
IJE TRANSACTIONS A: Basics Vol. 33, No. 7, (July 2020) 1257-1265

Please cite this article as: M. Abbasi, M. Rafiee, Efficient Parallelization of a Genetic Algorithm Solution on the Traveling Salesman Problem with
Multi-core and Many-core Systems, International Journal of Engineering (IJE), IJE TRANSACTIONS A: Basics Vol. 33, No. 7, (July 2020) 1257-
1265

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

Efficient Parallelization of a Genetic Algorithm Solution on the Traveling Salesman

Problem with Multi-core and Many-core Systems

M. Abbasi*, M. Rafiee

Department of Computer Engineering, Engineering Faculty, Bu-Ali Sina University, Hamedan, Iran

P A P E R I N F O

Paper history:
Received 10 November 2019
Received in revised form 23 December 2019
Accepted 04 January 2020

Keywords:
Genetic Algorithm
Parallel
Multi-core
Many-core
Traveling Salesman Problem

A B S T R A C T

Efficient parallelization of genetic algorithms (GAs) on state-of-the-art multi-threading or many-

threading platforms is a challenge due to the difficulty of scheduling hardware resources regarding the

concurrency of threads. In this paper, for resolving the problem, a novel method is proposed, which
parallelizes the GA by designing three concurrent kernels, each of which are running some dependent

effective operators of GA. The proposed method can be straightforwardly adapted to run on many-core

and multi-core processors by using Compute Unified Device Architecture (CUDA) and Threading
Building Blocks (TBB) platforms. To efficiently use the valuable resources of such computing cores in

concurrent execution of the GA, threads that run any of the triple kernels are synchronized by a

considerably fast switching technique. The offered method was used for parallelizing a GA-based
solution of Traveling Salesman Problem (TSP) over CUDA and TBB platforms with identical settings.

The results confirm the superiority of the proposed method to state-of-the-art methods in effective

parallelization of GAs on Graphics Processing Units (GPUs) as well as on multi-core Central Processing
Units (CPUs). Also, for GA problems with a modest initial population, though the switching time among

GPU kernels is negligible, the TBB-based parallel GA exploits the resources more efficiently.

doi: 10.5829/ije.2020.33.07a.12

1. INTRODUCTION1

Meta-heuristic optimization algorithms [1-3] like

Genetic Algorithms (GAs) have been widely used in

science and engineering problems [3-5]. GA is

considered as a class of evolutionary algorithms that are

used for finding approximate solutions in search [6],

optimization problems [7, 8], image processing [9],

optimizing artificial neural networks [10], scheduling

[11, 12], and rule-based systems [13].

The main difficulty with using GA is the considerable

iterations of the genetic algorithm [14]. In such

cases, increasing the number of generations would raise

the rate of crossovers and mutations. These, in turn,

expressively increase the time complexity of the

organized algorithm. Therefore, many researchers try to

examine parallelization methods for GA on multi-core

systems as well as many-core systems [15]. A common

approach is to migrate the computation of fitness,

*Corresponding Author Institutional Email: abbasi@basu.ac.ir (M.
Abbasi)

mutation, crossover, and selection functions to parallel

machines [16]. An interesting point is the efficiency of

the deployed parallel kernels in using the computational

resources of systems for accelerating GA. Although

different approaches with different complexities have

been presented for parallel programming on multi-core

and many-core systems, a few of them have been carried

out to quantitatively assess and compare the efficiency of

parallel kernels on multi-core machines with that of

many-core systems. Also, due to the intricate design of

parallel kernels, none of them have efficiently utilized the

computational resources of the parallel systems to

accelerate GA.

A pilot study in the domain of efficient parallelization

of GA is the research of Zhu et al. [17], which combines

the mechanism of Threading Building Blocks (TBB) and

Message Passing Interface (MPI) platforms to parallelize

a GA-based solution of the Traveling Salesman Problem

(TSP). Consistent with the results obtained from

mailto:abbasi@basu.ac.ir

1258 M. Abbasi and M. Rafiee / IJE TRANSACTIONS A: Basics Vol. 31, No. 7, (July 2020) 1257-1265

implementation on different datasets in one hundred

generations, the achieved acceleration rate on four

processing cores in 144 and 1889 cities is 2.1 and 2.55,

respectively. Studies directed by Fujimoto et al. [18] and

Chen et al. [19] can be considered as preliminary studies,

which present two different methods for parallelizing GA

computations on the Compute Unified Device

Architecture (CUDA) platform. None of those studies

can fully exploit the computational resources of the

Graphics Processing Units (GPUs). Other studies, like

[20, 21] and [22-25], have incoherently executed parallel

kernels for GA-based solutions of TSP on GPUs.

The most recently conducted study in this trend is the

study conducted by Saxena et al. [26], which compares

the efficiency of Open Multi-Processing (OpenMP) and

CUDA through running parallel GA-based optimization

kernels on multi-core Central Processing Units (CPUs)

and GPUs. Unfortunately, this study does not offer a

typical experimental setting for all parallel kernels. As a

consequence, their shallow results cannot be used for any

decision and comparison as to the efficiency of those

parallelization platforms.

Our investigation shows that all of the researches in

the field of GA parallelization have focused on the

unclear design of parallel algorithms. Also, none of the

recent studies have inspected the approaches for efficient

parallelization of GA operators on multi-core platforms

like TBB and CUDA. The different models of parallel

processing of the threads and diverse approaches of

synchronization of threads in different blocks of GPU

have not been exactly studied in any of them.

