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1. INTRODUCTION1 
 

Time series forecast plays an important role in many 

fields such as economics, finance, business intelligence, 

meteorology, and telecommunication [1]. As such, time 

series forecasting has been an active area of research 

since 1950s and many empirical and theoretical studies 

are conducted [2-4]. As an early attempt, researchers 

tried to use linear combination of historical data and 

hence, most of the traditional statistical models including 

moving average, exponential smoothing, and 

autoregressive integrated moving average (ARIMA) 

have linear structure [5]. However, in the late 1970s, it 

became increasingly clear that linear models, per se, are 

not adapted for many applications like stochastic series 

[1]. Therefore, nonlinear models like autoregressive 

conditional heteroscedastic (ARCH) and general 

autoregressive conditional heteroscedastic (GARCH) 

were introduced. In last two decades, Machine Learning 

(ML) models have established themselves as serious 

rivals of classical models in forecasting literature [6-9]. 

 

*Corresponding Author Email: khedmati@sharif.edu (M. Khedmati) 

ML models are examples of potentially nonparametric 

and nonlinear models which use only historical data to 

learn the stochastic dependency between the historical 

date and future [1]. 

There is a growing interest on financial time series 

forecasting in recent years because it plays a significant 

role in investment decisions. Generally, financial time 

series have noise characteristic due to the unavailability 

of complete information while their non-stationary 

characteristic originates in the distributional changes 

over time. In other words, financial time series 

forecasting is a relatively challenging task [10].  

Recently, Cryptocurrencies (i.e. digital monetary 

systems stored in an encrypted block-chain) have 

received significant attention in the financial community 

[11]. The current supposed leader of Cryptocurrencies, 

Bitcoin, presents an interesting time series rising in a 

market that is in its transient stage [12]. In this paper, we 

propose some forecasting models based on ARIMA and 

ML methods to forecast the price of Bitcoin. The 

proposed ML approaches include Kriging, Artificial 
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Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the 

financial and investment community and presents an interesting time series prediction problem. In this 
paper, some forecasting models based on classical like ARIMA and machine learning approaches 

including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine (SVM) 

and Random Forest (RF) are proposed and analyzed for modelling and forecasting the Bitcoin price. 
While some of the proposed models are univariate, the other models are multivariate and as a result, the 

maximum, minimum and the opening daily price of Bitcoin are also used in these models. The proposed 
models are applied on the Bitcoin price from December 18, 2019 to March 1, 2020 and their 

performances are compared in terms of the performance measures of RMSE and MAPE by Diebold-

Mariano statistical test. Based on RMSE and MAPE measures, the results show that SVM provides the 
best performance among all the models. In addition, ARIMA and Bayesian approaches outperform other 

univariate models where they provide smaller values for RMSE and MAPE. 
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Neural Networks (ANNs), Bayesian model, Support 

Vector Machines (SVMs), and Random Forest (RF). 

Moreover, we use the opening, maximum, and minimum 

daily price in addition to the closing price to improve the 

prediction.  

The rest of the paper is organized as follows. Section 

2 provides a literature review on Bitcoin price forecasting 

studies. The ARIMA approach is explored in detail in 

Section 3. In Section 4, the proposed ML models are 

studied, and their performance are compared in Section 

5. Finally, the concluding remarks constitute Section 6. 

 

 

2. LITERATURE REVIEW 
 

The studies in this literature are divided into two 

categories; one uses the Bitcoin features to predict its 

price while the other one has an economic point-of-view. 

This paper focuses on the latter. This category consists of 

two subcategories including the classical methods of 

transformations and the Machine Learning models on 

data like opening, maximum, minimum and gold prices. 

 

2. 1. Classical Approach         In this category, Chu et 

al. [13] applied statistical analysis on the exchange rate 

log-returns of Bitcoin versus the US Dollar. This paper 

compared 15 popular financial parametric distributions 

on the log returns and concluded that the generalized 

hyperbolic distribution provides the best results. The 

financial capabilities of Bitcoin are studied in some 

papers including Dyhrberg [14]. They showed several 

similarities of Bitcoin to gold and dollar, indicating 

hedging capabilities and advantages of Bitcoin as a 

medium of exchange. Autoregressive approaches are also 

studied in which for example, Hencic and Gouriéroux 

[15] used the mixed causal-noncausal autoregressive 

process with Cauchy errors to predict the Bitcoin price. 

