
IJE TRANSACTIONS A: Basics Vol. 33, No. 10, (October 2020) 1924-1938

Please cite this article as: M. R. Kahrizi, S. J. Kabudian, Projectiles Optimization: A Novel Metaheuristic Algorithm for Global Optimization,
International Journal of Engineering (IJE), IJE TRANSACTIONS A: Basics Vol. 33, No. 10, (October 2020) 1924-1938

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

Projectiles Optimization: A Novel Metaheuristic Algorithm for Global Optimization

M. R. Kahrizi*, S. J. Kabudian

Department of Computer Engineering and Information Technology, Razi University, Kermanshah, Iran

P A P E R I N F O

Paper history:
Received 27 November 2019
Received in revised form 13 March 2020
Accepted 11 June 2020

Keywords:
Global Optimization
Metaheuristic Optimization Algorithm
Population-based Algorithm
Stochastic Optimization

A B S T R A C T

Metaheuristic optimization algorithms are a relatively new class of optimization algorithms that are widely

used for difficult optimization problems in which classic methods cannot be applied and are considered as

known and very broad methods for crucial optimization problems. In this study, a new metaheuristic
optimization algorithm is presented, the main idea of which is inspired by models in kinematics. This

algorithm obtains better results compared to other optimization algorithms in this field and is able to explore

new paths in its search for desirable points. Hence, after introducing the projectiles optimization (PRO)
algorithm, in the first experiment, it is evaluated by the determined test functions of the IEEE congress on

evolutionary computation (CEC) and compared with the known and powerful algorithms of this field. In the

second try out, the performance of the PRO algorithm is measured in two practical applications, one for the
training of the multi-layer perceptron (MLP) neural networks and the other for pattern recognition by Gaussian

mixture modeling (GMM). The results of these comparisons are presented in various tables and figures. Based

on the presented results, the accuracy and performance of the PRO algorithm are much higher than other
existing methods.

 doi: 10.5829/ije.2020.33.10a.11

1. INTRODUCTION1

Optimization is a procedure for reaching a state in which the

problem has a certain advantage and improvement over other

states. In other words, the purpose of optimization is to find

a point in the problem space where the measure of fitness is

maximized. The problem space is the range of values that

exist for each dimension of the problem, and points can be

selected from these intervals. The criterion for the fitness of

points in the problem space varies according to the nature of

the problem. If the type of our problem is of the cost or error,

the point where the cost (or error) function has the least value

is more fit than other points. This type of optimization is also

called minimization. On the other hand, there are some

problems in which the optimization is to find a point in the

problem space where the value of its objective function is

maximum. These problems in the field of optimization are

called maximization.

*Corresponding Author Email: kahrizi.mr@gmail.com (M. R. Kahrizi)

Metaheuristic optimization algorithms are a new class of

optimization algorithms that are applied to optimization

problems in which classic methods cannot be used and are

considered as well-known methods for difficult optimization

problems. Metaheuristic algorithms are often inspired by

nature. Also, in metaheuristic algorithms, many steps are

taken at random. For example, several points in the problem

space are randomly selected, and they undergo a series of

changes during the execution of the algorithm based on the

random mechanism of each algorithm, which ultimately

leads to access to the optimal global point.

The rest of this paper is organized as follows. The

effective methods and existing studies in the field of

metaheuristic optimization are reviewed in Section 2. The

proposed algorithm is described in Section 3. The

comparison of the proposed method with other algorithms

and results are discussed in Section 4. Finally, in Section 5,

the conclusions are presented.

mailto:kahrizi.mr@gmail.com

M. R. Kahrizi and S. J. Kabudian / IJE TRANSACTIONS A: Basics Vol. 33, No. 10, (October 2020) 1924-1938 1925

2. LITERATURE REVIEW

Metaheuristic optimization algorithms are classified into

different groups. References [1, 2] can be referred to for more

information about optimization algorithm classification.

Here, the purpose is to review some of the known and

effective algorithms in the development of the projectiles

optimization (PRO) algorithm, and in this section, a specified

classification is not followed. Also, the available surveys,

such as [3-5] can be referred to for more comprehensive

information.

One of the oldest and most known optimization

algorithms are genetic algorithms (GA). These algorithms

are classified as evolutionary algorithms because they use

evolutionary computation. The genetic algorithm is a general

application algorithm and can be applied in various forms

due to its properties. These properties refer to the difference

in the chromosome representation, various procedures of

parent selection, and different methods in crossover and

mutation. The methods of parent selection in the genetic

algorithm have been compared in [6, 7]. Different genetic

methods with a focus on new subjects were studied in [8].

However, different types of genetic algorithms have been

presented over time, and in [9-12] the hybrid type, multi-

objective, parallel, and the new version of this algorithm

were presented, respectively. Furthermore, reference [13]

can be referred to for more information.

Another old algorithm in the optimization field is the

simulated annealing (SA) algorithm [14, 15], in which the

Metropolis algorithm [16] has been used. Similar to other

algorithms, the various versions of the SA algorithm have

been proposed, such as the microcanonical annealing (MA)

algorithm [17] in which the Creutz algorithm has been

utilized instead of the Metropolis algorithm. In [18], another

kind of SA algorithm has been proposed that was called

threshold accepting (TA). The comparison between this

algorithm and the SA algorithm can be observed in [19].

Noised method (NM) is another version of the SA algorithm.

This algorithm and its various versions along with their

survey have been studied in [20-23]. Another version of the

SA algorithm for continuous spaces can be observed in [24].

In [25], the hybrid version of the SA algorithm has been

presented for performance improvement in which the SA

algorithm has been combined with the GA. Furthermore,

the papers [26-29] can be referred to as a comprehensive

history.

Ant colony optimization (ACO) is another optimization

algorithm, which has been inspired by the ant colony’s

motion and is classified under swarm intelligence (SI) based

algorithms. Reference [30] can be referred to for more

information. ACO algorithms have different classes. For

example, in [31], the hybrid type of the ACO algorithm has

been presented. References [32-35] can be referred to as

examples, the development in the ACO algorithm, and the

applicability of the ACO algorithm.

Particle swarm optimization (PSO) algorithm is one of

the well-known and powerful optimization algorithms that is

inspired by a type of motion based on swarm intelligence.

This algorithm is attractive due to its desirable performance,

and a great amount of research has been performed on it.

Various kinds of PSO algorithms have been presented over

time. In [36-38], the topology, structure, and the ideas

available in PSO have been discussed. Early convergence

and hence getting stuck in local optimum points are

drawbacks of the PSO algorithm. In [39-44], an attempt was

made to resolve these weaknesses. In [45], a kind of PSO

algorithm has been presented for discrete spaces. In [46],

another version of the PSO algorithm has been presented for

dynamic spaces. In [47], the parallel mode of PSO has been

examined. In [48], a multi-objective type of algorithm has

been discussed. Other various kinds of PSO algorithms can

be followed in [49-51], which have been discussed in

conjunction with algorithms and other methods for

productivity improvement. The particle swarm algorithm has

been used in wide fields due to its generality. The details and

statistics of these fields have been given in [52]. Also, papers

[53-57] can be referred to for more information about some

applications and other hybrid versions of the PSO algorithm

and their surveys.

The differential evolution (DE) algorithm [58] is another

powerful optimization algorithm classified as an

evolutionary algorithm. The DE algorithm is a simple

algorithm in the optimization field. As with other algorithms,

different types of DE algorithms have been proposed. In [59,

60], the multi-objective models of the DE algorithm have

been discussed and used. In [61], the differences between

PSO and DE algorithms have been studied. Another version

of the DE algorithm has been introduced in [62]. The hybrid

versions of the DE algorithm have been given in [63, 64].

Moreover, in [65-68], some methods and applications have

been presented in which the DE algorithm determines its

parameters in a self-adaptive manner.

3. PROJECTILES OPTIMIZATION ALGORITHM

In the PRO algorithm [69], we have attempted to double the

accuracy and power. At PRO, we took advantage form the

innovations and pros of other algorithms to avoid reinventing

the wheel. This algorithm is inspired by the projectile motion

in physics and is governed by its laws.

The basic idea behind the PRO algorithm is derived from

missiles launches. Since missiles must have the highest

accuracy and least error in targeting, the process of moving

1926 M. R. Kahrizi and S. J. Kabudian / IJE TRANSACTIONS A: Basics Vol. 33, No. 10, (October 2020) 1924-1938

these projectiles can be considered as a model for

optimization.

As with the laws of physics related to this type of motion,

we are faced with a set of parameters that control the motion

of the projectiles. Such as acceleration of gravity in the

launch environment, initial projectile velocity, launch angle,

and intrusive forces such as friction. In the following the

method of quantifying and calculating these parameters is

described in the projectile algorithm step by step.

