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A B S T R A C T  
 

 

Efficient parallelization of genetic algorithms (GAs) on state-of-the-art multi-threading or many-

threading platforms is a challenge due to the difficulty of scheduling hardware resources regarding the 

concurrency of threads. In this paper, for resolving the problem, a novel method is proposed, which 
parallelizes the GA by designing three concurrent kernels, each of which are running some dependent 

effective operators of GA. The proposed method can be straightforwardly adapted to run on many-core 

and multi-core processors by using Compute Unified Device Architecture (CUDA) and Threading 
Building Blocks (TBB) platforms. To efficiently use the valuable resources of such computing cores in 

concurrent execution of the GA, threads that run any of the triple kernels are synchronized by a 

considerably fast switching technique. The offered method was used for parallelizing a GA-based 
solution of Traveling Salesman Problem (TSP) over CUDA and TBB platforms with identical settings. 

The results confirm the superiority of the proposed method to state-of-the-art methods in effective 

parallelization of GAs on Graphics Processing Units (GPUs) as well as on multi-core Central Processing 
Units (CPUs). Also, for GA problems with a modest initial population, though the switching time among 

GPU kernels is negligible, the TBB-based parallel GA exploits the resources more efficiently. 

doi: 10.5829/ije.2020.33.07a.12 
 

 
1. INTRODUCTION1 
 

Meta-heuristic optimization algorithms [1-3] like 

Genetic Algorithms (GAs) have been widely used in 

science and engineering problems [3-5]. GA is 

considered as a class of evolutionary algorithms that are 

used for finding approximate solutions in search [6], 

optimization problems [7, 8], image processing [9], 

optimizing artificial neural networks [10], scheduling 

[11, 12], and rule-based systems [13].  

The main difficulty with using GA is the considerable 

iterations of the genetic algorithm [14].  In such 

cases, increasing the number of generations would raise 

the rate of crossovers and mutations. These, in turn, 

expressively increase the time complexity of the 

organized algorithm. Therefore, many researchers try to 

examine parallelization methods for GA on multi-core 

systems as well as many-core systems [15]. A common 

approach is to migrate the computation of fitness, 
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mutation, crossover, and selection functions to parallel 

machines [16]. An interesting point is the efficiency of 

the deployed parallel kernels in using the computational 

resources of systems for accelerating GA. Although 

different approaches with different complexities have 

been presented for parallel programming on multi-core 

and many-core systems, a few of them have been carried 

out to quantitatively assess and compare the efficiency of 

parallel kernels on multi-core machines with that of 

many-core systems. Also, due to the intricate design of 

parallel kernels, none of them have efficiently utilized the 

computational resources of the parallel systems to 

accelerate GA. 

A pilot study in the domain of efficient parallelization 

of GA is the research of Zhu et al. [17], which combines 

the mechanism of Threading Building Blocks (TBB) and 

Message Passing Interface (MPI) platforms to parallelize 

a GA-based solution of  the Traveling Salesman Problem 

(TSP). Consistent with the results obtained from 
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implementation on different datasets in one hundred 

generations, the achieved acceleration rate on four 

processing cores in 144 and 1889 cities is 2.1 and 2.55, 

respectively.  Studies directed by Fujimoto et al. [18] and 

Chen et al. [19] can be considered as preliminary studies, 

which present two different methods for parallelizing GA 

computations on the Compute Unified Device 

Architecture (CUDA)  platform. None of those studies 

can fully exploit the computational resources of the 

Graphics Processing Units (GPUs). Other studies, like 

[20, 21] and [22-25], have incoherently executed parallel 

kernels for GA-based solutions of TSP on GPUs. 

The most recently conducted study in this trend is the 

study conducted by Saxena et al. [26], which compares 

the efficiency of Open Multi-Processing (OpenMP) and 

CUDA through running parallel GA-based optimization 

kernels on multi-core Central Processing Units (CPUs) 

and GPUs. Unfortunately, this study does not offer a 

typical experimental setting for all parallel kernels. As a 

consequence, their shallow results cannot be used for any 

decision and comparison as to the efficiency of those 

parallelization platforms. 

Our investigation shows that all of the researches in 

the field of GA parallelization have focused on the 

unclear design of parallel algorithms. Also, none of the 

recent studies have inspected the approaches for efficient 

parallelization of GA operators on multi-core platforms 

like TBB and CUDA. The different models of parallel 

processing of the threads and diverse approaches of 

synchronization of threads in different blocks of GPU 

have not been exactly studied in any of them. 

