝑣0 to 𝑣𝑛 is saved in 𝑆𝑃. The microaggregation error 

𝑆𝑆𝐸 and assignment 𝐴 are computed in Steps 23 and 24-

28, respectively. Finally, the values are returned in Step 

29.  

 

 
Algorithm 2. The pseudo-code of the Improved MHM (IMHM) [11] 
Input: 𝑇 = (𝑋1, 𝑋2, … , 𝑋𝑛): dataset of original records in order, 𝑘: the privacy parameter  

Output: 𝑆𝑆𝐸: microaggregation error, 𝐴: the assignment of records to clusters with at least 𝑘 members 

1  If 𝑛 < 2𝑘, assign all records to the same cluster, calculate its 𝑆𝑆𝐸 and Return 𝑆𝑆𝐸 and the assignment 

2  Initialize the directed acyclic graph 𝑀(𝑉, 𝐸), |𝑉| = 𝑛 + 1  

3  For 𝑖 ← 0 To 𝑛 − 𝑘 

4   For 𝑗 ← 𝑖 + 𝑘 To 𝑚𝑖𝑛 (𝑛, 𝑖 + 2𝑘 − 1) 

5    If 𝑖 = 0 And 𝑗 = 𝑖 + 𝑘  

6     𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 ← MEAN (𝑋1 to 𝑋𝑘) 

7     𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑆𝐸 ← calculate 𝑆𝑆𝐸 

8     𝐵𝑎𝑠𝑒𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 ← 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 

9     𝐵𝑎𝑠𝑒𝑆𝑆𝐸 ← 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑆𝐸 

10    Elseif 𝑗 = 𝑖 + 𝑘 

11     𝐷𝑒𝑙𝑡𝑎 ← 𝑋𝑖+𝑘 − 𝑋𝑖   

12     𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 ← 𝐵𝑎𝑠𝑒𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 + 𝐷𝑒𝑙𝑡𝑎/𝑘 

13     
𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑆𝐸 ← 𝐵𝑎𝑠𝑒𝑆𝑆𝐸 +

∑ 𝐷𝑒𝑙𝑡𝑎[𝑙]. ((1 − 𝑘)𝐷𝑒𝑙𝑡𝑎[𝑙] + 2𝑘(𝑋𝑖+𝑘[𝑙] − 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑[𝑙]))𝑑
𝑙=1

𝑘
 

14     𝐵𝑎𝑠𝑒𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 ← 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 

15     𝐵𝑎𝑠𝑒𝑆𝑆𝐸 ← 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑆𝐸 

16    Else 

17     𝑠 ← 𝑗 − 𝑖        // the group size 

18     𝑂𝑙𝑑𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 ← 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 

19     𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 ← 𝑂𝑙𝑑𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 + (𝑋𝑗 − 𝑂𝑙𝑑𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑)/𝑠 

20     𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑆𝐸 ← 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑆𝐸 + ∑ (𝑋𝑗[𝑙] − 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑[𝑙])(𝑋𝑗[𝑙] − 𝑂𝑙𝑑𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑[𝑙])𝑑
𝑙=1  

21    Draw a directed edge 𝑒 = (𝑣𝑖 , 𝑣𝑗) and set the weight 𝑤(𝑣𝑖 , 𝑣𝑗) ← 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑆𝐸. 

22  Compute 𝑆𝑃 as the shortest path from 𝑣0 to 𝑣𝑛 in 𝑀(𝑉, 𝐸) 

23  𝑆𝑆𝐸 ← The length of 𝑆𝑃 

24  𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ← 1 

25  Foreach edge 𝑒 = (𝑣𝑖 , 𝑣𝑗) ∈ 𝑆𝑃 

26   Foreach 𝑣𝑚, 𝑖 < 𝑚 ≤ 𝑗  

27    Assign 𝑋𝑚 to 𝐺𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡𝑒𝑟      // 𝐴[𝑚] ← 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡𝑒𝑟                     

28   𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡𝑒𝑟 + 1 

29  Return 𝑆𝑆𝐸 and 𝐴 
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Persian Abstract 

 چکیده 

بندي  نوعي خوشهبندي مقيد  هاي اصلي در داده كاوي است كه كاربردهاي فراواني در علوم كامپيوتري، زيست شناسي و علوم اجتماعي دارد. خوشهبندي يكي از روشخوشه

بندي مقيد، الگوريتم هاي مورد پژوهش در زمينه خوشهشود. يكي از انواع الگوريتمبندي دخالت داده مياست كه در آن اطلاعات اضافي ارائه شده توسط كاربر در طي خوشه

يك پارامتر تعريف شده توسط كاربر است. كاربرد   𝒌عضوتقسيم كند كه   𝒌  زيرتجميع است. در ريزتجميع، الگوريتم خوشه بندي بايد مجموعه داده را به گروه هايي با حداقل

ها با حفظ حريم خصوصي كاربرد دارد. كيفيت الگوريتم ريزتجميع بر اساس مجموع مربع خطاهاي داخل  اصلي ريزتجميع در كنترل افشاي آماري است كه براي انتشار داده

سخت است، اما نسخه تك بعدي آن به صورت بهينه و در زمان -NPه كه ريزتجميع بهينه در حالت كلي يك مسئله بهينه سازي  شود. متاسفانه ثابت شدگروه اندازه گيري مي

كنند.  ها چند بعدي را در يك دنباله مرتب  اي قابل حل است. روش هاي ابتكاري زيادي براساس تبديل به نسخه تك متغيره پيشنهاد شده است. اين روشها بايد دادهچند جمله

كند. با شروع از يك خوشه بندي اوليه، روش پيشنهادي به صورت تكراري ركوردهاي چند بعدي را در يك دنباله  اين مقاله روش جديدي براي مرتب سازي داده ها پيشنهاد مي

هاي تجربي انجام شده در اين تحقيق نشان از  مجموعه وسيعي از آزمايشيابد.  كند. اين فرايند تا زماني كه بهبودي حاصل نشود ادامه ميبندي ميمرتب كرده و آنها را خوشه

 هاي مختلف دارد. برتري روش پيشنهادي براي پارامترها و مجموعه داده

 

 

 
 