Based on the pseudo-code presented in Figure 1, in the

PRO algorithm similar to the other metaheuristic

optimization algorithms, the first part is the initialization, in

which all of the variables involved in the algorithm are

introduced and initialized. After initializing the variables, to

create each member of the population, which is called

"projectile" here, random numbers with the uniform

probability distribution are used in a determined range for

each problem. Then, the cost of each member is calculated

according to the considered cost function. Then, their

maximum and minimum value are obtained.

In the following, the main body of the algorithm is

studied, which is inside the main loop. In this part of the

algorithm, we use some of the principles, properties, and

quantities of physics, such as the projectile motion rules,

velocity, and gravitational acceleration. In the main loop of

the algorithm, the members are sorted based on their costs in

such a way that a member with the minimum cost is ranked

as "first," and a member with the maximum cost is ranked as

the "last." Then, the fitness of each member of the population

is calculated by Equation (1), which results in a number in

the range of (0, 1].

𝐹(𝑥𝑖) =
𝑁−(𝑅𝑎𝑛𝑘(𝑥𝑖)−1)

𝑁
 (1)

In Equation (1), N denotes the total number of members

(projectiles) and Rank(x) having a value in the range of

{1,2,…, N}, determines the rank of each member i among all

the members that is calculated based on C (xi) sorting, and C

(xi) is the cost of member i that can be obtained through using

the considered function (cost function) for optimization.

After calculating the fitness F(x) for each member of the

population, this fitness is used to determine the projectile

launch angle according to Equation (2). It should be noted

that as can be observed in Table 1, we have empirically

considered the minimum and maximum angles tantamount to

45° and 84°, respectively.

()min max min() ()i ix F x   = + − (2)

In addition, to determine the gravitational acceleration for

each projectile, fitness F(x) is used according to Equation (3).

Here, we have experimentally considered the maximum and

minimum values of the gravitational acceleration equal to 10

m/s2 and 1 m/s2, respectively.

() ()()min max mini iG x G F x G G= + − (3)

In Equations (2) and (3) all parameters are determined at the

beginning of the algorithm, at the initialization section,

except F(x) that is in the main loop of the algorithm and it is

calculated separately for each member i, and in each

iteration, it has a different value. The values given to the used

parameters in the PRO algorithm are presented in Table 1.

PRO Algorithm

Initializing the projectile population (N) with random position, and

velocity, gravitation, theta and change probability (CP) of each

dimension (D) of the projectiles for moving in the search space;

Evaluating the cost C(xi) for each projectile i;
Evaluating the rank Rank(xi) for each projectile i by sorting the

costs C(x);

For n = 1,…,
iter

N (number of iterations) do

For i = 1,…,N(number of projectiles) do

Evaluate the fitness ()
i

F x using

() ()()()1 /
i i

F x N Rank x N= − − ;

Update the theta ()
i

x using

() ()()
min max mini i

x F x   = + − ;

Update the gravitation ()
i

G x using

() ()()
min max mini i

G x G F x G G= + − ;

Update the velocity ()V n using

() () ()()()
max max min

1 / 1 ;
iter

V n V n N V V= − − − −

For d = 1,…,D(number of dimensions) do

Create random numbers
, ,2,i d i dr r by

 a uniform distribution ()0,1U ;

Evaluate the horizontal range R(
,i dx) using

 () () ()() ()2 sin 2i i iR x V n x G x= and

 multiplied by
,i dr ;

Create the new projectile
,2i dx randomly using a

normal distribution ()()2

, ,,i d i dN x R x with CP

probability for each dimension,

()()2

, , ,

,

,

2
2

,

i d i d i d

i d

i d

N x R x if r CP
x

x otherwise

  
=  
  

;

End

Evaluate the cost C2(2ix) for each new

 projectile i;

End

Sort the x and x2 by costs of them (C, C2) and remove the
worse half of them;

Evaluate the rank Rank(xi) for each projectile i that

 remain from competitive exclusion by sorting costs;
End

Figure 1. PRO algorithm pseudo code

M. R. Kahrizi and S. J. Kabudian / IJE TRANSACTIONS A: Basics Vol. 33, No. 10, (October 2020) 1924-1938 1927

TABLE 1. The parameters and their determined values in the PRO

algorithm which are the same and constant for all test functions

Value Quantity Symbol

D Number of projectiles N

10E+4 Number of iterations in each run Niter

10, 50 Number of problem's dimensions D

10E+4  D Maximum function evaluation MaxFE

100 The upper limit of the search space LimUp

-100 The lower limit of the search space LimLo

10 m/s2 Maximum value of gravitational acceleration Gmax

1 m/s2 Minimum value of gravitational acceleration Gmin

84 Maximum initial launch angle in degree max

45° Minimum initial launch angle in degree min

0.1
The Change Probability of each dimension in

each projectile
CP

Limup LimLo−

m/s
Maximum value of initial velocity Vmax

Vmax  0.1 m/s Minimum value of initial velocity Vmin

Parameters are initialized in such a way to provide similar

and impartial conditions for the comparison of this algorithm

with other algorithms. These conditions have been presented

in [70] and are not the best condition for the PRO algorithm.

After determining the parameters of the launch angle and

the gravitational acceleration, the initial velocity of the

projectiles should be calculated. This value is constant here

and similar for all the projectiles in each iteration. And in the

first iteration, the initial velocity is equal to the

predetermined value Vmax. In each iteration of the algorithm,

an amount of the projectiles' initial speed is reduced based on

Equation (4) so that in the last iteration, the initial speed is

reached the predetermined value Vmin.

However, to determine the initial values of the variables

and update their values in this algorithm, other methods

appropriate to the problem conditions may be applied. For

example, the Euclidean distance of each projectile to the best

projectile (member with the lowest cost) can be used to

determine the fitness level, launch angle, gravitational

acceleration, and initial velocity.

()max max min

iter

1
()

1

n
V n V V V

N

−
= − −

−
 (4)

where n denotes the current iteration of the algorithm, and

the minimum and maximum of its values are 1 and Niter,

respectively.

After determining the required parameters, the horizontal

range of each projectile should be calculated that is

calculated from Equation (5) based on the physics laws

governing the projectiles' motion.

𝑅(𝑥𝑖) =
𝑉2(𝑛) 𝑠𝑖𝑛(2𝜃(𝑥𝑖))

𝐺(𝑥𝑖)
 (5)

As can be seen in Figure 2, this figure shows the variations

of the range (it is considered here as a movement in the

problem space) with the variations in the launch angle. In this

figure, the initial velocity and the gravitational acceleration

in the launch site are considered to be equal to 20 m/s and 10

m/s2, respectively. In addition, in Figures 3 and 4, the

projectiles range amount with respect to the variations in the

gravitational acceleration in the launch site, and the

projectiles range amount with respect to the variations in the

launch initial velocity are depicted respectively in which the

launch angle is considered equal to 45∘.
After determining the horizontal range value R(xi) for all

members of the algorithm population, these values are

multiplied by a random array in the range (0, 1) with a

uniform distribution. These random numbers are different for

each member and each dimension. This can be assumed as

the effect of the disruptive forces on the projectiles' motion.

However, we decide to apply the effect of the disruptive

forces in two stages, and the first phase is applied in this

section.

Then, we determine in which dimension the member

(projectile) can be altered, in other words, in which

dimension of the problem space the projectile can be moved.

This action is performed randomly and with CP probability

for each dimension of the members. CP determines the

change probability of each member in every dimension that

is initialized at the beginning of the algorithm.

Figure 2. The projectile range with respect to the variation of the

launch angle, with the initial velocity of 20 m/s and the

gravitational acceleration of 10 m/s2

1928 M. R. Kahrizi and S. J. Kabudian / IJE TRANSACTIONS A: Basics Vol. 33, No. 10, (October 2020) 1924-1938

Figure 3. The projectile range with respect to the variation of the

gravitational acceleration in the launch point, with the initial

velocity of 20 m/s and the launch angle of 45∘

Figure 4. The projectile range with respect to the variation of the

projectile initial velocity with an angle equal to 45∘and the

gravitational acceleration of 10 m/s2

Now, after performing the previous steps, we can create

new members in the algorithm; in other words, the projectiles

can be launched. Obviously, each member is recognized by

its coordinates in problem space, which are the dimensions'

values of each member here. In order to specify the new

members, we use the projectiles coordinates and their range

amount (R(x)) and the dimensions that should be changed in

each member. In this way, the coordinates of the new

members are determined randomly by the normal probability

distribution with the mean value xi,d, and the standard

deviation R(xi,d), where xi,d represents the mean value of

dimension d for member i. Also, the number of new members

of the algorithm is the same as the number of initial

population members here and in each iteration of the

algorithm. As mentioned earlier, the effect of the disruptive

forces are applied in two stages due to the experimental

observations on the PRO algorithm, the first stage was at the

projectiles range R(x) determination time that was in the form

of multiplying by random numbers with uniform distribution,

and the second stage is implicitly in the new members'

creation. As mentioned, in the section of creating new

members, we used random numbers with normal distribution

for creating new members. These random numbers are

implicitly the second phase of applying the disruptive and

friction forces. Otherwise, the randomly creation new

members is not necessary, and the coordinates of the new

member can be obtained by having the current coordinates

and range of each member.