Motivated by the above mentioned problem, this 

paper proposes an efficient method for parallelizing the 

key operators of the genetic algorithm. The proposed 

parallelization method is based on the structure of multi-

core CPUs and many-core GPUs. It shows that by 

concise use of the parallel resources of a multi-core CPU, 

the efficiency of multi-core parallelization can be higher 

than that of a many-core GPU. Also, the presented study 

inspects the effect of different parameters of GA-based 

solutions of TSP on the performance of the parallel kernel 

on both multi-core systems as well as many-core 

systems.  

TSP is an NP-complete problem. The main idea of 

TSP is to find the shortest path among a set of cities, 

provided that each city is visited only once, and the 

source city should be revisited at the end.  

The rest of the paper is structured as follows. Section 

2 reviews the structure of CUDA and TBB platforms. In 

addition, the GA solution of the TSP is described in the 

third section. Then, the offered approach for parallel 

implementation of a GA is discussed. Experiments and 

their corresponding analyses are explored in the 

following section. Section 5 concludes the paper and 

proposes some future directions. 

 

2. BACKGROUND 
 

This section gives a brief overview of the related 

concepts, including the architecture of GPU in the CUDA 

platform and the main ingredients of TBB architecture.  

 
2. 1. CUDA         The graphics processing unit is a tool 

dedicated to display graphic images at workstations, 

game consoles, or personal computers [27, 28]. CUDA 

provides features for developers to use the hardware 

capabilities of Nvidia graphics cards in non-graphical 

programs and speed up the execution speed of complex 

algorithms using GPU capabilities. CUDA supports the 

main factors involved in computing from two different 

points of view: host and device. The host performs the 

main program while the machine aids in processing. A 

typical scenario is that the CPU is considered as the host 

and the GPU is considered as a help to the processor. 

Any program written in CUDA can consist of several 

kernels. Each kernel is implemented by a grid of several 

blocks. Each block is made of several threads. These 

threads are responsible for implementing the program 

[29]. 

 
2. 2. TBB         Intel Threading Building Blocks (Intel® 

TBB) is a common C++ library for writing parallel 

shared-memory programs. Using this library provides 

benefits including synchronized containers, scalable 

memory allocator, work-stealing task scheduler, low-

level synchronization primitives. This library is 

considered as the best tool for task-based parallelism. 

The details of scheduling by this efficient library can be 

found in many resources, such as [30, 31]. 
 

 

3. THE PROPOSED APPROACH  
 

The common method for solving the TSP with a genetic 

algorithm is shown by a flowchart in Figure 1(a). This 

algorithm is used in a lot of applications in different areas 

of science and engineering [32]. 

Population: each chromosome contains a fixed 

number of genes. In this case, each city is represented by 

a gene, and each chromosome is a permutation of cities. 

The fitness function of the initial population: for each 

chromosome, the function produces a non-negative 

integer value, which indicates fitness and individual 

aptitude of each chromosome. In the calculating the 

fitness of each chromosome in TSP, a matrix containing 

the coordinates of cities is used. The distance between 

every pair of cities in a chromosome is computed 

according to the following equation [33]: 

𝑓(𝑥) = (∑ √(𝑥𝑖 − 𝑥𝑖−1)2 + (𝑦𝑖 − 𝑦𝑖−1)2 𝑛
𝑖=2 ) +

√(𝑥1 − 𝑥𝑛)2 + (𝑦1 − 𝑦𝑛)2  
(1) 
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(a) Sequential Genetic Algorithm, (b) Parallel Genetic Algorithm 

Figure 1. Sequential and parallel approaches for Genetic Algorithm 

 

 

In the above equation, 𝑥𝑖 and 𝑦𝑖  denote the coordinate of 

the i-th city of a chromosome.  

Crossover: this operator exchanges the information 

between the paired chromosomes and also controls the 

convergence speed of the genetic algorithm with a 

probability. This probability value 𝑃𝑐 is called the 

crossover rate. For doing a crossover, a parent and a 

random position between the parent's genes are 

considered. Then, all the genes at both sides of the parent 

chromosome with respect to the specified position are 

moved to form a new chromosome. 

Mutation: This operator produces the new 

chromosome by randomly changing one of the genes 

with a low probability. The overall probability of 

mutation on a chromosome is called mutation rate, which 

is denoted by 𝑃𝑚 .   