In addition, Ho et al. [16] compared ARIMA, recurrent 

and multilayer feed-forward networks showing that the 

first two outperform the last model. Some of the studies 

use transformations where, for example, Delfin-Vidal 

and Romero-Melendez [17] used a continuous wavelet 

transform analysis on the price volatility across different 

time and investment horizons. 

In another spectrum of studies, the authors used 

Bitcoin attributes and economical tools. For example, 

Kristoufek [18] addressed the price changes focusing on 

possible sources of the change, ranging from 

fundamentals to speculative or technical sources. This 

work examined how interconnections behave in time 

with different scales (frequencies). In another study, 

Kristoufek [19] used a similar approach and studied the 

relationship between digital currencies, such as Bitcoin, 

and Google Trends or Wikipedia search queries. This 

study showed not only that they are connected, but also 

there exists a pronounced asymmetry between the effect 

of an increased interest in the currency when it is above 

or below its trending value. Another work that looked 

into these types of interconnections is Garcia et al. [20] 

that used the data from social media and search engines. 

They studied the links between social signals and Bitcoin 

prices through a social feedback cycle and found two 

main positive feedback loops indicating a strong 

connection. 

 

2. 2. Machine Learning Approaches        The Bayesian 

and linear regression variants have been used extensively 

to predict the Bitcoin price. For instance, Shah and Zhang 

[21] employed Bayesian regression as the latent source 

model and devised a simple strategy for trading Bitcoin. 

Another example is Greaves and Au [22] which applied 

linear regression, logistic regression, SVM, and ANN on 

the block-chain network-based features of the price. In a 

slightly altered approach, Madan et al. [23] proposed two 

phases; first, they used over 25 characteristics of the price 

and payment network over 5 years to predict the sign of 

future changes using Binomial General Linear Model 

(GLM), SVM, and RF models. Afterward, for the second 

phase, they merely focused on the Bitcoin price data, 

alone. 

Deep learning approaches have also been employed 

for Bitcoin price predictions. Almeida et al. [24] focused 

on the prediction of the price trend for the next day based 

on the previous days’ price and volume using an ANN 

model. McNally et al. [12] showed that nonlinear deep 

learning models including Bayesian optimized Recurrent 

Neural Network (RNN) and Long Short-Term Memory 

(LSTM) network can outperform ARIMA. A number of 

research efforts including Sin and Wang [25], Radityo et 

al. [26], Indera et al. [11], Jang and Lee [27] and Rahimi 

and Khashei [28] focused on applying specialized deep 

learning models. Reinforcement learning models also can 

be helpful due to the feedback interacting behavior of the 

price forecast problem. For instance, Lee et al. [29] 

proposed to predict the price movements using Inverse 

Reinforcement Learning (IRL) and Agent-Based 

Modelling (ABM). Their model reproduces synthetic yet 

realistic rational agents in a simulated market. 

As we mentioned in some instances, utilizing a social 

network or search engine data is effective for modelling 

and forecasting where, this is shown in Matta et al. [30]. 

They investigated the relation between the spread of the 

Bitcoin price and volumes of tweets or Web Search 

media results, particularly those with a positive 

sentiment. They explored significant cross-correlations, 

especially on the Google Trends data.  

Sentimental analysis on Twitter feeds can reveal 

fundamental economic variables and technological 

factors. Georgoula et al. [31] used this fact to study the 

relationship between Bitcoin prices and the information 

derived from the tweets. 
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3. DATA DESCRIPTION 
 

In this paper, we use the daily Bitcoin exchange rate data 

(the closed price of Bitcoin) from December 18, 2019, to 

March 1, 2020, from [32]. The closing prices are the 

common target of prediction in the literature. Also, note 

that since the data of this period has a one-time growth, 

based on the suggestion of economists, we do not use that 

data. A statistical summary of these data is presented in 

Table 1. In this table, Mean, SD, Min, and Max represent 

the mean, standard deviation, minimum, and maximum. 

In addition, the data is plotted in Figure 1, which 

obviously suggests non-stationarity of the process. 

In the multivariate models, in addition to the Bitcoin 

price, the maximum, minimum and opening daily prices 

are also used. Here, we use 75 observations (days) for 

training the models and the last 44 records as test dataset 

for one-step-ahead prediction. 
 

 

4. METHODOLOGY 
 

In this paper, the ARIMA model as the classic method 

and ANN, SVM, RF, Bayesian method, and Kriging as 

the machine learning models are chosen for forecasting 

of Bitcoin price. Then, we analyze the models, compare 

the results of them and select the best model based on the 

performance measures. 