Now, in this step of the algorithm, the number of

population members in the algorithm has doubled since the

beginning of the algorithm main loop reached 2N; now, it is

the time to apply the specified cost function to the new

members of the population. This is necessary to perform the

next stage, which is sorting all members according to their

costs. After applying the cost function on the new members

and sorting all the new and old members with respect to their

costs, half of the population members with inappropriate

(higher) costs are removed from the population. This action

is called competitive exclusion.

At the end of the algorithm main loop, the cost of the best

member in each iteration can be stored in a variable such as

Cbest. Then the counter of the algorithm loop is increased by

one, and we return to the beginning of the loop that is the

investigation of the loop end condition.

All of the stages that have mentioned from the beginning

of this section are repeated until the end condition of the loop

will be satisfied; for example, until the value of the loop

repetition counter reaches the predetermined amount. At this

point, the repetition ends, and the algorithm is completed. At

the end, the algorithm converges to the object point with the

maximum fitness and minimum cost.

4. ALGORITHM COMPARISON AND RESULTS

In the PRO algorithm, we aimed for a better performance

than other known algorithms in the optimization field. Thus,

we compared it with the powerful and well-known particle

swarm and differential evolution algorithms. In Tables 2 and

3, the values corresponding to the parameters of these

algorithms can be seen. These values are experimental and

represent the algorithm’s best performance.

M. R. Kahrizi and S. J. Kabudian / IJE TRANSACTIONS A: Basics Vol. 33, No. 10, (October 2020) 1924-1938 1929

In this comparison, we used the test functions that have

been introduced in [70] for measuring the algorithms'

performance in the IEEE CEC 2017 conference. In addition,

we compared the PRO algorithm with the particle swarm and

differential evolution algorithms in two applied cases of

multi-layer perceptron (MLP) neural networks training and

pattern recognition by the GMM method. The obtained

results from different cases are presented in Tables 4 to 7.

Also, the obtained results for the practical cases have been

presented in a graph form in Figures 5 and 6. As can be seen,

the results show that the proposed algorithm performs better

than the other algorithms.

4. 1. Comparison Using the Test Functions As

mentioned earlier, the PRO algorithm was compared with the

particle swarm and differential evolution algorithm on some

test functions that have been used in the IEEE CEC 2017

conference for algorithm comparison. In [70], the test

functions have been introduced comprehensively.

TABLE 2. The parameters and their determined values in the PSO

algorithm which are the same and constant for all comparisons

Symbol Quantity Value

Iteration Number of iterations 10E+4

Dimension (D) Number of problem dimensions 10, 50

MaxFE Maximum function evaluation 10E+4D

Particle Number of particles D

1 Value of 1 0.3

2 Value of 2 0.7

Wmax Initial value of inertia weight 0.9

Wmin final value of inertia weight 0.4

TABLE 3. The parameters and their determined values in the DE

algorithm which are the same and constant for all comparisons

Symbol Quantity Value

Iteration Number of iterations 10E+4

Dimension (D) Number of problem dimensions 10, 50

MaxFE Maximum function evaluation 10E+4  D

PopSize Number of populations D

F Impact factor of difference 1

CR Probability of crossover 0.5

The results of this comparison are presented in Tables 2,

3, and 4. These comparisons were made similar to the

presented method in [70], and based on the error between the

difference of the optimization algorithms’ output and the

ideal output as Equation (6). It should be noted that the

purpose of optimization in these comparisons was to

find the minimum value of the functions in the given range

[-100,100] for each function (minimization).

𝐸 = 𝐶(𝑥𝑖) − 𝐶∗(𝑥𝑖) (6)

where C(xi) is the output of the optimization algorithm or the

minimum acquired cost, and C*(xi) is the ideal output or the

minimum accessible cost for each function by the

optimization algorithms.

Here, the comparisons were performed in such a way that

appropriate initial conditions were considered for each of the

three algorithms, and these conditions were constant for all

comparisons. The initial conditions for the PRO algorithm

are presented in Table 1.

The comparison between the optimization algorithms

was performed with an equal population size for algorithms.

The number of members was equal to the number of problem

dimensions (10 and 50). Moreover, each comparison was

repeated 50 times, and each time the seed of random number

generator was identical for all algorithms. So, the generation

of random values would be the same for all algorithms, and

the randomly generated numbers for the algorithms would be

the same if possible. Also, the seed of the random number

generators was different for each order of the comparison

repetition. Furthermore, the maximum amount of the

function evaluation for all algorithms was assumed to be

equal to 10E+4  D, which was the end condition for the

main loop of the algorithms.

As can be seen in the comparison tables of the algorithms

(Tables 4, 5, and 6), the results show that the performance of

the PRO algorithm generally is much better than other

algorithms for all the cases and on all the test functions.

The tables give the best, worst, mean, median, and

standard deviation (SD) of the results in 50 complete and

separate runs of each algorithm for each test, respectively, in

10 and 50-dimensional states in the corresponding columns.

In these tables, the best results in each experiment are written

in bold. As can be seen, in most cases the best results are for

the PRO algorithm, especially when the dimensions are

large.