Motivated by the above mentioned problem, this

paper proposes an efficient method for parallelizing the

key operators of the genetic algorithm. The proposed

parallelization method is based on the structure of multi-

core CPUs and many-core GPUs. It shows that by

concise use of the parallel resources of a multi-core CPU,

the efficiency of multi-core parallelization can be higher

than that of a many-core GPU. Also, the presented study

inspects the effect of different parameters of GA-based

solutions of TSP on the performance of the parallel kernel

on both multi-core systems as well as many-core

systems.

TSP is an NP-complete problem. The main idea of

TSP is to find the shortest path among a set of cities,

provided that each city is visited only once, and the

source city should be revisited at the end.

The rest of the paper is structured as follows. Section

2 reviews the structure of CUDA and TBB platforms. In

addition, the GA solution of the TSP is described in the

third section. Then, the offered approach for parallel

implementation of a GA is discussed. Experiments and

their corresponding analyses are explored in the

following section. Section 5 concludes the paper and

proposes some future directions.

2. BACKGROUND

This section gives a brief overview of the related

concepts, including the architecture of GPU in the CUDA

platform and the main ingredients of TBB architecture.

2. 1. CUDA The graphics processing unit is a tool

dedicated to display graphic images at workstations,

game consoles, or personal computers [27, 28]. CUDA

provides features for developers to use the hardware

capabilities of Nvidia graphics cards in non-graphical

programs and speed up the execution speed of complex

algorithms using GPU capabilities. CUDA supports the

main factors involved in computing from two different

points of view: host and device. The host performs the

main program while the machine aids in processing. A

typical scenario is that the CPU is considered as the host

and the GPU is considered as a help to the processor.

Any program written in CUDA can consist of several

kernels. Each kernel is implemented by a grid of several

blocks. Each block is made of several threads. These

threads are responsible for implementing the program

[29].

2. 2. TBB Intel Threading Building Blocks (Intel®

TBB) is a common C++ library for writing parallel

shared-memory programs. Using this library provides

benefits including synchronized containers, scalable

memory allocator, work-stealing task scheduler, low-

level synchronization primitives. This library is

considered as the best tool for task-based parallelism.

The details of scheduling by this efficient library can be

found in many resources, such as [30, 31].

3. THE PROPOSED APPROACH

The common method for solving the TSP with a genetic

algorithm is shown by a flowchart in Figure 1(a). This

algorithm is used in a lot of applications in different areas

of science and engineering [32].

Population: each chromosome contains a fixed

number of genes. In this case, each city is represented by

a gene, and each chromosome is a permutation of cities.

The fitness function of the initial population: for each

chromosome, the function produces a non-negative

integer value, which indicates fitness and individual

aptitude of each chromosome. In the calculating the

fitness of each chromosome in TSP, a matrix containing

the coordinates of cities is used. The distance between

every pair of cities in a chromosome is computed

according to the following equation [33]:

𝑓(𝑥) = (∑ √(𝑥𝑖 − 𝑥𝑖−1)2 + (𝑦𝑖 − 𝑦𝑖−1)2 𝑛
𝑖=2) +

√(𝑥1 − 𝑥𝑛)2 + (𝑦1 − 𝑦𝑛)2
(1)

M. Abbasi and M. Rafiee / IJE TRANSACTIONS A: Basics Vol. 31, No. 7, (July 2020) 1257-1265 1259

(a) Sequential Genetic Algorithm, (b) Parallel Genetic Algorithm

Figure 1. Sequential and parallel approaches for Genetic Algorithm

In the above equation, 𝑥𝑖 and 𝑦𝑖 denote the coordinate of

the i-th city of a chromosome.

Crossover: this operator exchanges the information

between the paired chromosomes and also controls the

convergence speed of the genetic algorithm with a

probability. This probability value 𝑃𝑐 is called the

crossover rate. For doing a crossover, a parent and a

random position between the parent's genes are

considered. Then, all the genes at both sides of the parent

chromosome with respect to the specified position are

moved to form a new chromosome.

Mutation: This operator produces the new

chromosome by randomly changing one of the genes

with a low probability. The overall probability of

mutation on a chromosome is called mutation rate, which

is denoted by 𝑃𝑚 .

Calculating the fitness of a generation: the fitness

function of the population is calculated using crossover

and mutation operators.

Selection: there are diverse methods for selecting the

best chromosome and transferring it to the next

generation. Commonly, the tournament method is used

for selection. In this method, two chromosomes are

randomly selected from the population. Then, a random

number between zero and one is selected as r. Next, two

fitted chromosomes or the ones which are less

adapted are selected as the parents. These two

chromosomes are then returned to the initial population

and again participated in the selection process. Finally,

the selected chromosomes are recognized as the next

generation and are sent to the next round of algorithm

implementation [16]. The statistical analysis of the

operators of genetic algorithms was thoroughly

investigated in many research studies, including [34-36].

This issue has a substantial effect on designing an

efficient GA [37].