 

4. 1. Classic Method          ARIMA models developed 

by Box and Jenkins [33] have been widely used for time 

series forecasting. An ARIMA model is usually linear, 

combined by several previous observations and random 

errors, and the prediction model is created as a function  
 

 

TABLE 1. Statistical summary of the daily Bitcoin exchange 

rate data, N = 75 

Variable Mean SD Min Max 

Close price 8660.36 1022.66 6967.00 10333.00 

Open price 8634.43 1049.73 6613.50 10336.00 

High price 8807.38 1038.49 7197.60 10482.60 

Low price 8478.33 1007.36 6462.20 10229.30 

 

 

 
Figure 1. Bitcoin price from December 18, 2019 to March 

1, 2020 

of the historical data and the errors [34]. The 

conventional ARIMA (p, d, q) formulation is described 

as : 

( )( ) ( )Φ 1 Θ
d

t tB B y B − = +  (1) 

in which   is a constant term, ( )Φ B  is the autoregressive 

coefficient function, ( )Θ B  is the moving average 

coefficient function, t  is the error term at time t and d is 

the order of integration terms. If the time series is 

stationary, then d is zero and the model simplifies to 

ARMA (Autoregressive Moving Average). We first 

examine the stationarity of the data using Kwiatkowski-

Phillips-Schmidt-Shin (KPSS) test [35]. In this test, the 

null and the alternative hypothesis are as below: 

Hypothesis 0. yt is a unit root process. 

Hypothesis 1. yt is trend (or level) stationary or 2 0u =  

where, 

• ( )t t t ty r e = + + +  and ty  are observations during 

the time 

• 1t t tr r u−= +  is a random walk process with 0r =  

• t represents time 

• 𝑢𝑡 ∼ 𝑁𝐼𝐷(0, 𝜎𝑢
2)   

The value of the KPSS test statistic for Bitcoin data (resp. 

P-value) is 1.7376 (resp. 0.01), and therefore the null 

hypothesis cannot be rejected with a 95% confidence 

level. Now, the sources of non-stationarity should be 

identified. This can be due to the existence of a trend in 

the data or changes in their variance. To test the former 

hypothesis (trend) on the data, we use the Mann-Kendall 

test [36-38] because of its relevance to the matter. In this 

test, the null and the alternative hypotheses are as below: 

Hypothesis 0. No monotonic trend. 

Hypothesis 1. The monotonic trend is present. 

The P-value of this test for Bitcoin data is 1.697e-9. 

Hence, we reject the null hypothesis and use differencing 

on the data to remove the trend. After differencing, the 

Mann-Kendall test is used again for the integrated data 

where, the related P-value is changed to 0.4553. This P-

value represents the lack of trend in the transformed data. 

Figure 2 shows the time series data after differencing. 

Now, we must check the variance stability for 

transformed data. To do this, the Breusch-Pagan [39] test 

is used based on the following hypotheses. 

Hypothesis 0. Variance is homoscedastic. 

Hypothesis 1. Variance is not homoscedastic. 

The P-value of this test for Bitcoin data is 2.2e-16, which 

does not lead to the rejection of the null hypothesis and 

hence, we have a stable variance.  In addition, the P-value 

of KPSS test for the transformed data is 0.1. Therefore, 

we cannot reject the null hypothesis of KPSS test and 

accordingly, the transformed data is stationary. 

Once the data is stationary, it is time to select the 

model in which the Extended Sample Auto Correlation 
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Function (ESACF) is used for this purpose. Based on 

ESACF matrix, an ARMA (1,1) is appropriate for the 

transformed data. Note that since differencing is used to 

convert the data into a stationary time series, the resulting 

model is ARIMA (1,1,1) and its parameters for 

forecasting the price on March 1, 2020, are : 

( )( ) ( )0.6034 31.271 1 1 0.4086t tB B y B − − = − + −  (2) 

Figure 3 shows the residual plots of this model and 

Figure 4 shows the ACF (Autocorrelation Function) 

while PACF (Partial Autocorrelation Function) plots. 

Since there is no specific trend in these diagrams, it can 

be assumed that the model is properly selected and can 

be used for prediction. 

There are standard measures for evaluating the 

performance of forecasting models where, Woschnagg 

and Cipan [40] address some of these methods. In this 

paper, we use RMSE (Root Mean Square Error) and 

MAPE (Mean Absolute Percentage Error) to evaluate the  
 

 

 
Figure 2. Bitcoin price with first order differencing 

 

 

 
Figure 3. Residual plots 

 

 

 
Figure 4. The ACF (top) and PACF (down) plots of 

residuals 

accuracy of the proposed models. This is because RMSE 

is a beneficial measure for comparing the accuracy of the 

models and MAPE is relatively easy to interpret. 