4. 2. Comparison Using Case Studies In this

section, we attempted to evaluate the PRO algorithm in real

and practical applications. For this purpose, we compared it

1930 M. R. Kahrizi and S. J. Kabudian / IJE TRANSACTIONS A: Basics Vol. 33, No. 10, (October 2020) 1924-1938

TABLE 4. Comparison results of algorithms using the test functions 1 to 10

Result
Dimensions Method Test

SD Median Mean Worst Best

1.56E+09 1.14E+09 1.29E+09 6.65E+09 1.24E+06 10
PSO

F1

1.06E+10 3.21E+10 3.20E+10 5.83E+10 1.24E+10 50

2.80E+03 1.56E+03 2.61E+03 1.11E+04 1.74E+00 10
PRO

7.81E+03 8.62E+03 1.10E+04 3.49E+04 2.20E+03 50

1.39E+07 8.19E-09 2.83E+06 7.01E+07 7.82E-11 10
DE

2.33E+09 2.76E+10 2.75E+10 3.17E+10 2.12E+10 50

3.27E+12 5.77E+08 1.01E+12 1.80E+13 4.03E+04 10
PSO

F2

1.65E+73 3.05E+62 2.78E+72 1.16E+74 1.49E+50 50

2.26E-03 3.92E-04 1.44E-03 9.19E-03 6.30E-06 10
PRO

8.96E+03 8.05E+01 1.43E+03 6.34E+04 9.82E-06 50

5.99E+07 2.46E+01 1.26E+07 3.03E+08 1.24E-07 10
DE

3.08E+63 4.29E+60 5.27E+62 2.18E+64 6.48E+57 50

3.13E+04 2.06E+04 3.33E+04 1.47E+05 4.35E+03 10
PSO

F3

1.26E+05 3.79E+05 3.93E+05 7.84E+05 1.85E+05 50

1.12E-03 9.70E-04 1.28E-03 5.90E-03 6.05E-05 10
PRO

2.94E+00 3.36E+00 4.09E+00 1.65E+01 1.01E+00 50

1.52E+03 1.83E-05 4.17E+02 9.55E+03 1.95E-09 10
DE

2.66E+04 3.14E+05 3.15E+05 3.78E+05 2.51E+05 50

1.91E+02 9.57E+01 1.37E+02 1.34E+03 9.29E+00 10
PSO

F4

2.32E+03 3.92E+03 4.66E+03 9.93E+03 1.41E+03 50

1.36E+01 9.31E-01 3.60E+00 7.18E+01 2.09E-03 10
PRO

5.64E+01 1.08E+02 1.14E+02 2.18E+02 2.10E+01 50

1.85E+00 1.20E+00 1.61E+00 8.30E+00 1.13E-02 10
DE

3.18E+02 2.53E+03 2.55E+03 3.32E+03 1.95E+03 50

2.50E+01 6.89E+01 7.14E+01 1.35E+02 2.46E+01 10
PSO

F5

7.58E+01 4.95E+02 4.95E+02 6.75E+02 3.53E+02 50

7.22E+00 1.99E+01 2.02E+01 3.38E+01 6.96E+00 10
PRO

5.77E+01 3.31E+02 3.29E+02 5.07E+02 1.99E+02 50

3.00E+00 1.46E+01 1.41E+01 2.05E+01 6.14E+00 10
DE

1.87E+01 5.96E+02 5.98E+02 6.39E+02 5.50E+02 50

1.61E+01 3.96E+01 4.13E+01 7.70E+01 6.45E+00 10
PSO

F6

1.03E+01 7.29E+01 7.33E+01 1.06E+02 5.25E+01 50

3.97E-04 3.00E-04 4.23E-04 2.54E-03 9.71E-05 10
PRO

1.74E-01 1.64E-02 9.77E-02 6.53E-01 1.04E-02 50

6.58E-01 3.86E-01 5.36E-01 3.91E+00 1.95E-02 10
DE

2.83E+00 6.16E+01 6.15E+01 6.79E+01 5.49E+01 50

3.98E+01 8.44E+01 9.16E+01 2.52E+02 3.54E+01 10
PSO

F7

2.40E+02 1.22E+03 1.23E+03 1.78E+03 7.23E+02 50

7.20E+00 2.47E+01 2.53E+01 4.43E+01 1.09E+01 10
PRO

4.32E+01 2.94E+02 2.97E+02 3.92E+02 2.10E+02 50

4.67E+00 3.10E+01 3.09E+01 4.24E+01 1.84E+01 10
DE

1.08E+02 1.69E+03 1.67E+03 1.86E+03 1.34E+03 50

M. R. Kahrizi and S. J. Kabudian / IJE TRANSACTIONS A: Basics Vol. 33, No. 10, (October 2020) 1924-1938 1931

2.18E+01 4.46E+01 4.69E+01 1.33E+02 1.76E+01 10
PSO

F8

6.67E+01 5.00E+02 5.08E+02 6.77E+02 3.85E+02 50

1.05E+01 2.09E+01 2.27E+01 5.17E+01 5.97E+00 10
PRO

5.61E+01 3.31E+02 3.39E+02 4.80E+02 2.28E+02 50

3.22E+00 1.70E+01 1.68E+01 2.40E+01 9.98E+00 10
DE

1.74E+01 6.01E+02 5.99E+02 6.34E+02 5.63E+02 50

7.72E+02 8.61E+02 1.02E+03 4.44E+03 6.59E+01 10
PSO

F9

4.98E+03 2.09E+04 2.11E+04 3.46E+04 1.17E+04 50

1.84E+02 5.08E-06 4.36E+01 1.11E+03 8.81E-08 10
PRO

3.42E+03 1.31E+04 1.24E+04 2.24E+04 6.27E+03 50

1.37E-01 2.68E-02 7.76E-02 7.70E-01 1.32E-05 10
DE

3.20E+03 2.84E+04 2.88E+04 3.60E+04 2.10E+04 50

4.33E+02 1.46E+03 1.47E+03 2.54E+03 6.49E+02 10
PSO

F10

1.01E+03 9.40E+03 9.37E+03 1.11E+04 6.34E+03 50

2.22E+02 6.03E+02 6.08E+02 1.07E+03 1.25E+02 10
PRO

8.44E+02 5.45E+03 5.38E+03 6.96E+03 3.39E+03 50

1.42E+02 5.37E+02 5.43E+02 8.53E+02 2.01E+02 10
DE

3.45E+02 1.25E+04 1.25E+04 1.30E+04 1.15E+04 50

TABLE 5. Comparison results of algorithms using the test functions 11 to 20

Result
Dimensions Method Test

SD Median Mean Worst Best

1.53E+03 3.38E+02 9.47E+02 7.26E+03 1.44E+01 10
PSO

F11

6.81E+03 7.56E+03 9.15E+03 3.14E+04 1.83E+03 50

5.75E+00 1.10E+01 1.09E+01 2.41E+01 1.02E+00 10
PRO

5.23E+01 2.27E+02 2.23E+02 3.52E+02 1.05E+02 50

4.86E+01 7.75E+00 2.21E+01 3.11E+02 4.10E-01 10
DE

3.38E+02 2.58E+03 2.59E+03 3.88E+03 2.03E+03 50

1.21E+08 3.36E+06 4.29E+07 5.55E+08 2.41E+04 10
PSO

F12

6.80E+09 7.07E+09 8.98E+09 3.94E+10 1.76E+09 50

1.28E+04 1.04E+04 1.39E+04 4.18E+04 4.77E+02 10
PRO

1.16E+06 1.77E+06 2.04E+06 4.76E+06 2.29E+05 50

9.78E+05 1.61E+03 1.99E+05 4.94E+06 8.48E+02 10
DE

1.97E+08 1.42E+09 1.42E+09 1.96E+09 1.01E+09 50

1.86E+04 1.33E+04 1.84E+04 8.64E+04 1.03E+03 10
PSO

F13

2.61E+09 1.41E+09 2.09E+09 1.27E+10 1.80E+05 50

1.11E+04 9.60E+03 1.22E+04 3.13E+04 2.25E+01 10
PRO

1.06E+04 4.09E+03 9.42E+03 3.66E+04 2.18E+02 50

2.47E+02 6.89E+01 1.36E+02 1.34E+03 6.40E+00 10
DE

3.50E+05 5.92E+05 6.69E+05 1.77E+06 1.83E+05 50

8.51E+03 3.19E+03 8.31E+03 2.74E+04 1.57E+02 10
PSO

F14

5.44E+06 1.39E+06 3.44E+06 3.19E+07 1.24E+05 50

6.85E+03 2.77E+03 5.96E+03 2.26E+04 6.28E+00 10
PRO

6.88E+04 7.84E+04 9.05E+04 3.79E+05 1.68E+04 50

7.38E+00 2.13E+01 2.00E+01 3.24E+01 2.93E-01 10
DE

1.97E+05 5.29E+05 5.49E+05 1.18E+06 2.36E+05 50

1932 M. R. Kahrizi and S. J. Kabudian / IJE TRANSACTIONS A: Basics Vol. 33, No. 10, (October 2020) 1924-1938

2.65E+04 2.01E+04 2.81E+04 1.09E+05 2.17E+02 10
PSO

F15

6.05E+07 1.16E+05 1.14E+07 4.19E+08 3.27E+04 50

6.68E+03 4.55E+03 6.74E+03 2.57E+04 2.21E+00 10
PRO

7.50E+03 8.30E+03 8.91E+03 3.08E+04 2.30E+02 50

3.29E+01 2.06E+01 3.20E+01 1.26E+02 1.09E-01 10
DE

1.27E+04 3.26E+04 3.45E+04 5.94E+04 1.42E+04 50

1.54E+02 4.96E+02 4.90E+02 8.83E+02 1.87E+02 10
PSO

F16

6.92E+02 2.72E+03 2.76E+03 4.34E+03 1.30E+03 50

1.39E+02 2.19E+02 2.21E+02 4.99E+02 5.56E-01 10
PRO

3.86E+02 1.90E+03 1.92E+03 2.93E+03 9.10E+02 50

7.64E+01 4.39E+01 8.65E+01 3.10E+02 2.78E+00 10
DE

2.47E+02 3.30E+03 3.29E+03 3.76E+03 2.70E+03 50

1.23E+02 1.26E+02 1.85E+02 6.11E+02 4.19E+01 10
PSO

F17

1.40E+03 2.12E+03 2.48E+03 1.15E+04 1.50E+03 50