The general assembly of the sequential and parallel

genetic algorithm is demonstrated in Figure 1(b). In all of

the offered parallel kernels, the original population is

identical. The aim of the proposed kernels for parallel GA

is to assess and compare the efficiency of parallelized

codes using CUDA and TBB. In the sequential method,

all the operations of the genetic algorithm are performed

consecutively. But, in the parallel method, the important

operations of the GA are executed in parallel, which

decreases the runtime of the GA. These operators are

fitness, crossover, mutation, and selection. Figure 1(b)

demonstrates the flowchart of the proposed method for

parallelizing GA. Regarding the structure of GPUs, only

the threads in one CUDA block can be synchronized. The

synchronization is a crucial mechanism in the genetic

algorithm, where some operators need to be executed in

sequence. The most important benefit of our method over

recent methods like [19] is offering a technique for

solving the problem of synchronizing threads which can

synchronize the threads of more than one block. For this

purpose, we form three different kernels, each of which

corresponds to a different function of GA. These kernels

would be duplicated on different CUDA blocks at the

same time. By switching between kernels, all threads

coincide. The chief challenge in switching among kernels

is to minimize the associated cost. Given that objective,

the result of the calculations of each kernel is stored in

the global memory of the GPU, and no data would be

exchanged at each switching step between the host and

the device. Consequently, the time required for switching

among kernels is negligible. The process of each kernel

is described below.

1260 M. Abbasi and M. Rafiee / IJE TRANSACTIONS A: Basics Vol. 31, No. 7, (July 2020) 1257-1265

In the proposed method, first, the fitness of the

chromosomes in the initial population is calculated

concurrently by the first parallel kernel. In this kernel,

each thread calculates the fitness of a chromosome. Next,

to produce a new generation, the operators of crossover,

mutation, and fitness functions are applied concurrently

by the second kernel. In this kernel, each thread should

form a new child chromosome using dissimilar operators

of the GA. The third parallel kernel is responsible for the

selection operator. This operator selects the finest

chromosomes of the current generation to be passed to

the next generation. In this kernel, each selects a

chromosome. This cycle is repeated, and at the end of

each cycle, the condition of the termination of the

generation of the new population is checked. If the

condition of the termination of rounds is met, this cycle

stops, and the best answer is returned from the

populations as a result. Otherwise, the second and third

kernels that perform the creation of a new generation, as

well as the selections, will continue running to the end of

the pre-specified number of iterations. In the next section,

we inspect the performance of the proposed method on

TSP.

4. IMPLEMENTATION AND PERFORMANCE
EVALUATION

In this section, first, the hardware characteristics of the

computer system and the values of the diverse parameters

of the GA, are described. Then, the performance of the

proposed kernels is examined based on several metrics.

4. 1. Conditions and Environments of
Implementation The experiments were executed

on an Intel (R) Core i5-7600 3.50GHz computer with 8

GB of random-access memory that was equipped with an

NVIDIA GeForce GTX 960 graphics card. This GPU has

1024 cores, and its base and boost clocks are 1,127MHz,

and 1,178MHz, respectively. The frameworks used in

this implementation were created by C++ CUDA 8.0

(V8.0.61) for many-core GPU and TBB version 2018 for

multi-core CPU. The number of threads in the CUDA

platform and multi-core CPUs was set equal to the

number of chromosomes and the number of cores,

respectively. Hence, the number of cores in the TBB-

based parallel kernel is remarkable. To investigate this

effect, we executed the TBB-based parallel kernels on

dual-core and quad-core CPUs.

Crossover and mutation probability were set to 0.8

and 0.02, respectively. The probability of selection

operator, providing that the operator may select a sample

with less fitness, is 0.8. Note that the crossover operator

is a single-parent and single-point one, and the mutation

operator is of the movement type.

The standard datasets of PKA379, rbx711, and

xit1083 from VLSI data were used in implementing the

TSP. The datasets consisted of 379, 711, and 1083

geographical regions of cities [38]. TSP was solved with

1024 to 16384 populations by using 100, 200 to 3000

rounds of the GA. The number of offsprings produced in

the crossover was between 10%-50% of the size of the

preliminary population. In the next section, we analyze

the results which were acquired from ten times

repeatition of the experiments.

4. 2. Performance Evaluation To assess the

proposed methods and compare their performances, we

analyze the influence of parameters like population size,

number of generations, number of crossover-mutation,

and chromosomes size on the performance of each

method.

Evaluation metrics are the running time of the GA in

the proposed methods and the speedup of the parallel

versions of the serial method. First, we examine the cost

of switching between the proposed kernels over the

CUDA platform in diverse scenarios. Table 1 shows the

time required for solving TSP with 370 cities using the

proposed set of tertiary kernels with different sizes of

population and different numbers of generations. For

each case, the time required for switching among kernels,

as well as their execution time, is reported. Table 2 shows

the switching and execution time of the kernels in 100

generations, with dissimilar numbers of cities and

different sizes of the population. In these two tables, the

ratio of offsprings is 50% of the population. As explained

in Section 3, since there is no data transmission between

kernels and generations (from GPU to CPU and vice

versa), growing the number of generations has not any

effect on the switching time. But by increasing the

number of cities and the size of the population, switching

time rises due to the transfer cost of the preliminary

population from CPU to GPU. However, the switching

time is small compared with the kernel execution time.

The sum of the switching time and the time of kernel

computations represent the total computation time for a

parallel kernel in the CUDA platform.

The plots in Figure 2 demonstrate the effect of

increasing the size of the initial population and the

number of generations on the running time of the serial

method, the parallel method on the CUDA platform, and

the parallel methods formed by exploiting TBB on dual-

core/quad-core CPUs. In this experiment, the size of the

new population generated from the crossover operation is

50 % of the initial population. By growing the number of

generations, the running time of TSP is grown in all

methods .