Calculating the fitness of a generation: the fitness 

function of the population is calculated using crossover 

and mutation operators. 

Selection: there are diverse methods for selecting the 

best chromosome and transferring it to the next 

generation. Commonly, the tournament method is used 

for selection. In this method, two chromosomes are 

randomly selected from the population. Then, a random 

number between zero and one is selected as r. Next, two 

fitted  chromosomes  or  the  ones  which  are  less  

adapted are selected as the parents. These two 

chromosomes are then returned to the initial population 

and again participated in the selection process. Finally, 

the selected chromosomes are recognized as the next 

generation and are sent to the next round of algorithm 

implementation [16]. The statistical analysis of the 

operators of genetic algorithms was thoroughly 

investigated in many research studies, including [34-36]. 

This issue has a substantial effect on designing an 

efficient GA [37]. 

The general assembly of the sequential and parallel 

genetic algorithm is demonstrated in Figure 1(b). In all of 

the offered parallel kernels, the original population is 

identical. The aim of the proposed kernels for parallel GA 

is to assess and compare the efficiency of parallelized 

codes using CUDA and TBB. In the sequential method, 

all the operations of the genetic algorithm are performed 

consecutively. But, in the parallel method, the important 

operations of the GA are executed in parallel, which 

decreases the runtime of the GA. These operators are 

fitness, crossover, mutation, and selection. Figure 1(b) 

demonstrates the flowchart of the proposed method for 

parallelizing GA. Regarding the structure of GPUs, only 

the threads in one CUDA block can be synchronized. The 

synchronization is a crucial mechanism in the genetic 

algorithm, where some operators need to be executed in 

sequence. The most important benefit of our method over 

recent methods like [19] is offering a technique for 

solving the problem of synchronizing threads which can 

synchronize the threads of more than one block. For this 

purpose, we form three different kernels, each of which 

corresponds to a different function of GA. These kernels 

would be duplicated on different CUDA blocks at the 

same time. By switching between kernels, all threads 

coincide. The chief challenge in switching among kernels 

is to minimize the associated cost. Given that objective, 

the result of the calculations of each kernel is stored in 

the global memory of the GPU, and no data would be 

exchanged at each switching step between the host and 

the device. Consequently, the time required for switching 

among kernels is negligible. The process of each kernel 

is described below. 
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In the proposed method, first, the fitness of the 

chromosomes in the initial population is calculated 

concurrently by the first parallel kernel. In this kernel, 

each thread calculates the fitness of a chromosome. Next, 

to produce a new generation, the operators of crossover, 

mutation, and fitness functions are applied concurrently 

by the second kernel. In this kernel, each thread should 

form a new child chromosome using dissimilar operators 

of the GA. The third parallel kernel is responsible for the 

selection operator. This operator selects the finest 

chromosomes of the current generation to be passed to 

the next generation. In this kernel, each selects a 

chromosome. This cycle is repeated, and at the end of 

each cycle, the condition of the termination of the 

generation of the new population is checked. If the 

condition of the termination of rounds is met, this cycle 

stops, and the best answer is returned from the 

populations as a result. Otherwise, the second and third 

kernels that perform the creation of a new generation, as 

well as the selections, will continue running to the end of 

the pre-specified number of iterations. In the next section, 

we inspect the performance of the proposed method on 

TSP. 

 

 

4. IMPLEMENTATION AND PERFORMANCE 
EVALUATION 
 

In this section, first, the hardware characteristics of the 

computer system and the values of the diverse parameters 

of the GA, are described. Then, the performance of the 

proposed kernels is examined based on several metrics. 

 

4. 1. Conditions and Environments of 
Implementation        The experiments were executed 

on an Intel (R) Core i5-7600 3.50GHz computer with 8 

GB of random-access memory that was equipped with an 

NVIDIA GeForce GTX 960 graphics card. This GPU has 

1024 cores, and its base and boost clocks are 1,127MHz, 

and 1,178MHz, respectively. The frameworks used in 

this implementation were created by C++ CUDA 8.0 

(V8.0.61) for many-core GPU and TBB version 2018 for 

multi-core CPU. The number of threads in the CUDA 

platform and multi-core CPUs was set equal to the 

number of chromosomes and the number of cores, 

respectively. Hence, the number of cores in the TBB-

based parallel kernel is remarkable. To investigate this 

effect, we executed the TBB-based parallel kernels on 

dual-core and quad-core CPUs. 