4.88E+01 3.17E+01 5.17E+01 1.78E+02 1.31E+00 10
PRO

3.27E+02 1.38E+03 1.44E+03 2.30E+03 7.07E+02 50

2.02E+01 2.45E+01 3.29E+01 1.20E+02 8.55E+00 10
DE

1.67E+02 1.89E+03 1.88E+03 2.20E+03 1.51E+03 50

1.68E+04 1.13E+04 1.80E+04 5.39E+04 7.79E+02 10
PSO

F18

2.50E+07 7.00E+06 1.44E+07 1.51E+08 8.83E+05 50

9.88E+03 7.17E+03 1.09E+04 3.69E+04 1.99E+02 10
PRO

2.75E+05 5.48E+05 5.37E+05 1.19E+06 5.13E+04 50

5.20E+02 3.84E+01 1.51E+02 2.71E+03 2.01E+01 10
DE

2.18E+06 6.27E+06 6.30E+06 1.23E+07 2.11E+06 50

2.80E+06 1.33E+04 4.31E+05 1.99E+07 1.54E+02 10
PSO

F19

1.95E+08 4.60E+06 3.69E+07 1.38E+09 3.57E+05 50

8.47E+03 5.46E+03 8.08E+03 2.81E+04 3.58E+00 10
PRO

1.21E+04 1.55E+04 1.65E+04 4.25E+04 1.59E+02 50

3.49E+01 2.92E+00 1.28E+01 2.19E+02 3.43E-01 10
DE

3.95E+04 3.77E+04 4.75E+04 1.71E+05 6.15E+02 50

1.01E+02 2.44E+02 2.48E+02 5.14E+02 9.11E+01 10
PSO

F20

3.66E+02 1.65E+03 1.66E+03 2.54E+03 9.31E+02 50

1.09E+01 6.78E+00 1.17E+01 3.42E+01 2.74E-03 10
PRO

2.92E+02 1.14E+03 1.15E+03 1.85E+03 5.07E+02 50

3.44E+01 2.12E+01 2.92E+01 2.07E+02 4.17E-02 10
DE

1.79E+02 1.43E+03 1.37E+03 1.68E+03 9.69E+02 50

TABLE 6. Comparison results of algorithms using the test functions 21 to 30

Result
Dimensions Method Test

SD Median Mean Worst Best

5.60E+01 2.60E+02 2.46E+02 3.30E+02 1.15E+02 10
PSO

F21

9.93E+01 7.51E+02 7.45E+02 9.96E+02 5.66E+02 50

5.14E+01 2.35E+02 2.22E+02 2.69E+02 1.00E+02 10
PRO

5.65E+01 5.37E+02 5.48E+02 6.96E+02 4.07E+02 50

6.06E+01 2.20E+02 1.74E+02 2.34E+02 1.02E+02 10
DE

2.12E+01 7.88E+02 7.82E+02 8.14E+02 7.08E+02 50

M. R. Kahrizi and S. J. Kabudian / IJE TRANSACTIONS A: Basics Vol. 33, No. 10, (October 2020) 1924-1938 1933

6.38E+02 1.79E+02 5.22E+02 2.73E+03 1.05E+02 10
PSO

F22

1.34E+03 9.81E+03 9.43E+03 1.12E+04 3.53E+03 50

4.73E+02 1.04E+02 3.58E+02 1.60E+03 1.00E+02 10
PRO

1.49E+03 6.26E+03 6.09E+03 8.26E+03 1.00E+02 50

3.35E+01 1.06E+02 9.64E+01 1.53E+02 1.43E+01 10
DE

3.91E+02 1.29E+04 1.28E+04 1.36E+04 1.14E+04 50

7.37E+01 3.91E+02 4.13E+02 6.49E+02 3.39E+02 10
PSO

F23

1.98E+02 1.41E+03 1.43E+03 1.80E+03 9.69E+02 50

1.51E+01 3.34E+02 3.36E+02 3.71E+02 3.13E+02 10
PRO

7.72E+01 8.35E+02 8.33E+02 9.98E+02 7.02E+02 50

4.50E+00 3.18E+02 3.18E+02 3.30E+02 3.11E+02 10
DE

2.30E+01 9.97E+02 9.96E+02 1.03E+03 9.09E+02 50

1.16E+02 4.15E+02 3.97E+02 5.96E+02 1.17E+02 10
PSO

F24

1.60E+02 1.34E+03 1.35E+03 1.81E+03 1.07E+03 50

9.37E+01 3.89E+02 3.67E+02 4.64E+02 1.00E+02 10
PRO

1.18E+02 1.04E+03 1.07E+03 1.39E+03 8.86E+02 50

7.49E+01 3.54E+02 3.18E+02 3.71E+02 1.17E+02 10
DE

2.12E+01 1.02E+03 1.01E+03 1.05E+03 9.47E+02 50

1.42E+02 4.74E+02 5.17E+02 1.21E+03 4.10E+02 10
PSO

F25

1.45E+03 2.70E+03 3.13E+03 6.76E+03 1.21E+03 50

4.20E+01 4.45E+02 4.30E+02 5.24E+02 2.00E+02 10
PRO

3.64E+01 5.40E+02 5.35E+02 5.81E+02 4.61E+02 50

5.34E+01 3.99E+02 3.90E+02 4.33E+02 1.16E+02 10
DE

3.48E+02 2.81E+03 2.78E+03 3.45E+03 2.00E+03 50

5.39E+02 1.40E+03 1.27E+03 2.09E+03 3.19E+02 10
PSO

F26

1.63E+03 9.67E+03 9.71E+03 1.41E+04 5.81E+03 50

5.52E+02 7.08E+02 8.87E+02 1.76E+03 2.00E+02 10
PRO

6.84E+02 4.90E+03 4.93E+03 6.45E+03 3.45E+03 50

3.92E+01 3.87E+02 3.77E+02 4.30E+02 3.00E+02 10
DE

3.05E+02 6.98E+03 6.93E+03 7.35E+03 5.55E+03 50

4.48E+01 4.80E+02 4.77E+02 5.84E+02 4.08E+02 10
PSO

F27

2.35E+02 1.29E+03 1.34E+03 2.09E+03 9.92E+02 50

3.38E+01 4.09E+02 4.25E+02 5.01E+02 3.89E+02 10
PRO

1.23E+02 8.65E+02 8.59E+02 1.13E+03 6.48E+02 50

3.85E+00 3.95E+02 3.95E+02 4.10E+02 3.90E+02 10
DE

2.91E+01 6.80E+02 6.82E+02 7.49E+02 6.13E+02 50

1.79E+02 6.19E+02 6.53E+02 1.11E+03 3.16E+02 10
PSO

F28

1.61E+03 3.69E+03 3.96E+03 7.81E+03 1.44E+03 50

1.39E+02 5.84E+02 5.01E+02 6.46E+02 3.00E+02 10
PRO

2.62E+01 5.04E+02 4.98E+02 6.10E+02 4.59E+02 50

6.42E+01 4.29E+02 4.46E+02 6.12E+02 3.70E+02 10
DE

8.09E+02 2.43E+03 2.57E+03 4.30E+03 1.16E+03 50

1.54E+02 5.21E+02 5.46E+02 9.18E+02 3.13E+02 10
PSO

F29

9.54E+02 3.63E+03 3.73E+03 7.62E+03 2.54E+03 50

5.98E+01 3.23E+02 3.30E+02 5.00E+02 2.52E+02 10
PRO

3.59E+02 1.31E+03 1.32E+03 2.23E+03 5.31E+02 50

1.13E+01 2.53E+02 2.54E+02 2.86E+02 2.38E+02 10
DE

2.76E+02 2.80E+03 2.78E+03 3.24E+03 2.09E+03 50

1934 M. R. Kahrizi and S. J. Kabudian / IJE TRANSACTIONS A: Basics Vol. 33, No. 10, (October 2020) 1924-1938

3.23E+06 1.87E+06 2.84E+06 1.56E+07 1.00E+04 10
PSO

F30

5.52E+08 1.44E+08 3.76E+08 2.75E+09 4.72E+07 50

4.39E+05 1.63E+04 2.67E+05 1.28E+06 1.43E+03 10
PRO

3.63E+05 1.02E+06 1.11E+06 2.25E+06 6.55E+05 50

3.70E+05 1.71E+05 3.67E+05 8.83E+05 1.34E+03 10
DE

8.71E+06 2.98E+07 3.10E+07 4.98E+07 1.74E+07 50

with the PSO and DE algorithms in two practical cases, one

is relevant to minimizing the mean squared error (MSE) in

training level of the MLP neural networks, and the other is to

obtain the most suitable pattern for a predetermined Gaussian

mixture by the Gaussian mixture model (GMM) method.

Both cases can be considered as a type of minimization. As

can be seen in Table 7 and Figures 5 and 6, the performance

of the PRO algorithm in these cases is better than other

algorithms.

In the case that was relevant to the MLP neural network

training [71], the MLP method was used for the classification

of the Iris flower dataset. In this case, the purpose was to

minimize the cost function, mean squared error, in the MLP

neural network training. This error shows the difference

between the actual and ideal output of the neural network.

The number of hidden neurons was considered equal to 10,

in which case the dimensions of the vector of neural network

parameters (weights and biases) had 83 dimensions for

optimization. Moreover, 50% of the whole dataset was used

for training the neural network, in other words, we set the

value of the variable, fraction of data for training, equal to

0.5.