Specifically, the formulas are: 

( )

( )

2

1

1

ˆ

ˆ

1

1

n

t t

t t

t

n

t

RMSE y y
n

MAPE y y
n

=

=

= −

= −




 (3) 

Following an online schema, we update our model 

parameters after removing the oldest point and adding the 

new one. The RMSE and MAPE for the proposed 

ARIMA model are 253.4513 and 2.2286%, respectively. 

 

4. 2. Machine Learning Methods             For the 

proposed multivariate ML models, the variables of 

opening, maximum, and minimum daily prices are used 

in addition to the closing prices, while the univariate 

model just uses the closing prices.  The univariate models 

include Kriging, ANN, and Bayesian methods and 

multivariate models include ANN, SVM, RF, and 

Bayesian methods. This section ends with the 

comparison of the models with each other. 

 

4. 2. 1. Kriging       Kriging is the interpolation of 

unknown values in a stochastic function with a linear 

weighted set of observed values [41]. Krige, an African 

mining engineer, invented this method to define the exact 

location of mining rocks in the 1950s [42]. The main idea 

of this meta-model is to use a weighted mean of outputs 

in such a way that the weights depend on the interspace 

between forecasting point and observed points. The 

optimal weights give minimum prediction error variance 

and the predictions are the Best Likelihood Unbiased 

Estimators (BLUE). Due to these properties, Kriging is 

an optimal interpolator [43], i.e. Kriging meta-models 

traverse through all the members of the experimental 

environment. This model is mainly used for prediction 

purposes in addition to sensitivity analysis and robust 

optimization. Generally, Kriging is classified into six 

categories, namely Simple, Ordinary, Co-Kriging, 

Universal, Blind and Stochastic [43]. To the best of our 

knowledge, there are just a few studies that use Kriging 

for time series forecasting. For example, Cellura et al. 

[44] applied a neural Kriging method to the spatial 

estimation of wind speed for energy planning in Sicily 

and, Liu et al. [45] used Kriging for prediction of wind 

speed. 

In this paper, we use a univariate ordinary Kriging 

(OK) model with a simple parameter tuning, which 

indicated that using the last 5 days’ data provides the best 

performance. Ordinary Kriging interpolates the one-step-

ahead-forecast (yn+1) using a set of n existing records (yi; 

i =1, …, n). We suppose that the mean output is the 

unknown variable and the prediction is expressed as 

follows: 
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( )1
1

T
ny   −
+ = + −Γ 1y  (4) 

where, ( )
1

1 1T T T
−

− −= 1 Γ 1 1 Γ y , 1 is a 1n  vector of ones, 

( ), ;  1,  ,  , 1,  , i icov y y i n i n= =  = Γ  a n n  matrix of 

covariance between the data points, ( )1,i ncov y y +=γ  a 

1n  vector including covariance between the data yi and 

the prediction yn+1, and finally, y, a 1n  vector of the 

Bitcoin prices. The prediction variance is calculated as: 

1

1
2 2 1

1

1
1

n

T T
T

y T
S 

+

−
−

−

 −
= − + 

 
 

1 Γ
Γ

1 Γ 1

γ
γ γ  (5) 

where, ( ) ( )2 11 T
T T

n
  −= − −1 Γ 1y y  [46]. We use 

ooDACE toolbox of MATLAB as in [47]. The proposed 

model cares less about the past data compared to the new 

data, and only the data from the past 5 days is used to fit 

the model. In this regard, the Kriging model is very 

similar to a moving average model but the covariance 

matrix helps to obtain the parameters. The RMSE and 

MAPE of this model are 298.1863 and 2.6768%, 

respectively. 

 
4. 2. 2. Bayesian Method       The basic theory of 

prediction using Gaussian processes goes back to Wiener 

[48] and Kolmogorov [49] in the 1940s. Indeed, 

Lauritzen [50] discusses the relevant work by Danish 

astronomer T. N. Thiele from 1880 [51]. The Bayes rule 

is one of those simple but profound ideas that underlie 

statistical thinking [52]. However, finding an appropriate 

prior distribution for the data is a difficult task, where it 

makes the Bayesian analysis more complicated than 

other models to utilize. 