Crossover and mutation probability were set to 0.8 

and 0.02, respectively. The probability of selection 

operator, providing that the operator may select a sample 

with less fitness, is 0.8. Note that the crossover operator 

is a single-parent and single-point one, and the mutation 

operator is of the movement type. 

The standard datasets of PKA379, rbx711, and 

xit1083 from VLSI data were used in implementing the 

TSP. The datasets consisted of 379, 711, and 1083 

geographical regions of cities [38]. TSP was solved with 

1024 to 16384 populations by using 100, 200 to 3000 

rounds of the GA. The number of offsprings produced in 

the crossover was between 10%-50% of the size of the 

preliminary population. In the next section, we analyze 

the results which were acquired from ten times 

repeatition of the experiments.  

 
4. 2. Performance Evaluation        To assess the 

proposed methods and compare their performances, we 

analyze the influence of parameters like population size, 

number of generations, number of crossover-mutation, 

and chromosomes size on the performance of each 

method.  

Evaluation metrics are the running time of the GA in 

the proposed methods and the speedup of the parallel 

versions of the serial method. First, we examine the cost 

of switching between the proposed kernels over the 

CUDA platform in diverse scenarios. Table 1 shows the 

time required for solving TSP with 370 cities using the 

proposed set of tertiary kernels with different sizes of 

population and different numbers of generations. For 

each case, the time required for switching among kernels, 

as well as their execution time, is reported. Table 2 shows 

the switching and execution time of the kernels in 100 

generations, with dissimilar numbers of cities and 

different sizes of the population. In these two tables, the 

ratio of offsprings is 50% of the population. As explained 

in Section 3, since there is no data transmission between 

kernels and generations (from GPU to CPU and vice 

versa), growing the number of generations has not any 

effect on the switching time. But by increasing the 

number of cities and the size of the population, switching 

time rises due to the transfer cost of the preliminary 

population from CPU to GPU. However, the switching 

time is small compared with the kernel execution time. 

The sum of the switching time and the time of kernel 

computations represent the total computation time for a 

parallel kernel in the CUDA platform. 

The plots in Figure 2 demonstrate the effect of 

increasing the size of the initial population and the 

number of generations on the running time of the serial 

method, the parallel method on the CUDA platform, and 

the parallel methods formed by exploiting TBB on dual-

core/quad-core CPUs. In this experiment, the size of the 

new population generated from the crossover operation is 

50 % of the initial population. By growing the number of 

generations, the running time of TSP is grown in all 

methods . 

A notable point in this experiment is the effect of the 

size of the population on the execution time of the 

CUDA-based  parallel  code  as  compared  to  the  TBB- 
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TABLE 1. Switching and kernel computation time (ms) in CUDA- 379 cities (pka379) 

Generation 

Population 

1024 5120 10240 16384 

Switch Kernel Switch Kernel Switch Kernel Switch Kernel 

100 0.195128 548.545 0.78577 600.4875 1.50617 573.9525 2.3287 672.3125 

400 0.18966 2181.9425 0.79366 2388.99 1.52645 2261.02 2.37945 2655 

1000 0.196124 5450.35 0.78552 5960.375 1.45712 5638.075 2.29706 6624.425 

3000 0.194644 16340.6 0.78178 17871.925 1.48930 16972.8 2.32974 19876.325 

 

 

TABLE 2. Switching and kernel computation time (ms) in CUDA- 100 generations 

Cities 

Population 

2048 9216 32768 131072 

Switch Kernel Switch Kernel Switch Kernel Switch Kernel 

379 (pka379) 0.341525 588.4825 1.3636 567.645 5.520225 1756.985 19.6385 6283.225 

711 (rbx711) 0.586467 1089.205 2.5615 1164.0825 8.821775 3291.925 34.5882 11756.775 

1083(xit1083) 0.866655 1677.325 3.8843 1787.5275 12.68052 5065.65 52.2602 18439.525 

 

 

   

a. 1024 Population b. 2048 Population c. 3072 Population 

   

d. 4096 Population e. 8192 Population f. 16384 Population 

Figure 2. The running time of the algorithm over different numbers of generations and different sizes of population 

 

 

based parallel codes running on dual-core and quad-core 

machines. As shown in Figure 2(a), the running time of 

CUDA-based kernel is worse than TBB-based kernel on 

dual-core and quad-core CPUs. In this experiment, all 

resources of CPUs have been completely exploited while 

in the GPU, only up to 1024 threads have been used. 
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Growing the size of populations increases the 

concurrency, and improves the performance of CUDA 

kernels. For example, in the case of having a population 

with the size of 4096, the CUDA-based parallel TSP code 

has been better than TBB-based TSP. The degree of this 

dominance reaches a maximum when the size of the 

population hits 16384. In this state, the maximum number 

of GPU resources, or equivalently the maximum number 

of threads, have been used synchronously.  