In the application about the GMM, it should be noted that

this model has several applications in different problems

such as data processing, for example, speech and image

processing, as in [72, 73]. The application of GMM is usually

in the pattern recognition and modeling stage. In a standard

approach for the training of the Gaussian mixture model

parameters, the EM algorithm [74] has been used; however,

we used the PSO, DE, and PRO algorithms for comparison

instead of EM algorithm. In this case, we used a Gaussian

test model with four Gaussian components by ten

dimensions. Then by using GMM that was based on the

intended optimization algorithms, the best pattern for this

model was adapted. In this experiment, based on the

determined properties for the test model, the number of the

dimensions of the GMM vector parameters for the

optimization was equal to 84, and these parameters

included mean vectors, covariance matrix, and Gaussian

weights.

Figures 5 and 6 show that the PSO and DE algorithms

have the drawback of early convergence to the local optimum

points and stick in these local optimum points. According to

these graphs, PSO and DE algorithms have been converged

approximately in iteration 200 and even earlier. However, the

PRO algorithm performed much better than these two

algorithms from this point of view. As can be seen from these

figures, the PRO algorithm has not been fully converged

even until the last iteration of the algorithm. It can be drawn

from results that the PRO did not stick in local optimum

points and tended to more optimization. In addition, the

speed of convergence to the global optimum point was much

higher in the PRO algorithm than the other two algorithms in

comparison. this notable difference in the convergence speed

of algorithms can be clearly seen in Figures 5 and 6. Also in

Table 7, the best results in each test are written in bold. As

can be seen, in both cases the best results are for the PRO

algorithm.

TABLE 7. algorithms comparison results in GMM and MLP experiment in 50 separate runs and population members quantity equal to 10

members and the maximum function evaluation of 10E+4

Result
Method Test

SD Median Mean Worst Best

1.52E-01 2.59E-01 2.93E-01 1.02E+00 1.13E-01 PSO

MLP 3.74E-02 5.06E-02 5.75E-02 1.86E-01 5.12E-03 PRO

2.81E-01 1.33E+00 1.29E+00 2.01E+00 6.62E-01 DE

1.17E+00 5.38E+01 5.37E+01 5.61E+01 5.16E+01 PSO

GMM 3.56E+00 4.13E+01 4.25E+01 5.29E+01 3.74E+01 PRO

3.64E-01 5.49E+01 5.49E+01 5.58E+01 5.41E+01 DE

M. R. Kahrizi and S. J. Kabudian / IJE TRANSACTIONS A: Basics Vol. 33, No. 10, (October 2020) 1924-1938 1935

Figure 5. Comparison of the convergence rate of the algorithms

in the GMM test

Figure 6. Comparison of the convergence rate of the algorithms

in the MLP test

5. CONCLUSION

In this paper, we introduced a new optimization algorithm.

The projectiles optimization (PRO) algorithm is a new

metaheuristic optimization algorithm that its method is based

on the projectiles' motion, and its main idea is based on the

properties of this type of motion in physics. In addition, the

PRO algorithm is a population-based algorithm.

In this essay, we attempted to introduce the PRO

algorithm and analyze its performance and compare it with

the two most powerful algorithms in the optimization field,

in which they were selected among the metaheuristic

optimization algorithms and were most similar to the PRO

algorithm. These comparisons were performed to evaluate

the accuracy and performance level of the PRO algorithm

with respect to other algorithms.

The obtained results from the comparison of PRO

algorithm with PSO and DE algorithms generally showed the

preference of this algorithm in all the cases and even despite

the limitations applied on the comparison to get more fair

conditions. The preference of the performance and accuracy

of the PRO algorithm was much more notable than the PSO

and DE algorithms, especially in high dimensional tests.

In the experiments, we observed that the PRO algorithm

had a higher degree of desire for optimization than other

algorithms. This means that the PRO algorithm performs

much better than the other algorithms and has not the early

convergence and sticking in local optimum points, which are

considered as drawbacks and weak points. Furthermore, the

speed of convergence to the global optimum point in the PRO

algorithm is much higher than other algorithms. In other

words, the PRO algorithm is able to provide a better balance

between the exploration and exploitation compared to the

other algorithms. Because a metaheuristic algorithm

performs more efficiently if it can provide an appropriate

balance between diversification and intensification.

In the next work, we intend to improve the power and

accuracy of the PRO algorithm to the best possible level by

using the dynamic and optimum updating and self-adaptive

initialization of variables associated with the algorithm.

6. REFERENCES

1. Talbi, E.G., “Metaheuristics: From design to implementation”,Vol. 74,

John Wiley & Sons. (2009). https://doi.org/10.1002/9780470496916

2. Birattari, M., Paquete, L., Strutzle, T. and Varrentrapp, K.,

Classification of metaheuristics and design of experiments for the
analysis of components. Technical Report No. AIDA-01-05, (2001).

Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.12.4407&rep=rep1&type=pdf

3. Boussaïd, I., Lepagnot, J. and Siarry, P., “A survey on optimization

metaheuristics,” Information Sciences, Vol. 237, (2013), 82-117.
https://doi.org/10.1016/j.ins.2013.02.041

4. Blum, C. and Roli, A., “Metaheuristics in combinatorial optimization:

Overview and conceptual comparison,” ACM Computing Surveys

(CSUR), Vol. 35, No. 3, (2003), 268-308.
https://doi.org/10.1145/937503.937505

5. Bianchi, L., Dorigo, M., Gambardella, L.M. and Gutjahr, W.J., “A

survey on metaheuristics for stochastic combinatorial optimization,”
Natural Computing: an International Journal, Vol. 8, No. 2, (2009),

239-287. https://doi.org/10.1007/s11047-008-9098-4

6. Goldberg, D.E. and Deb, K., “A comparative analysis of selection

schemes used in genetic algorithms,” Foundations of genetic

1936 M. R. Kahrizi and S. J. Kabudian / IJE TRANSACTIONS A: Basics Vol. 33, No. 10, (October 2020) 1924-1938

algorithms, Vol. 1, (1991), 69-93. https://doi.org/10.1016/b978-0-08-
050684-5.50008-2

7. Blickle, T. and Thiele, L., A comparison of selection schemes used in

genetic algorithms. (1995), TIK-Report.
https://doi.org/10.1162/evco.1996.4.4.361

8. Beasley, D., Bull, D.R. and Martin, R.R., “An overview of genetic

algorithms: Part 2, research topics,” University computing, Vol. 15,
No. 4, (1993), 170-181. Retrieved from
http://citeseer.ist.psu.edu/16527.html

9. Becerra, R.L. and Coello, C.A.C., A cultural algorithm with

differential evolution to solve constrained optimization problems, in
Advances in Artificial Intelligence–IBERAMIA 2004. Springer,
(20040, 881-890. https://doi.org/10.1007/978-3-540-30498-2_88

10. Konak, A., Coit, D.W. and Smith, A.E., “Multi-objective optimization

using genetic algorithms: A tutorial,” Reliability Engineering &

System Safety, Vol. 91, No. 9, (2006), 992-1007.
https://doi.org/10.1016/j.ress.2005.11.018

11. Alba, E. and Troya, J.M., “A survey of parallel distributed genetic

algorithms,” Complexity, Vol. 4, No. 4, (1999), 31-52.

https://doi.org/10.1002/(SICI)1099-0526(199903/04)4:4<31::AID-
CPLX5>3.0.CO;2-4

12. Elsayed, S.M., Sarker, R.A. and Essam, D.L., “A new genetic

algorithm for solving optimization problems,” Engineering

Applications of Artificial Intelligence, Vol. 27, (2014), 57-69.
https://doi.org/10.1016/j.engappai.2013.09.013

13. Goldberg, D.E., “Genetic algorithms in search optimization and

machine learning,” Addison-Wesley Reading Menlo Park, Vol. 412,
(1989). https://doi.org/10.5860/choice.27-0936

14. Kirkpatrick, S. and Vecchi, M.P., “Optimization by simulated

annealing,” Science, Vol. 220, No. 4598, (1983), 671-680.
https://doi.org/10.1126/science.220.4598.671

15. Černý, V., “Thermodynamical approach to the traveling salesman

problem: An efficient simulation algorithm,” Journal of Optimization

Theory and Applications, Vol. 45, No. 1, (1985), 41-51.
https://doi.org/10.1007/BF00940812

16. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and

Teller, E., “Equation of state calculations by fast computing

machines,” The Journal of Chemical Physics, Vol. 21, No. 6, (1953),
1087-1092. https://doi.org/10.1063/1.1699114

17. Creutz, M., “Microcanonical Monte Carlo simulation,” Physical

Review Letters, Vol. 50, No. 19, (1983), 1411-1414.
https://doi.org/10.1103/PhysRevLett.50.1411

18. Dueck, G. and Scheuer, T., “Threshold accepting: A general-purpose

optimization algorithm appearing superior to simulated annealing,”

Journal of Computational Physics, Vol. 90, No. 1, (1990), 161-175.
https://doi.org/10.1016/0021-9991(90)90201-B

19. Dréo, J., Petrowski, A., Siarry, P. and Taillard, E., “Metaheuristics for

hard optimization: Methods and case studies, Springer Science &
Business Media, (2006).