As a result of the central limit theorem, the Gaussian 

processes are flexible enough to have a good 

performance as a prior distribution on many data sets 

with a large number of data [53]. The goal of the 

Bayesian forecasting is to compute the distribution 

P(yn+1|D, n+1) of output yn+1 given a test input n+1 and a 

set of n training records D ={(i, yi)| i =1, …, n}. We use 

the Bayes rule to obtain the posterior distribution for the 

(n+1)th Gaussian process outputs. The prediction 

conditioned on the observed outputs has Gaussian 

distribution [54]; that is: 

( )1 1

2
1( | , 1) ~ ,

n nn y yP y D n N  
+ ++ +  (6) 

where, the mean and variance are given by 
1n

T T
y +

= Γγ y  

and ( )
1

2
1 1,

n

T
y n ncov y y

+ + += − Γγ γ , respectively. Since the 

variance is predicted for the (n+1)th Gaussian process 

output, the confidence interval of the prediction, in 

addition to the point prediction, can be obtained [53]. We 

use both univariate and multivariate Bayes models and 

the results in Table 2 show that the multivariate model 

has better accuracy than the univariate one. 

 
4. 2. 3. Artificial Neural Network            Artificial 

neural networks (ANN) can recognize future patterns of 

the time series. ANNs are universal and very flexible 

function approximators, first used in the fields of 

cognitive science and engineering. One of the similar 

works on ANN in the financial studies is Kaastra and 

Boyd [55], which provides an eight-step procedure to 

design an ANN forecasting model. They also discuss the 

trade-offs in parameter selection, some common pitfalls, 

and points of disagreement among practitioners. In 

addition, Azoff [56] takes the reader of their book beyond 

the 'black-box' approach to neural networks and provides 

the knowledge that is required for their proper design and 

use in financial markets forecasting with an emphasis on 

futures trading. Zhang [57] proposed a hybrid 

methodology that combines both ARIMA and ANN 

models to benefit the strength of ARIMA and ANN 

models in the linear and nonlinear modeling. 

The feed-forward neural networks are used widely in the 

literature [58-59], where, we propose a feed-forward 

neural network with a single hidden layer and lagged 

inputs to forecast univariate time series. The historical 

data is the input of the neural network model, while the 

output is the forecast value. The hidden layer stores an 

appropriate transfer function which is used for processing 

the data from the input nodes. The model is expressed as: 

1 0
1 0 0 ,( )n j j i j n i

Q P

j i
y w w g w w y

= =
+ −= + +   (7) 

where, P is the number of input nodes, Q the number 

of hidden nodes, g an activation function, {wj, j = 0, 1, 

…, Q} a vector of weights from the hidden layer to output 

nodes, {wi,j, i =1, 2, …, P, j = 0, 1, …, Q} are the weights 

between the input to hidden nodes and w0,j are the weights 

for each output between input and hidden layer [34]. To 

select the number of previous observations, features that 

should be in the model (feature selection) and the number 

of the nodes in the hidden layer, we use parameter tuning 
 

 

TABLE 2. RMSE and MAPE for Bayesian model 
Model RMSE MAPE (%) 

Univariate 245.9793 2.0551 

Multivariate 192.8742 1.5251 

 

 

TABLE 3. RMSE and MAPE for ANN model 

Model RMSE MAPE (%) 

Univariate 321.2871 2.8218 

Multivariate 252.0465 2.0865 
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on the training data set with R language. The results of 

univariate and multivariate ANN models are represented 

in Table 3. 

 

4. 2. 4. Support Vector Machine          The motivation 

for using the support vector machines (SVMs) in time 

series forecasting is the ability of this methodology to 

accurately forecast time series data when the underlying 

processes are typically nonlinear, non-stationary and not 

defined a-priori. This model is also shown to outperform 

other non-linear techniques including neural-network-

based non-linear prediction techniques such as multi-

layer perceptrons [60]. 

The general idea of SVM for regression (or SVR) is 

to generate the regression function by applying a set of 

high dimensional linear functions. Then, it uses a 

minimization on the upper bound of the generalization 

error [34]. The inputs are mapped into a high dimensional 

nonlinearly feature space (F), wherein the features are 

correlated linearly with the outputs. The SVR 

formulation considers the following linear estimation 

function [10]: 

( ) ( )  Tf = +t w t b  (8) 

where w is the weight vector, b the bias term vector, ( ) t  

denotes a mapping function in the feature space and 

( )Tw t  the dot production in the feature space F. Various 

cost functions such as the Laplacian, Huber's Gaussian 

and Vapnik's linear  -Insensitivity can be used in the 

SVR formulation. Among these, the Vapnik's linear  -

Insensitivity loss function is the most commonly adopted 

[38], which is given in Equation (9). 