A notable point in this experiment is the effect of the

size of the population on the execution time of the

CUDA-based parallel code as compared to the TBB-

M. Abbasi and M. Rafiee / IJE TRANSACTIONS A: Basics Vol. 31, No. 7, (July 2020) 1257-1265 1261

TABLE 1. Switching and kernel computation time (ms) in CUDA- 379 cities (pka379)

Generation

Population

1024 5120 10240 16384

Switch Kernel Switch Kernel Switch Kernel Switch Kernel

100 0.195128 548.545 0.78577 600.4875 1.50617 573.9525 2.3287 672.3125

400 0.18966 2181.9425 0.79366 2388.99 1.52645 2261.02 2.37945 2655

1000 0.196124 5450.35 0.78552 5960.375 1.45712 5638.075 2.29706 6624.425

3000 0.194644 16340.6 0.78178 17871.925 1.48930 16972.8 2.32974 19876.325

TABLE 2. Switching and kernel computation time (ms) in CUDA- 100 generations

Cities

Population

2048 9216 32768 131072

Switch Kernel Switch Kernel Switch Kernel Switch Kernel

379 (pka379) 0.341525 588.4825 1.3636 567.645 5.520225 1756.985 19.6385 6283.225

711 (rbx711) 0.586467 1089.205 2.5615 1164.0825 8.821775 3291.925 34.5882 11756.775

1083(xit1083) 0.866655 1677.325 3.8843 1787.5275 12.68052 5065.65 52.2602 18439.525

a. 1024 Population b. 2048 Population c. 3072 Population

d. 4096 Population e. 8192 Population f. 16384 Population

Figure 2. The running time of the algorithm over different numbers of generations and different sizes of population

based parallel codes running on dual-core and quad-core

machines. As shown in Figure 2(a), the running time of

CUDA-based kernel is worse than TBB-based kernel on

dual-core and quad-core CPUs. In this experiment, all

resources of CPUs have been completely exploited while

in the GPU, only up to 1024 threads have been used.

0

10

20

30

40

50

60

70

80

Ti
m

e
(s

)

Generation

CPU
TBB-2 cores
TBB-4 cores
CUDA

0

20

40

60

80

100

120

140

160

Ti
m

e
(s

)

Generation

CPU
TBB-2 cores
TBB-4 cores
CUDA

0

50

100

150

200

250
Ti

m
e

(s
)

Generation

CPU
TBB-2 cores
TBB-4 cores
CUDA

0

50

100

150

200

250

300

350

Ti
m

e
(s

)

Generation

CPU
TBB-2 cores
TBB-4 cores
CUDA

0

100

200

300

400

500

600

700

Ti
m

e
(s

)

Generation

CPU
TBB-2 cores
TBB-4 cores
CUDA

0

200

400

600

800

1000

1200

1400

Ti
m

e
(s

)

Generation

CPU
TBB-2 cores
TBB-4 cores
CUDA

1262 M. Abbasi and M. Rafiee / IJE TRANSACTIONS A: Basics Vol. 31, No. 7, (July 2020) 1257-1265

Growing the size of populations increases the

concurrency, and improves the performance of CUDA

kernels. For example, in the case of having a population

with the size of 4096, the CUDA-based parallel TSP code

has been better than TBB-based TSP. The degree of this

dominance reaches a maximum when the size of the

population hits 16384. In this state, the maximum number

of GPU resources, or equivalently the maximum number

of threads, have been used synchronously.

Figure 3 demonstrates the plots of speedup of three

parallelization methods, namely TBB-based TSP kernel

on dual-core and Quad-core CPUs and CUDA-based

GPU kernel concerning the sequential code in different

sizes of population and offsprings created by crossover.

As a common setting in this experiment, the upper bound

of the number of generations of the GA is set to 100. In

all cases, the speedup of TBB on four cores is more than

the speedup of TBB on two cores. In addition, the overall

rate of the speedup has not been changed with the size of

the population and the number of offsprings. This is

while in the CUDA-based TSP kernel, the speedup has

changed with both of these parameters. The reason is that

both parameters affect the utilization of the resources of

GPU. The maximum speedup values obtained in the

execution of TBB-based TSP on dual-core and quad-core

CPUs are 1.98 and 3.92, respectively, while the

maximum speedup of CUDA-based TSP on 1024 cores

is 58.35.

The effect of changing the number of chromosomes

on the execution time of the parallel TSP codes is

illustrated in Figure 4. In the corresponding

experimentation, the number of generations and the

number of offsprings resulting from each crossover

process is a constant value while the size of the

population is variable. In this experiment, three different

datasets with 379, 711, and 1083 cities have been used.

The size of offsprings is set to be 50% of the primary

population for 100 generations.

As shown in Figure 4, in all cases, the CUDA-based

parallel code is the fastest as compared to the other

methods. This state hits when CUDA computes the GA

solution of TSP with 16,384 population; in this case, each

thread computes a chromosome. As the population

grows, each thread should compute more than one

chromosome, which increases the running time. This is

shown in the speedup plots of Figure 4. Another notable

point in this experiment is the impotence of changes in

the number of genes on a chromosome (number of cities)

in the overall execution time of the three parallel kernels

of the GA.

Regarding the ability of CUDA to associate the

maximum number of threads for computations of a

kernel, the use of CUDA seems to produce higher

performance; but, in the following, the results of our

experiments show that the TBB-based implementation

exploits the computational resources of the system more

efficiently.