20. Charon, I. and Hudry, O., “The noising method: A new method for

combinatorial optimization,” Operations Research Letters, Vol. 14,
No. 3, (1993), 133-137. https://doi.org/10.1016/0167-6377(93)90023-
A

21. Charon, I. and Hudry, O., “The noising methods: A generalization of

some metaheuristics,” European Journal of Operational Research,
Vol. 135, No. 1, (2001), 86-101. https://doi.org/10.1016/S0377-
2217(00)00305-2

22. Charon, I. and Hudry, O., The noising methods: A survey, in Essays

and surveys in metaheuristics. 2002, Springer.245-261.

https://doi.org/10.1007/978-1-4615-1507-4

23. Charon, I. and Hudry, O., “Self-tuning of the noising methods,”
Optimization, Vol. 58, No. 7, (2009), 823-843.

https://doi.org/10.1080/02331930902944911

24. Courat, J.-P., Raynaud, G., Mrad, I. and Siarry, P., “Electronic
component model minimization based on log simulated annealing,”

IEEE Transactions on Circuits and Systems I: Fundamental Theory

and Applications, Vol. 41, No. 12, (1994), 790-795.
https://doi.org/10.1109/81.340841

25. Jeong, I.-K. and Lee, J.-J., “Adaptive simulated annealing genetic

algorithm for system identification,” Engineering Applications of

Artificial Intelligence, Vol. 9, No. 5, (1996), 523-532.
https://doi.org/10.1016/0952-1976(96)00049-8

26. Suman, B. and Kumar, P., “A survey of simulated annealing as a tool

for single and multiobjective optimization,” Journal of the

Operational Research Society, Vol. 57, No. 10, (2006), 1143-1160.
https://doi.org/10.1057/palgrave.jors.2602068

27. Chopard, B., and Tomassini, M., “Simulated annealing, Natural

Computing Series (First Edition). IN-TECH Education and Publishing,

(2018). https://doi.org/10.1007/978-3-319-93073-2_4

28. Hasani, A. and Soltani, R., “A hybrid meta-heuristic for the dynamic

layout problem with transportation system design,” International

Journal of Engineering - Transactions B: Applications, Vol. 28, No.

8, (2015), 1175-1185. https://doi.org/10.5829/idosi.ije.2015.28.08b.10

29. Fallah, M., Mohajeri, A. and Barzegar-Mohammadi, M., “A new
mathematical model to optimize a green gas network: A case study,”

In CIE 2016: 46th International Conferences on Computers and

Industrial Engineering, 1142–1149. Retrieved from

https://www.researchgate.net/publication/320920905

30. Chan, F.T. and Tiwari, M.K., “Swarm Intelligence: Focus on Ant and

Particle Swarm Optimization, IntechOpen, (2007).
https://doi.org/10.5772/5121

31. Saenphon, T., Phimoltares, S. and Lursinsap, C., “Combining new fast

opposite gradient search with ant colony optimization for solving
travelling salesman problem,” Engineering Applications of Artificial

Intelligence, Vol. 35, (2014), 324-334.
https://doi.org/10.1016/j.engappai.2014.06.026

32. Dorigo, M. and Stutzle, T., The ant colony optimization metaheuristic:

Algorithms, applications, and advances, In Handbook of

metaheuristics. Springer, (2003), 250-285.
https://doi.org/10.7551/mitpress/1290.003.0004

33. Dorigo, M., Birattari, M. and Stutzle, T., “Ant colony optimization,”

IEEE Computational Intelligence Magazine, Vol. 1, No. 4, (2006),

28-39. https://doi.org/10.1109/MCI.2006.329691

34. Dorigo, M. and Stützle, T., Ant colony optimization: Overview and

recent advances, In International Series in Operations Research and
Management Science (Vol. 272), Handbook of metaheuristics,

Springer, 311–351. https://doi.org/10.1007/978-3-319-91086-4_10

35. Mohajeri, A., Mahdavi, I., Mahdavi-Amiri, N. and Tafazzoli, R.,

“Optimization of tree-structured gas distribution network using ant

colony optimization: A case study,” International Journal of

Engineering - Transactions A: Basics, Vol. 25, No. 2, (2012), 141-

158. https://doi.org/10.5829/idosi.ije.2012.25.02a.04

36. Eberhart, R.C. and Kennedy, J., “A new optimizer using particle

swarm theory,” In Proceedings of the International Symposium on
Micro Machine and Human Science, Vol. 1, IEEE, (1995), 39-43.

https://doi.org/10.1109/mhs.1995.494215

37. Kennedy, J., Eberhart, R.C. and Shi, Y., “Swarm Intelligence”, IEEE
Technology and Society Magazine (Vol. 21). Morgan Kaufmann.

IEEE, (2002). https://doi.org/10.1109/MTAS.2002.993595

38. Kennedy, J. and Mendes, R., “Population structure and particle swarm
performance,” In The 2002 IEEE Congress on Evolutionary

https://doi.org/10.1109/MCI.2006.329691

M. R. Kahrizi and S. J. Kabudian / IJE TRANSACTIONS A: Basics Vol. 33, No. 10, (October 2020) 1924-1938 1937

Computation, CEC'02, (2002), 1671-1676.
https://doi.org/10.1109/CEC.2002.1004493

39. Gulcu, S. and Kodaz, H., “A novel parallel multi-swarm algorithm

based on comprehensive learning particle swarm optimization,”

Engineering Applications of Artificial Intelligence, Vol. 45, (2015),
33-45. https://doi.org/10.1016/j.engappai.2015.06.013

40. Shi, Y. and Eberhart, R., “A modified particle swarm optimizer,” In

The 1998 IEEE International Conference on Evolutionary
Computation, CEC'98, (1998), 69-73.
https://doi.org/10.1109/ICEC.1998.699146

41. Shi, Y. and Eberhart, R.C., “Empirical study of particle swarm

optimization,” In The 1999 IEEE Congress on Evolutionary
Computation , CEC'99, (1999), 1945-1950.
https://doi.org/10.1109/CEC.1999.785511

42. Clerc, M. and Kennedy, J., “The particle swarm-explosion, stability,

and convergence in a multidimensional complex space,” IEEE

Transactions on Evolutionary Computation, Vol. 6, No. 1, (2002),
58-73. https://doi.org/10.1109/4235.985692

43. Ozcan, E. and Mohan, C.K., “Particle swarm optimization: Surfing the
waves,” in The 1999 IEEE Congress on Evolutionary Computation,

CEC'99, (1999), 1939-1944.
https://doi.org/10.1109/CEC.1999.785510

44. Van den Bergh, F. and Engelbrecht, A.P., “A study of particle swarm

optimization particle trajectories,” Information Sciences, Vol. 176,
No. 8, (2006), 937-971. https://doi.org/10.1016/j.ins.2005.02.003

45. Kennedy, J. and Eberhart, R.C., “A discrete binary version of the
particle swarm algorithm,” In The 1997 IEEE International

Conference on Systems, Man, and Cybernetics, (1997), 4104-4108.
https://doi.org/10.1109/icsmc.1997.637339

46. Blackwell, T., Particle swarm optimization in dynamic environments,

In Evolutionary computation in dynamic and uncertain environments.