( )
( )

( )

0                       

          

i i

i i

i i

if y f t
y f t

y f t otherwise





 − 
− = 

− −

 (9) 

where,   is a precision parameter representing the radius 

of the tube located around the regression function f(t). 

Accordingly, linear regression f(t) is estimated by 

simultaneously minimizing ||w||2 and the sum of the linear 

 -Insensitivity losses as bellow: 

( )
2

1

1

2
i i

n

i
R c y f t

=

 
= + − 

 
w  (10) 

in which the constant c controls the weight of 

approximation error and size of weights vector, ||w||. 

Increasing c, potentially decreases the approximation 

error with a trade-off that controls the overfitting. 

Minimizing the risk R is equivalent to the model given in 

Equations (11a-11d) [5]. 

( )
1

2 *1
minimize 

2

n

i
i iR c  

=

 
= + + 

 
w  (11-a) 

( )
subject to

       1, ,T
i i it b y i n + −  +  = w

 (11-b) 

( ) *       1, ,T
i i iy t b i n − +  +  = w  (11-c) 

*, 0          1, ,i i i n    =   (11-d) 

By using the Lagrangian multipliers and Karush-

Kuhn-Tucker conditions, the following dual Lagrangian 

model is obtained as [61]: 

( )*maximize ,L    (12-a) 

( )*

1
subject to 0

n

i i
i

 
=

− =  (12-b) 

0       1, ,i C i n   =   (12-c) 

*0       1, ,i C i n   =   (12-d) 

with the following definitions: 

( ) ( ) ( )

( )( ) ( )

* * *

1 1

* *

, 1

,

1
,

2

n n

i i i i i

i i

n

i i j j i j
i j

L y

K t t

      

   

= =

=

= − + + −

− − −

 



 (13) 

Note that the Lagrangian multipliers in Equation (13) 

satisfy the equality * 0i i  =  and the optimal weights for 

the regression is ( ) ( ) ( )
*

*

1
,

nT
i i i

i
K t 

=
= −w t . Hence, the 

general form of the SVR-based regression function can 

be written, according to Vapnik [61] as follows: 

( ) ( ) ( )*

1
,

n

i i i
i

f K t 
=

= − +t t b  (14) 

where, ( ), iK tt  is the kernel function which is 

proportional to the inner product of two points, ti and tj, 

in the feature space ( )it  and ( )jt ; that is, 

( ) ( ) ( ),i j i jK t t t t = . Although several choices for the 

kernel function are available, the most widely used is the 

Radial Basis Function (RBF) K(ti, tj) = exp(-||ti-tj||2/2v2), 

where, v denotes the width of the RBF [10]. We use the 

"SVM" package and "tune" function of R for parameter 

tuning. The results of univariate and multivariate SVM 

models are represented in Table 4. 

 

4. 2. 5. Random Forest          Random Forest (RF) is an 

ensemble learning method for classification and 

regression that proceeds by constructing an aggregation 

of decision trees [62]. Random decision forests adjust for 
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the decision trees' habit of overfitting to their training set. 

In the context of time series, the changes in the future 

data are dynamic and a regression might not be an 

excellent choice however, we can tune it at the current 

time of a sliding window. An example of a random forest 

application in time series is the work in Kane et al. [54]. 

They showed that using random forest enhances the 

predictive ability over existing time series models for the 

prediction of infectious disease outbreaks in bird 

populations. Using RF for one-step-ahead time series 

forecasting is straightforward and similar to the 

application of RF in the regression models. Let f be the 

model function which will be used for yn+1, given y1, …, 

yn. If we use k lagged variables, the predicted yn+1 is 

obtained based on the following equation for t = n+1 [63]: 

( )1,  ,  ,  1,  ,  1t t t ky f y y t k n− −=  = +  +  (15) 

We use a training set of size n-k. In each training sample, 

the dependent variable is yt, for t = k+1, …, n+1, while 

the predictor variables are yt-1, …, yt-k. When k increases, 

the size of the training set n-k decreases. The training set, 

which includes n-k samples, is created using the 

"CasesSeries" function of the "rminer" R package [64-

65]. The RMSE and MAPE of this method are obtained 

as 237.0867 and 2.0787%, respectively. 