(a) 1024 Population (b) 2048 Population © 3072 Population

(d) 4096 Population (e) 8192 Population (f) 16384 Population

Figure 3. The speedup of the parallel methods for different ratios of offsprings on diverse populations in a TSP with 379 cities

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

10% 20% 30% 40% 50%

Sp
ee

d
u

p

Crossover-Mutation % of Population

TBB-2 cores
TBB-4 cores
CUDA

0

1

2

3

4

5

6

7

8

9

10% 20% 30% 40% 50%

Sp
ee

d
u

p

Crossover-Mutation % of Population

TBB-2 cores

TBB-4 cores

CUDA

0

2

4

6

8

10

12

14

10% 20% 30% 40% 50%

Sp
ee

d
u

p

Crossover-Mutation % of Population

TBB-2 cores

TBB-4 cores

CUDA

0

2

4

6

8

10

12

14

16

18

10% 20% 30% 40% 50%

Sp
ee

d
u

p

Crossover-Mutation % of Population

TBB-2 cores
TBB-4 cores
CUDA

0

5

10

15

20

25

30

35

40

10% 20% 30% 40% 50%

Sp
ee

d
u

p

Crossover-Mutation % of Population

TBB-2 cores
TBB-4 cores
CUDA

0

10

20

30

40

50

60

70

10% 20% 30% 40% 50%

Sp
ee

d
u

p

Crossover-Mutation % of Population

TBB-2 cores
TBB-4 cores
CUDA

M. Abbasi and M. Rafiee / IJE TRANSACTIONS A: Basics Vol. 31, No. 7, (July 2020) 1257-1265 1263

(a) Time, 379 cities (pka379) (b) Time, 711 cities (rbx711) (c) Time, 1083 cities (xit1083)

(d) Speedup, 379 cities (pka379) (e) Speedup, 711 cities (rbx711) (f) Speedup, 1083 cities (xit1083)

Figure 4. The impact of population size on the speedup of parallel methods

4. 3. Efficiency Evaluation and Comparison To

intuitively show the effectiveness of the proposed

parallelization method, the efficiency of the proposed

kernels is computed and compared in Table 3 with the

recent advanced methods. As shown in Table 3, the

efficiency of the proposed parallel GA on a GPU with

1024 cores is 0.057, which is higher than all opponents.

Also, the efficiency of the proposed parallel GA code on

a quad-core CPU using the TBB platform is the highest

TABLE 3. Comparing the efficiency of state-of-art

parallelizations of GA solution of TSP

Method Year Reference
of

Cores

Speed

up
Efficiency

Multi-

core

2013 Zhu [17] 4 2.55 0.6375

2019 Saxena [26] 4 2 0.5

2020
Proposed

Method
4 3.99 0.9975

Many-

core

2011 Fujimoto [18] 240 13.3 0.055

2011 Chen [19] 448 1.44 0.003

2016 Kang [21] 2048 6.014 0.003

2017 Moumen [22] 1280 25.07 0.019

2019 Saxena [26] 128 5.66 0.044

2020
Proposed

Method
1024 58.35 0.057

as compared to the other parallel GA solutions of TSP on

multi-core CPUs. Also, the efficiency of multi-core

parallelization of the GA solution of TSP, using the TBB

platform is 0.9975, which is significantly more than that

of the CUDA-based parallelization. This result shows

that the proposed parallelization method not only

outstands any present many-core parallelization of GA

solution of TSP, but also confirms that the proposed

method could more effectively use the computational

resources of the multi-core CPUs and consequently reach

higher efficiency.

5. CONCLUSION

In this paper, a novel method for efficient parallelization

of genetic algorithms on multi-core and many-core

systems was presented. The proposed method efficiently

executes parallel kernels on the multi-core and many-

core systems, each corresponding to a different operator

of GA, by using TBB and CUDA platforms, respectively.

The proposed method was tested for parallelizing a GA-

based solution of the TSP on CUDA and TBB platforms

with the same settings, including the same number of

primary population and generations as well as the same

ratio of population created by crossover and mutation

operators on the same data set. The performance of these

two platforms was assessed based on different metrics

0

50

100

150

200

250

300

350

1
0

2
4

2
0

4
8

3
0

7
2

4
0

9
6

5
1

2
0

6
1

4
4

71
68

8
1

9
2

9
2

1
6

1
0

2
4

0

1
6

3
8

4

2
0

4
8

0

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

Ti
m

e
(s

)

Population

CPU
TBB-2 cores
TBB-4 cores
CUDA

0

100

200

300

400

500

600

700

1
0

2
4

2
0

4
8

3
0

7
2

4
0

9
6

5
1

2
0

6
1

4
4

7
1

6
8

81
92

9
2

1
6

1
0

2
4

0

1
6

3
8

4

2
0

4
8

0

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

Ti
m

e
(s

)
Population

CPU
TBB-2 cores
TBB-4 cores
CUDA

0

100

200

300

400

500

600

700

800

900

1000

1
0

2
4

2
0

4
8

30
72

4
0

9
6

5
1

2
0

6
1

4
4

7
1

6
8

8
1

9
2

9
2

1
6

1
0

2
4

0

1
6

3
8

4

2
0

4
8

0

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

Ti
m

e
(s

)

Population

CPU
TBB-2 cores
TBB-4 cores
CUDA

0

10

20

30

40

50

60

70

10
24

20
48

30
72

40
96

51
20

61
44

71
68

81
92

92
16

10
24

0

16
38

4

20
48

0

32
76

8

65
53

6

13
10

72

Sp
ee

d
u

p

Population

TBB-2 cores
TBB-4 cores
CUDA

0

10

20

30

40

50

60
10

24

20
48

30
72

40
96

51
20

61
44

71
68

81
92

92
16

10
24

0

16
38

4

20
48

0

32
76

8

65
53

6

13
10

72

Sp
ee

d
u

p

Population

TBB-2 cores
TBB-4 cores
CUDA

0

10

20

30

40

50

60

10
24

20
48

30
72

40
96

51
20

61
44

71
68

81
92

92
16

10
24

0

16
38

4

20
48

0

32
76

8

65
53

6

13
10

72

Sp
ee

d
u

p

Population

TBB-2 cores
TBB-4 cores
CUDA

1264 M. Abbasi and M. Rafiee / IJE TRANSACTIONS A: Basics Vol. 31, No. 7, (July 2020) 1257-1265

including the running time and speedup of the parallel

GA over each of them.