2007, Springer. 29-49. https://doi.org/10.1007/978-3-540-49774-5_2

47. Jam, S., Shahbahrami, A. and Sojoudi Ziyabari, S., “Parallel
implementation of particle swarm optimization variants using graphics

processing unit platform,” International Journal of Engineering -

Transactions A: Basics, Vol. 30, No. 1, (2017), 48-56.
https://doi.org/10.5829/idosi.ije.2017.30.01a.07

48. Reyes-Sierra, M. and Coello, C.C., “Multi-objective particle swarm
optimizers: A survey of the state-of-the-art,” International Journal of

Computational Intelligence Research, Vol. 2, No. 3, (2006), 287-
308. https://doi.org/10.5019/j.ijcir.2006.68

49. Ling, S.H., Chan, K.Y., Leung, F.H.F., Jiang, F. and Nguyen, H.,

“Quality and robustness improvement for real-world industrial
systems using a fuzzy particle swarm optimization,” Engineering

Applications of Artificial Intelligence, Vol. 47, (2016), 68-80.
https://doi.org/10.1016/j.engappai.2015.03.003

50. Mahmoodabadi, M., Taherkhorsandi, M. and Safikhani, H., “Modeling

and hybrid pareto optimization of cyclone separators using group

method of data handling (gmdh) and particle swarm optimization

(pso),” International Journal of Engineering - Transactions C:

Aspects, Vol. 26, No. 9, (2012), 1089-1102.
https://doi.org/10.5829/idosi.ije.2013.26.09c.15

51. Valdez, F., Melin, P. and Castillo, O., “An improved evolutionary
method with fuzzy logic for combining particle swarm optimization

and genetic algorithms,” Applied Soft Computing, Vol. 11, No. 2,
(2011), 2625-2632. https://doi.org/10.1016/j.asoc.2010.10.010

52. Poli, R., “Analysis of the publications on the applications of particle

swarm optimisation,” Journal of Artificial Evolution and

Applications, Vol. 2008, (2008), 1-10.
https://doi.org/10.1155/2008/685175

53. Poli, R., Kennedy, J. and Blackwell, T., “Particle swarm optimization,”
Swarm Intelligence, Vol. 1, No. 1, (2007), 33-57.
https://doi.org/10.1007/s11721-007-0002-0

54. Pant, M., Thangaraj, R. and Abraham, A., Particle swarm
optimization: Performance tuning and empirical analysis, In

Foundations of computational intelligence. 2009, Springer. 101-128.
https://doi.org/10.1007/978-3-642-01085-9_5

55. Thangaraj, R., Pant, M., Abraham, A. and Bouvry, P., “Particle swarm

optimization: Hybridization perspectives and experimental

illustrations,” Applied Mathematics and Computation, Vol. 217, No.

12, (2011), 5208-5226. https://doi.org/10.1016/j.amc.2010.12.053

56. Deepa, S., Babu, S.R. and Ranjani, M., “A robust statcom controller
using particle swarm optimization,” International Journal of

Engineering - Transactions B: Applications, Vol. 27, No. 5, (2013),

731-738. https://doi.org/10.5829/idosi.ije.2014.27.05b.08

57. Daliri, H., Mokhtari, H. and Nakhai, I., “A particle swarm optimization

approach to joint location and scheduling decisions in a flexible job

shop environment,” International Journal of Engineering-

Transaction C: Aspects, Vol. 28, No. 12, (2015), 1756-1764.
https://doi.org/10.5829/idosi.ije.2015.28.12c.08

58. Storn, R. and Price, K., “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of

Global Optimization, Vol. 11, No. 4, (1997), 341-359.
https://doi.org/10.1023/A:1008202821328

59. Mezura-Montes, E., Reyes-Sierra, M. and Coello, C.A.C., Multi-

objective optimization using differential evolution: A survey of the

state of the art, In Advances in differential evolution. Vol. 143, (2008),

Springer. 173-196. https://doi.org/10.1007/978-3-540-68830-3_7

60. Amirian, H. and Sahraeian, R., “Multi-objective differential evolution

for the flow shop scheduling problem with a modified learning effect,”
International Journal of Engineering - Transactions C: Aspects,

Vol. 27, No. 9, (2014), 1395-1404.
https://doi.org/10.5829/idosi.ije.2014.27.09c.09

61. Angeline, P.J., “Evolutionary optimization versus particle swarm

optimization: Philosophy and performance differences,” In

Evolutionary Programming VII, Springer. (1998), 601-610.
https://doi.org/10.1007/bfb0040811

62. Price, K., Storn, R.M. and Lampinen, J.A., “Differential evolution: A

practical approach to global optimization, Springer Science &

Business Media, (2006).

63. Das, S. and Suganthan, P.N., “Differential evolution: A survey of the

state of the art,” IEEE Transactions on Evolutionary Computation,
Vol. 15, No. 1, (2011), 4-31.
https://doi.org/10.1109/TEVC.2010.2059031

64. Karci, A., Imitation of bee reproduction as a crossover operator in
genetic algorithms, in PRICAI 2004: Trends in artificial intelligence.
(Vol. 3157), Springer, (2004). 1015-1016.
https://doi.org/10.1007/978-3-540-28633-2_141

65. Brest, J. and Maučec, M.S., “Self-adaptive differential evolution

algorithm using population size reduction and three strategies,” Soft

Computing, Vol. 15, No. 11, (2011), 2157-2174.
https://doi.org/10.1007/s00500-010-0644-5

66. Teng, N.S., Teo, J. and Hijazi, M.H.A., “Self-adaptive population

sizing for a tune-free differential evolution,” Soft Computing, Vol. 13,

No. 7, (2009), 709-724. https://doi.org/10.1007/s00500-008-0344-6

67. Liu, J. and Lampinen, J., “A fuzzy adaptive differential evolution

algorithm,” Soft Computing, Vol. 9, No. 6, (2005), 448-462.
https://doi.org/10.1007/s00500-004-0363-x

68. Tummala, A.S., Chintala, M.R. and Pilla, R., “Tuning of extended

kalman filter using self-adaptive differential evolution algorithm for

https://doi.org/10.1109/ICEC.1998.699146
https://doi.org/10.1007/s11721-007-0002-0

1938 M. R. Kahrizi and S. J. Kabudian / IJE TRANSACTIONS A: Basics Vol. 33, No. 10, (October 2020) 1924-1938

sensorless permanent magnet synchronous motor drive,”
International Journal of Engineering - Transactions A: Basics, Vol.

29, No. 11, (2016), 1565-1573.
https://doi.org/10.5829/idosi.ije.2016.29.11b.00

69. Kahrizi, M.R. Projectiles optimization (pro) algorithm. 2017 [cited

2020 Jun. 22]; IEEE Dataport. Available from:

https://doi.org/10.21227/H2TK92

70. Awad, N.H., Ali, M.Z., Liang, J.J., Qu, B.Y. and Suganthan, P.N.,

Problem definitions and evaluation criteria for the CEC 2017 special

session and competition on single objective bound constrained real-
parameter numerical optimization. 2016. Available:

https://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2017/CEC

2017.htm. Accessed: 21/06/2020.

71. Haykin, S., “Neural networks: A comprehensive foundation, Prentice

Hall PTR, (1994).

72. Reynolds, D.A. and Rose, R.C., “Robust text-independent speaker

identification using Gaussian mixture speaker models,” IEEE

Transactions on Speech and Audio Processing, Vol. 3, No. 1, (1995),

72-83. https://doi.org/10.1016/0167-6393(95)00009-D

73. Kahrizi, M.R. and Kabudian, S.J., “Long-term spectral pseudo-entropy
(ltspe): A new robust feature for speech activity detection,” Journal of

Information Systems & Telecommunication (JIST), Vol. 6, No. 4,

(2018), 204-208. https://doi.org/10.7508/jist.2018.04.003

74. Dempster, A.P., Laird, N.M. and Rubin, D.B., “Maximum likelihood

from incomplete data via the em algorithm,” Journal of the Royal

Statistical Society: Series B (Methodological), Vol. 39, No. 1, (1977),

1-22. https://doi.org/10.1111/j.2517-6161.1977.tb01600.x

Persian Abstract

 چکیده
آنها استفاده یبرا کیکلاس یهااز روش توانیدشوار که نم یسازنهیمسائل به یهستند که برا یسازنهیبه یهاتمیاز الگور یدینسبتا جد یهاگونه یفراابتکار یسازنهیبه یهاتمیالگور

 یده یکه ا دیجد ی فراابتکار یسازنه یبه تمیالگور ک یمقاله نی . در اندیآی به حساب م یسازنهیمسائل دشوار به ی گسترده برا ار یشده و بسشناخته ی ند و روشار د یکرد کاربرد فراوان

و افتیحوزه دست نیدر ا یسازنهیبه یهاتمیالگور ریسا نسبت به یبهتر جیآن بتوان به نتا یلهیتا به وس شودیاست ارائه مشده یبرداردهیا کیزینوع حرکت در ف کیآن از یاصل

 یهاتم یرا با الگور یسازنه یبه تمی الگور نیها، ابتدا اپرتابه یسازنه یبه تمی الگور یمقاله بعد از معرف ن یرو در ا نی را تجربه کرد. از ا یدیجد ر یتر مسمطلوب یقطهبه ن دنیرس یبرا

 ی هاتم یبا الگور یعمل ی ها را در دو مورد از کاربردهاپرتابه یسازنهیبه تم یو در ادامه، عملکرد الگور میکرد سهیتوابع سنجش معروف، مقا یبر رو حوزه و ن یشناخته شده و قدرتمند ا

 یسازنه یبه تمی الگور شتریدقت به مراتب ب یدهندهکه نشان میامختلف آورده یهاحالت یگوناگون و برا یهاها و شکل را در جدول هاسهی مقا نی ا جیو نتا میمورد سنجش قرار داد گرید

 . باشدی م گرید یهاتمی گورها نسبت به الپرتابه