 

 
Figure 5. RMSE for all univariate models 

 

 

 
Figure 6. MAPE for all univariate models 

 

 

 
Figure 7. RMSE for all multivariate models 

 

 

 
Figure 8. MAPE for all multivariate models 

TABLE 4. RMSE and MAPE for SVM model 

Model RMSE MAPE (%) 

Univariate 308.2759 2.6397 

Multivariate 142.1580 1.1469 

 
 
 
5. PERFORMANCE COMPARISON 
 

In this section, the models are compared based on the 

results of the previous section. The results of univariate 

models are shown in Figures 5 and 6. In this regard, 

considering the univariate models, Bayesian has shown 

the best performance with the smallest values of RMSE 

and MAPE among other models. In addition, the results 

of the multivariate models are shown in Figures 7 and 8. 

The results show that among the multivariate models, 

SVM has fantastic performance and its accuracy is 

significantly better than the other multivariate models. 

Furthermore, we plot the cumulative RMSE for all the 

univariate and multivariate models in Figures 9 and 10, 

respectively. Based on the results, in the univariate case, 

the Bayesian and ARIMA models and in the multivariate 

case, the SVM model outperform other models 

consistently through time. 

A more systematic way to compare two time series 

models is to look at their errors in pairs where the 

Diebold-Mariano test is used for this purpose. Let 
ty  as 

the actual value for time point t and ˆ
ity  be the prediction 

of the model i for time t. Then, the error for model i in 

time t is defined as ˆ
it it te y y= − . Now, the loss 

differential between the forecast of two models is defined 

as 
1 2( ) ( )t t td g e g e= −  where, ( )itg e  shows the loss 

function. In this regard, we have [66]: 

) (0,   ( 2 (0))dd N fT  − →  (16) 

where, 
1

T

tt
d d T

=
=  and (0) ( ) 2d df


  



=−
=  is the 

spectral density of the loss differential at frequency zero. 

In addition, 

( ) [( )( )]d t tE d d    −= − −  (17) 

is the autocovariance of the loss differential at lag  . 

Under the null hypothesis that the two forecasts have the 

same accuracy, the Diebold-Mariano test statistic is 

defined as: 

( )ˆ2 (0)dDM d f T=  (18) 

in which, 
( 1)

( 1)

1ˆ ˆ(0) ( ) ( )
2 1

T

d dk T

k
f I k

h




−

=− −
=

−
  is the 

estimate of (0)df  with: 
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1

1
ˆ ( ) ( )( )

T

d t t kt k
k d d d d

T


−= +
= − −  (19) 

and ( ) 1I x =  if 1x   and 0, otherwise. In practice, if we 

set 
1

3M T= , an appropriate estimate of  2 (0)df  is 

obtained by ˆ ( )
M

dk M
k

=− , and hence we have: 

( )ˆ ( )
M

dk M
DM d k T

=−
=   (20) 

Under the null hypothesis, the test statistics DM is 

asymptotically N(0,1) distributed and the null hypothesis 

is rejected if 
2DM Z . 

We use this test for the univariate and multivariate 

models in which the pairwise P-value of Diebold-

Mariano statistic for univariate and multivariate time 

series are represented in Tables 5 and 6, respectively. In 

this paper, we applied one sided null hypothesis; that is, 

the value at row i and column j is the P-value testing if 

model i is better than model j. For example, in Table 5, 

0.0283 is the P-value of the hypothesis which indicates 

that the performance of the ARIMA model is better than 

the Kriging model. 

We use a 95% confidence level and follow a round 

robin policy. The results show that the ARIMA and 

Bayesian models have the same accuracy and outperform 

other univariate models. It should be noted that despite 

the better performance of the ARIMA model, it is harder 

to fit because of its complex data pre-processing 

including the differencing and various data 

transformations. However, machine learning models are 

faster than the ARIMA model with relatively high 

accuracy. For example, the accuracy of the Bayesian 

model is the same as the accuracy of ARIMA, while it 

provides the results much faster than the latter. In other 

words, although machine learning models need hyper-

parameter tuning, this is easier than the pre-processing 

step of the ARIMA model. In addition, the effect of 

hyper-parameter tuning on the performance of ML 

models is less than the effect of pre-processing on the 

performance of the ARIMA model. 

 

 

 
Figure 9. Cumulative RMSE for univariate models 

Based on the results in Table 6, the SVM model has the 

best accuracy between multivariate models which 

confirms the comparison based on RMSE and MAPE 

criteria. Hence, we identify the SVM model as the best 

multivariate model. The outputs of the best univariate 

and multivariate models are shown in Figures 11 and 12. 
 