From the results, we have drawn the following

conclusions that crucially represent the real and novel

contribution of our work. First, the highest speedup of the

parallel algorithm on the GPU, the quad-core, and the

dual-core processor are 58.35, 3.99, and 1.99,

respectively. Second, the performance of a parallel GA

on a GPU-like many-core processor is much higher than

that of a multi-core processor, but in a low initial

population, parallelization resources in multi-core

processors are more efficiently utilized than in the GPU-

like many-core systems. Third, the efficiency of the

proposed parallelization of the GA solution of TSP on a

CUDA-based many-core platform is the highest as

compared to state-of-art parallel solutions. Fourth and the

most important finding is that the proposed TBB-based

parallelization of the GA solution of TSP achieves the

highest level of efficiency in exploiting the

computational resources of the system for parallel

execution of GA.

The CPU/GPU clusters have recently been

considered as high-performance accelerators for

computation-intensive programs. Therefore, future

studies would study how to adapt the proposed

parallelization method of GA to best use the resources of

the GPU cluster computations.

6. REFERENCES

1. Fathollahi-Fard, A.M., Hajiaghaei-Keshteli, M., and Tavakkoli-

Moghaddam, R., 'The Social Engineering Optimizer (Seo)',
Engineering Applications of Artificial Intelligence, (2018), Vol.

72, 267-293. https://doi.org/10.1016/j.engappai.2018.04.009

2. Fard, A.F. and Hajiaghaei-Keshteli, M., 'Red Deer Algorithm
(Rda); a New Optimization Algorithm Inspired by Red Deers’

Mating', in, International Conference on Industrial Engineering,

IEEE., (2016). https://doi.org/10.1007/s00500-020-04812-z

3. Mohammadzadeh, H., Sahebjamnia, N., Fathollahi-Fard, A., and

Hahiaghaei-Keshteli, M., 'New Approaches in Metaheuristics to

Solve the Truck Scheduling Problem in a Cross-Docking Center',
International Journal of Engineering-Transactions B:

Applications, 2018, Vol. 31, No. 8, 1258-1266.

https://doi.org/10.5829/ije.2018.31.08b.14

4. Fathollahi-Fard, A., Hajiaghaei-Keshteli, M., and Tavakkoli-

Moghaddam, R., 'A Lagrangian Relaxation-Based Algorithm to

Solve a Home Health Care Routing Problem', International

Journal of Engineering Transactions A: Basics, Vol. 31, No. 10,

(2018), 1734-1740. https://doi.org/10.5829/ije.2018.31.10a.16

5. Hajiaghaei-Keshteli, M., Abdallah, K., and Fathollahi-Fard, A.,
'A Collaborative Stochastic Closed-Loop Supply Chain Network

Design for Tire Industry', International Journal of Engineering

Transactions A: Basics, Vol. 31, No. 10, (2018), 1715-1722.

https://doi.org/10.5829/ije.2018.31.10a.14

6. López-González, A., Campaña, J.M., Martínez, E.H., and Contro,

P.P., 'Multi Robot Distance Based Formation Using Parallel
Genetic Algorithm', Applied Soft Computing, (2020), Vol. 86, p.

105929. https://doi.org/10.1016/j.asoc.2019.105929

7. Munroe, S., Sandoval, K., Martens, D.E., Sipkema, D., and
Pomponi, S.A., 'Genetic Algorithm as an Optimization Tool for

the Development of Sponge Cell Culture Media', In Vitro

Cellular & Developmental Biology-Animal, Vol. 55, No. 3,
(2019), 149-158. https://doi.org/DOI: 10.1007/s11626-018-

00317-0

8. Sin, I.H. and Do Chung, B., 'Bi-Objective Optimization Approach
for Energy Aware Scheduling Considering Electricity Cost and

Preventive Maintenance Using Genetic Algorithm', Journal of

Cleaner Production, Vol. 244, (2020), 118869.

https://doi.org/10.1016/j.jclepro.2019.118869

9. Yasmin, S.: 'Linear Colour Image Processing in Hypercomplex
Algebra Guided by Genetic Algorithms', University of Essex,

2019

10. Lima, A.A., de Barros, F.K., Yoshizumi, V.H., Spatti, D.H., and
Dajer, M.E., 'Optimized Artificial Neural Network for Biosignals

Classification Using Genetic Algorithm', Journal of Control,

Automation and Electrical Systems, Vol. 30, No. 3, (2019), 371-

379. https://doi.org/10.1007/s40313-019-00454-1

11. Rajagopalan, A., Modale, D.R., and Senthilkumar, R., Optimal

Scheduling of Tasks in Cloud Computing Using Hybrid Firefly-
Genetic Algorithm', Advances in Decision Sciences, Image

Processing, Security and Computer Vision, (Springer, 2020)

ISBN: 978-3-030-24318-0. https://doi.org/10.1007/978-3-030-

24318-0_77

12. Rajesh, K., Visali, N., and Sreenivasulu, N., Optimal Load

Scheduling of Thermal Power Plants by Genetic Algorithm',
Emerging Trends in Electrical, Communications, and