Figure 3 demonstrates the plots of speedup of three 

parallelization methods, namely TBB-based TSP kernel 

on dual-core and Quad-core CPUs and CUDA-based 

GPU kernel concerning the sequential code in different 

sizes of population and offsprings created by crossover. 

As a common setting in this experiment, the upper bound 

of the number of generations of the GA is set to 100. In 

all cases, the speedup of TBB on four cores is more than 

the speedup of TBB on two cores. In addition, the overall 

rate of the speedup has not been changed with the size of 

the population and the number of offsprings. This is 

while in the CUDA-based TSP kernel, the speedup has 

changed with both of these parameters. The reason is that 

both parameters affect the utilization of the resources of 

GPU. The maximum speedup values obtained in the 

execution of TBB-based TSP on dual-core and quad-core 

CPUs are 1.98 and 3.92, respectively, while the 

maximum speedup of CUDA-based TSP on 1024 cores 

is 58.35.  

The effect of changing the number of chromosomes 

on the execution time of the parallel TSP codes is 

illustrated in Figure 4. In the corresponding 

experimentation, the number of generations and the 

number of offsprings resulting from each crossover 

process is a constant value while the size of the 

population is variable. In this experiment, three different 

datasets with 379, 711, and 1083 cities have been used. 

The size of offsprings is set to be 50% of the primary 

population for 100 generations.  

As shown in Figure 4, in all cases, the CUDA-based 

parallel code is the fastest as compared to the other 

methods. This state hits when CUDA computes the GA 

solution of TSP with 16,384 population; in this case, each 

thread computes a chromosome. As the population 

grows, each thread should compute more than one 

chromosome, which increases the running time. This is 

shown in the speedup plots of Figure 4. Another notable 

point in this experiment is the impotence of changes in 

the number of genes on a chromosome (number of cities) 

in the overall execution time of the three parallel kernels 

of the GA. 

Regarding the ability of CUDA to associate the 

maximum number of threads for computations of a 

kernel, the use of CUDA seems to produce higher 

performance; but, in the following, the results of our 

experiments show that the TBB-based implementation 

exploits the computational resources of the system more 

efficiently.  

 

   
(a) 1024 Population (b) 2048 Population © 3072 Population 

   
(d) 4096 Population (e) 8192 Population (f) 16384 Population 

Figure 3. The speedup of the parallel methods for different ratios of offsprings on diverse populations in a TSP with 379 cities 
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(a) Time, 379 cities (pka379)  (b) Time, 711 cities (rbx711) (c) Time, 1083 cities (xit1083) 

   
(d) Speedup, 379 cities (pka379) (e) Speedup, 711 cities (rbx711) (f) Speedup, 1083 cities (xit1083) 

Figure 4. The impact of population size on the speedup of parallel methods 

 

 

4. 3. Efficiency Evaluation and Comparison           To 

intuitively show the effectiveness of the proposed 

parallelization method, the efficiency of the proposed 

kernels is computed and compared in Table 3 with the 

recent advanced methods. As shown in Table 3, the 

efficiency of the proposed parallel GA on a GPU with 

1024 cores is 0.057, which is higher than all opponents. 

Also, the efficiency of the proposed parallel GA code on 

a quad-core CPU  using the TBB  platform is the highest 

 
 

TABLE 3. Comparing the efficiency of state-of-art 

parallelizations of GA solution of TSP 

Method Year Reference 
# of 

Cores 

Speed 

up 
Efficiency 

Multi-

core 

2013 Zhu [17] 4 2.55 0.6375 

2019 Saxena [26] 4 2 0.5 

2020 
Proposed 

Method 
4 3.99 0.9975 

Many-

core 

2011 Fujimoto [18] 240 13.3 0.055 

2011 Chen [19] 448 1.44 0.003 

2016 Kang [21] 2048 6.014 0.003 

2017 Moumen [22] 1280 25.07 0.019 

2019 Saxena [26] 128 5.66 0.044 

2020 
Proposed 

Method 
1024 58.35 0.057 

as compared to the other parallel GA solutions of TSP on 

multi-core CPUs. Also, the efficiency of multi-core 

parallelization of the GA solution of TSP, using the TBB 

platform is 0.9975, which is significantly more than that 

of the CUDA-based parallelization. This result shows 

that the proposed parallelization method not only 

outstands any present many-core parallelization of GA 

solution of TSP, but also confirms that the proposed 

method could more effectively use the computational 

resources of the multi-core CPUs and consequently reach 

higher efficiency. 
 