 

 
Figure 10. Cumulative RMSE for multivariate models 

 

 

 
Figure 11. Real Bitcoin price with forecasted them form best 

univariate models 

 

 

 
Figure 12. Real Bitcoin price with forecasted them form 

SVM model 

 

 

TABLE 5. P-value of DM test for all univariate models 

 ARIMA Kriging Bayesian SVM ANN 

ARIMA - 0.0283 0.7793 0.0158 0.0137 

Kriging 0.9716 - 0.9881 0.3418 0.1403 

Bayesian 0.2207 0.0119 - 0.0020 0.0064 

SVM 0.9841 0.6582 0.9980 - 0.3195 

ANN 0.9862 0.8597 0.9935 0.6805 - 
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TABLE 6. P-value of DM test for all multivariate models 

 Bayesian RF SVM ANN 

Bayesian - 0.0294 0.998 0.0062 

RF 0.9706 - 1 0.1921 

SVM 0.0020 4e-05 - 8e-05 

ANN 0.9841 0.6582 0.998 - 

 

 

6. CONCLUDING REMARKS 
 

In this paper, the time series forecasting approaches of 

ARIMA as a classical model and five machine learning 

models including Kriging, artificial neural network 

(ANN), Bayesian method, support vector machine 

(SVM) and random forest (RF) are proposed for 

modeling and forecasting of Bitcoin price. The proposed 

models included the univariate and multivariate models 

in which the ARIMA, ANN, Kriging and Bayesian 

models are used as univariate while ANN, SVM, RF, and 

Bayesian models are proposed for multivariate case. 

Then, these models are applied on the Bitcoin price from 

December 18, 2019, to March 1, 2020, where, in addition 

to the Bitcoin price, the maximum, minimum and 

opening price of Bitcoin for the same period is also used 

in the multivariate models. Comparing the performance 

of the proposed models in terms of the RMSE and MAPE 

measurements, it is concluded that ARIMA and Bayesian 

provide better results compared to other univariate 

models since they have smaller RMSE and MAPE values  

compared to other models. However, the SVM 

outperforms all the univariate and multivariate models 

and is selected as the best model where its performance 

measures of RMSE and MAPE are much smaller than the 

values of all other models. 

As a recommendation for future research, one can 

consider the effect of variables other than the ones related 

to the Bitcoin price in the multivariate models for 

possible improvement in the forecasting. Another avenue 

for future research can be designing a way for hyper-

parameter optimization of the investigated models. 
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Persian Abstract 

 چکیده 

یک مسئله جذاب   در نتیجهو  است  به خود جلب کرده  توجه زیادی را  گذاری  که در فضای مالی و سرمایه  هاستئی دارا  ی جدیدی ازدسته پیشرو،    رمزارزکوین به عنوان  بیت

عصبی   ییادگیری ماشین شامل کریگینگ، شبکه  هایدر کنار روش   ARIMAنظیر    بینی کلاسیکهای پیشبرخی از روش  کند. در این مقاله،بینی سری زمانی را ارائه می پیش

ها به صورت تک  در این مقاله، برخی از مدل.  اندبه کار برده شدهکوین  بیت   ارزشبینی  سازی و پیشمصنوعی، روش بیزین، ماشین بردار پشتیبان و جنگل تصادفی جهت مدل

  ارزش های ارائه شده، بر روی  مدلاند.  کوین برازش شدهگیری از بیشترین و کمترین ارزش روز و قیمت بازگشایی بازار بیت متغیره و برخی دیگر به صورت چندمتغیره با بهره

در  میانگین مربعات خطا و میانگین قدرمطلق درصد خطا    یکرد آنها بر اساس معیارهای ریشه اعمال شده و عمل  ۲۰۲۰  مارس   ۱  تا  ۲۰۱۹دسامبر    ۱۸زمانی    یدر بازهکوین  بیت

دهد ، نتایج نشان می میانگین مربعات خطا و میانگین قدرمطلق درصد خطا  یمعیارهای ریشهبرمبنای    .ستا  دیگر مقایسه شدهبا یک  Diebold-Marianoکنار آزمون آماری  

میانگین مربعات خطا و  یریشهو بیزین با در اختیار داشتن مقادیر پایین  ARIMAهای هاست. همچنین، مدلکه ماشین بردار پشتیبان دارای بهترین عملکرد در بین تمامی مدل

 متغیره دارا هستند.های تککرد را در بین مدلمل ، بهترین عمیانگین قدرمطلق درصد خطا
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