Information Technologies, (Springer, 2020) ISBN: 978-981-13-

8942-9. https://doi.org/10.1007/978-981-13-8942-9_33

13. Arif, M.H., Li, J., Iqbal, M., and Liu, K., 'Sentiment Analysis and

Spam Detection in Short Informal Text Using Learning Classifier

Systems', Soft Computing, Vol. 22, No. 21, (2018), 7281-7291.

https://doi.org/10.1007/s00500-017-2729-x

14. Talbi, E.-G., 'A Unified View of Parallel Multi-Objective

Evolutionary Algorithms', Journal of Parallel and Distributed

Computing, Vol. 133, (2019), 349-358.

https://doi.org/10.1016/j.jpdc.2018.04.012

15. Nayak, S. and Panda, M., Hardware Partitioning Using Parallel
Genetic Algorithm to Improve the Performance of Multi-Core

Cpu', Advances in Intelligent Computing and Communication,

(Springer, 2020) ISBN: 978-981-15-2774-6

16. Giap, C.N. and Ha, D.T., 'Parallel Genetic Algorithm for

Minimum Dominating Set Problem', in, Computing, Management

and Telecommunications (ComManTel), 2014 International

Conference on, (IEEE, 2014).

https//doi.org/10.1109/ComManTel.2014.6825598

17. Zhu, J. and Li, Q., 'Application of Hybrid Mpi+ Tbb Parallel
Programming Model for Traveling Salesman Problem', in, Green

Computing and Communications (GreenCom), 2013 IEEE and

Internet of Things (iThings/CPSCom), IEEE International
Conference on and IEEE Cyber, Physical and Social Computing,

(IEEE, 2013). https://doi.org/10.1109/GreenCom-iThings-

CPSCom.2013.408

18. Fujimoto, N. and Tsutsui, S., 'A Highly-Parallel Tsp Solver for a

Gpu Computing Platform', in, International Conference on

Numerical Methods and Applications, (Springer, 2010).

https://doi.org/10.1007/978-3-642-18466-6_3

19. Chen, S., Davis, S., Jiang, H., and Novobilski, A., Cuda-Based

Genetic Algorithm on Traveling Salesman Problem', Computer
and Information Science 2011, (Springer, 2011).

https://doi.org/10.1007/978-3-642-21378-6_19

20. Sánchez, L.N.G., Armenta, J.J.T., and Ramírez, V.H.D., 'Parallel
Genetic Algorithms on a Gpu to Solve the Travelling Salesman

Problem', Difu100ci@ Revista en Ingeniería y Tecnología, UAZ,

2015, 8, (2). https://doi.org/10.1007/978-3-662-45049-9_96

https://doi.org/10.1007/s00500-020-04812-z
https://doi.org/10.1016/j.asoc.2019.105929
https://doi.org/10.1016/j.jclepro.2019.118869
https://doi.org/10.1007/978-3-030-24318-0_77
https://doi.org/10.1007/978-3-030-24318-0_77
https://doi.org/10.1007/978-981-13-8942-9_33
https://doi.org/10.1109/ComManTel.2014.6825598
https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.408
https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.408
https://doi.org/10.1007/978-3-642-18466-6_3
https://doi.org/10.1007/978-3-642-21378-6_19
https://doi.org/10.1007/978-3-662-45049-9_96

M. Abbasi and M. Rafiee / IJE TRANSACTIONS A: Basics Vol. 31, No. 7, (July 2020) 1257-1265 1265

21. Kang, S., Kim, S.-S., Won, J., and Kang, Y.-M., 'Gpu-Based
Parallel Genetic Approach to Large-Scale Travelling Salesman

Problem', The Journal of Supercomputing, 2016, Vol. 72, No.

11, 4399-4414. https://doi.org/10.1007/s11227-016-1748-1

22. Moumen, Y., Abdoun, O., and Daanoun, A., 'Parallel Approach

for Genetic Algorithm to Solve the Asymmetric Traveling

Salesman Problems', in, Proceedings of the 2nd International
Conference on Computing and Wireless Communication

Systems, (ACM, 2017) https://doi.org/10.1145/3167486.3167510

23. Cekmez, U., Ozsiginan, M., and Sahingoz, O.K., 'Adapting the
Ga Approach to Solve Traveling Salesman Problems on Cuda

Architecture', in, Computational Intelligence and Informatics
(CINTI), 2013 IEEE 14th International Symposium on, (IEEE,

2013) https://doi.org/10.1109/CINTI.2013.6705234

24. Radford, D. and Calvert, D., 'A Comparative Analysis of the
Performance of Scalable Parallel Patterns Applied to Genetic

Algorithms and Configured for Nvidia Gpus', Procedia

Computer Science, Vol. 114, (2017), 65-72.

https://doi.org/10.1016/j.procs.2017.09.009

25. Li, C.-C., Lin, C.-H., and Liu, J.-C., 'Parallel Genetic Algorithms

on the Graphics Processing Units Using Island Model and
Simulated Annealing', Advances in Mechanical Engineering,

Vol. 9, No. 7, (2017), 12-25.

https://doi.org/10.1177%2F1687814017707413

26. Saxena, R., Jain, M., Sharma, D., and Jaidka, S., 'A Review on

Vanet Routing Protocols and Proposing a Parallelized Genetic

Algorithm Based Heuristic Modification to Mobicast Routing for
Real Time Message Passing', Journal of Intelligent & Fuzzy

Systems, Vol. 36, No. 3, (2019), 2387-2398.

https://doi.org/10.3233/JIFS-169950

27. NVIDIA. NVIDIA CUDA (Compute Unified Device

Architecture) Programming Guide, Available:

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide

.pdf, (Accessed July 2020).