 
5. CONCLUSION 
 

In this paper, a novel method for efficient parallelization 

of genetic algorithms on multi-core and many-core 

systems was presented. The proposed method efficiently 

executes parallel kernels on the multi-core and many-

core systems, each corresponding to a different operator 

of GA, by using TBB and CUDA platforms, respectively. 

The proposed method was tested for parallelizing a GA-

based solution of the TSP on CUDA and TBB platforms 

with the same settings, including the same number of 

primary population and generations as well as the same 

ratio of population created by crossover and mutation 

operators on the same data set. The performance of these 

two platforms was assessed based on different metrics 
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including the running time and speedup of the parallel 

GA over each of them.  

From the results, we have drawn the following 

conclusions that crucially represent the real and novel 

contribution of our work. First, the highest speedup of the 

parallel algorithm on the GPU, the quad-core, and the 

dual-core processor are 58.35, 3.99, and 1.99, 

respectively. Second, the performance of a parallel GA 

on a GPU-like many-core processor is much higher than 

that of a multi-core processor, but in a low initial 

population, parallelization resources in multi-core 

processors are more efficiently utilized than in the GPU-

like many-core systems. Third, the efficiency of the 

proposed parallelization of the GA solution of TSP on a 

CUDA-based many-core platform is the highest as 

compared to state-of-art parallel solutions. Fourth and the 

most important finding is that the proposed TBB-based 

parallelization of the GA solution of TSP achieves the 

highest level of efficiency in exploiting the 

computational resources of the system for parallel 

execution of GA.  

The CPU/GPU clusters have recently been 

considered as high-performance accelerators for 

computation-intensive programs. Therefore, future 

studies would study how to adapt the proposed 

parallelization method of GA to best use the resources of 

the GPU cluster computations. 
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Persian Abstract 

 چکیده 
افزاری با توجه به همزمانی  موجود به دلیل دشواری زمانبندی منابع سخت  many-threadingیا    multi-threadingهای ژنتیک روی بسترهای  الگوریتمسازی کارآمد  موازی

کرنل همزمان که هرکدام تعدادی  ژنتیک را با طراحی سه    ها، موضوعی چالش برانگیز است. در این مقاله، برای حل این مشکل یک روش جدید ارائه شده است که الگوریتمنخ

 Compute Unifiedتوان به راحتی با استفاده از بسترهای سازد. روش پیشنهادی را می می کنند موازیبه یکدیگر از الگوریتم ژنتیک را اجرا می از عملگرهای موثر وابسته

Device Architecture (CUDA)     وThreading Building Blocks (TBB)   پردازندهبرای اجر تطبیق داد. برای   multi-coreو    many-coreهای  ا روی 

کنند، توسط مکانیسم جابجایی  گانه را اجرا میهای سههای نخی که یکی از کرنلالگوریتم ژنتیک، پردازش  ها در اجرای موازیاستفاده بهینه از منابع ارزشمند این نوع پردازنده

با تنظیمات   TBBو    CUDAهای  گرد مبتنی بر الگوریتم ژنتیک با استفاده از پلتفرمسازی مسئله فروشنده دورهی، برای موازیشوند. روش پیشنهادگ میپرسرعتی هماهن

کنند. یسازی الگوریتم ژنتیک را روی واحد پردازش گرافیکی و همچنین روی واحد پردازش مرکزی تایید میکسان آزمایش شده است. نتایج، کارایی روش پیشنهادی در موازی

های واحد پردازش گرافیکی بسیار ناچیز است اما، الگوریتم ژنتیک موازی مبتنی  های ژنتیک با جمعیت اولیه متوسط، با اینکه زمان جابجایی بین کرنلعلاوه بر این، در مسئله

 کند.از منابع بطور موثرتری استفاده می TBBبر 
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