28. Jam, S., Shahbahrami, A., and Ziyabari, S., 'Parallel

Implementation of Particle Swarm Optimization Variants Using
Graphics Processing Unit Platform', International Journal of

Engineering Transactions A: Basics, Vol 30, No. 1, (2017), 48-

56. https://doi.ir/10.5829/idosi.ije.2017.30.01a.07

29. Yip, C.M. and Asaduzzaman, A., 'A Promising Cuda-Accelerated
Vehicular Area Network Simulator Using Ns-3', in, Performance

Computing and Communications Conference (IPCCC), 2014

IEEE International, (IEEE, 2014)

https://doi.org/10.1109/PCCC.2014.7017048

30. Kim, C.G., Kim, J.G., and Lee, D.H., 'Optimizing Image

Processing on Multi-Core Cpus with Intel Parallel Programming
Technologies', Multimedia Tools and Applications, Vol. 68, No.

2, (2014), 237-251. https://doi.org/10.1007/s11042-011-0906-y

31. Reinders, J. 'Intel threading building blocks: outfitting C++ for

multi-core processor parallelism', O'Reilly Media. Inc, 2007.

32. Hougardy, S. and Wilde, M., 'On the Nearest Neighbor Rule for
the Metric Traveling Salesman Problem', Discrete Applied

Mathematics, (2014). https://doi.org/10.1016/j.dam.2014.03.012

33. Groba, C., Sartal, A., and Vázquez, X.H., 'Solving the Dynamic
Traveling Salesman Problem Using a Genetic Algorithm with

Trajectory Prediction: An Application to Fish Aggregating

Devices', Computers & Operations Research, Vol. 56, (2015),

22-32. https://doi.org/10.1016/j.cor.2014.10.012

34. Hussain, A. and Muhammad, Y.S., 'Trade-Off between

Exploration and Exploitation with Genetic Algorithm Using a
Novel Selection Operator', Complex & Intelligent Systems,

(2019), 1-14. https://doi.org/0.1007/s40747-019-0102-7

35. Hassanat, A., Prasath, V., Abbadi, M., Abu-Qdari, S., and Faris,
H., 'An Improved Genetic Algorithm with a New Initialization

Mechanism Based on Regression Techniques', Information, Vol.

9, No. 7, (2018), 167. https://doi.org/10.3390/info9070167

36. Doughabadi, M.H., Bahrami, H., and Kolahan, F., 'Evaluating the

Effects of Parameters Setting on the Performance of Genetic

Algorithm Using Regression Modeling and Statistical Analysis',
Journal of Industrial Engineering, University of Tehran, (2011),

61-68.

37. Contreras-Bolton, C. and Parada, V., 'Automatic Combination of
Operators in a Genetic Algorithm to Solve the Traveling

Salesman Problem', PloS One, Vol. 10, No. 9, (2015), e0137724-

e0137724. https://doi.org/10.1371/journal.pone.0137724

38. VLSI-TSP-Collection, Available:

http://www.math.uwaterloo.ca/tsp/vlsi/index.html, (Accessed

July 2020).

Persian Abstract

 چکیده
افزاری با توجه به همزمانی موجود به دلیل دشواری زمانبندی منابع سخت many-threadingیا multi-threadingهای ژنتیک روی بسترهای الگوریتمسازی کارآمد موازی

کرنل همزمان که هرکدام تعدادی ژنتیک را با طراحی سه ها، موضوعی چالش برانگیز است. در این مقاله، برای حل این مشکل یک روش جدید ارائه شده است که الگوریتمنخ

 Compute Unifiedتوان به راحتی با استفاده از بسترهای سازد. روش پیشنهادی را می می کنند موازیبه یکدیگر از الگوریتم ژنتیک را اجرا می از عملگرهای موثر وابسته

Device Architecture (CUDA) وThreading Building Blocks (TBB) پردازندهبرای اجر تطبیق داد. برای multi-coreو many-coreهای ا روی

کنند، توسط مکانیسم جابجایی گانه را اجرا میهای سههای نخی که یکی از کرنلالگوریتم ژنتیک، پردازش ها در اجرای موازیاستفاده بهینه از منابع ارزشمند این نوع پردازنده

با تنظیمات TBBو CUDAهای گرد مبتنی بر الگوریتم ژنتیک با استفاده از پلتفرمسازی مسئله فروشنده دورهی، برای موازیشوند. روش پیشنهادگ میپرسرعتی هماهن

کنند. یسازی الگوریتم ژنتیک را روی واحد پردازش گرافیکی و همچنین روی واحد پردازش مرکزی تایید میکسان آزمایش شده است. نتایج، کارایی روش پیشنهادی در موازی

های واحد پردازش گرافیکی بسیار ناچیز است اما، الگوریتم ژنتیک موازی مبتنی های ژنتیک با جمعیت اولیه متوسط، با اینکه زمان جابجایی بین کرنلعلاوه بر این، در مسئله

 کند.از منابع بطور موثرتری استفاده می TBBبر

https://doi.org/10.1007/s11227-016-1748-1
https://doi.org/10.1145/3167486.3167510
https://doi.org/10.1109/CINTI.2013.6705234
https://doi.org/10.1016/j.procs.2017.09.009
https://doi.org/10.1177%2F1687814017707413
https://doi.org/10.1109/PCCC.2014.7017048
https://doi.org/10.1007/s11042-011-0906-y
https://doi.org/10.1016/j.dam.2014.03.012
https://doi.org/10.1016/j.cor.2014.10.012
https://doi.org/10.1371/journal.pone.0137724

