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A B S T R A C T  

 

Metaheuristic optimization algorithms are a relatively new class of optimization algorithms that are widely 

used for difficult optimization problems in which classic methods cannot be applied and are considered as 

known and very broad methods for crucial optimization problems. In this study, a new metaheuristic 
optimization algorithm is presented, the main idea of which is inspired by models in kinematics. This 

algorithm obtains better results compared to other optimization algorithms in this field and is able to explore 

new paths in its search for desirable points. Hence, after introducing the projectiles optimization (PRO) 
algorithm, in the first experiment, it is evaluated by the determined test functions of the IEEE congress on 

evolutionary computation (CEC) and compared with the known and powerful algorithms of this field. In the 

second try out, the performance of the PRO algorithm is measured in two practical applications, one for the 
training of the multi-layer perceptron (MLP) neural networks and the other for pattern recognition by Gaussian 

mixture modeling (GMM). The results of these comparisons are presented in various tables and figures. Based 

on the presented results, the accuracy and performance of the PRO algorithm are much higher than other 
existing methods.  

 doi: 10.5829/ije.2020.33.10a.11 
 

 
1. INTRODUCTION1 

 
Optimization is a procedure for reaching a state in which the 

problem has a certain advantage and improvement over other 

states. In other words, the purpose of optimization is to find 

a point in the problem space where the measure of fitness is 

maximized. The problem space is the range of values that 

exist for each dimension of the problem, and points can be 

selected from these intervals. The criterion for the fitness of 

points in the problem space varies according to the nature of 

the problem. If the type of our problem is of the cost or error, 

the point where the cost (or error) function has the least value 

is more fit than other points. This type of optimization is also 

called minimization.  On the other hand, there are some 

problems in which the optimization is to find a point in the 

problem space where the value of its objective function is 

maximum.  These problems in the field of optimization are 

called maximization. 

 

*Corresponding Author Email: kahrizi.mr@gmail.com (M. R. Kahrizi) 

Metaheuristic optimization algorithms are a new class of 

optimization algorithms that are applied to optimization 

problems in which classic methods cannot be used and are 

considered as well-known methods for difficult optimization 

problems. Metaheuristic algorithms are often inspired by 

nature.  Also, in metaheuristic algorithms, many steps are 

taken at random. For example, several points in the problem 

space are randomly selected, and they undergo a series of 

changes during the execution of the algorithm based on the 

random mechanism of each algorithm, which ultimately 

leads to access to the optimal global point. 

The rest of this paper is organized as follows. The 

effective methods and existing studies in the field of 

metaheuristic optimization are reviewed in Section 2. The 

proposed algorithm is described in Section 3. The 

comparison of the proposed method with other algorithms 

and results are discussed in Section 4. Finally, in Section 5, 

the conclusions are presented. 
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2. LITERATURE REVIEW 
 

Metaheuristic optimization algorithms are classified into 

different groups. References [1, 2] can be referred to for more 

information about optimization algorithm classification. 

Here, the purpose is to review some of the known and 

effective algorithms in the development of the projectiles 

optimization (PRO) algorithm, and in this section, a specified 

classification is not followed. Also, the available surveys, 

such as [3-5] can be referred to for more comprehensive 

information.  

One of the oldest and most known optimization 

algorithms are genetic algorithms (GA). These algorithms 

are classified as evolutionary algorithms because they use 

evolutionary computation. The genetic algorithm is a general 

application algorithm and can be applied in various forms 

due to its properties. These properties refer to the difference 

in the chromosome representation, various procedures of 

parent selection, and different methods in crossover and 

mutation. The methods of parent selection in the genetic 

algorithm have been compared in [6, 7]. Different genetic 

methods with a focus on new subjects were studied in [8]. 

However, different types of genetic algorithms have been 

presented over time, and in [9-12] the hybrid type, multi-

objective, parallel, and the new version of this algorithm 

were presented, respectively. Furthermore, reference [13] 

can be referred to for more information.  

Another old algorithm in the optimization field is the 

simulated annealing (SA) algorithm [14, 15], in which the 

Metropolis algorithm [16] has been used. Similar to other 

algorithms, the various versions of the SA algorithm have 

been proposed, such as the microcanonical annealing (MA) 

algorithm [17] in which the Creutz algorithm has been 

utilized instead of the Metropolis algorithm. In [18], another 

kind of SA algorithm has been proposed that was called 

threshold accepting (TA). The comparison between this 

algorithm and the SA algorithm can be observed in [19]. 

Noised method (NM) is another version of the SA algorithm. 

This algorithm and its various versions along with their 

survey have been studied in [20-23]. Another version of the 

SA algorithm for continuous spaces can be observed in [24]. 

In [25], the hybrid version of the SA algorithm has been 

presented for performance improvement in which the SA 

algorithm  has  been  combined  with  the  GA.  Furthermore, 

the papers [26-29] can be referred to as a comprehensive 

history.  

Ant colony optimization (ACO) is another optimization 

algorithm, which has been inspired by the ant colony’s 

motion and is classified under swarm intelligence (SI) based 

algorithms. Reference [30] can be referred to for more 

information. ACO algorithms have different classes. For 

example, in [31], the hybrid type of the ACO algorithm has 

been presented. References [32-35] can be referred to as 

examples, the development in the ACO algorithm, and the 

applicability of the ACO algorithm.  

Particle swarm optimization (PSO) algorithm is one of 

the well-known and powerful optimization algorithms that is 

inspired by a type of motion based on swarm intelligence. 

This algorithm is attractive due to its desirable performance, 

and a great amount of research has been performed on it. 

Various kinds of PSO algorithms have been presented over 

time. In [36-38], the topology, structure, and the ideas 

available in PSO have been discussed. Early convergence 

and hence getting stuck in local optimum points are 

drawbacks of the PSO algorithm. In [39-44], an attempt was 

made to resolve these weaknesses. In [45], a kind of PSO 

algorithm has been presented for discrete spaces. In [46], 

another version of the PSO algorithm has been presented for 

dynamic spaces. In [47], the parallel mode of PSO has been 

examined. In [48], a multi-objective type of algorithm has 

been discussed. Other various kinds of PSO algorithms can 

be followed in [49-51], which have been discussed in 

conjunction with algorithms and other methods for 

productivity improvement. The particle swarm algorithm has 

been used in wide fields due to its generality. The details and 

statistics of these fields have been given in [52]. Also, papers 

[53-57] can be referred to for more information about some 

applications and other hybrid versions of the PSO algorithm 

and their surveys. 

The differential evolution (DE) algorithm [58] is another 

powerful optimization algorithm classified as an 

evolutionary algorithm. The DE algorithm is a simple 

algorithm in the optimization field. As with other algorithms, 

different types of DE algorithms have been proposed. In [59, 

60], the multi-objective models of the DE algorithm have 

been discussed and used. In [61], the differences between 

PSO and DE algorithms have been studied. Another version 

of the DE algorithm has been introduced in [62]. The hybrid 

versions of the DE algorithm have been given in [63, 64]. 

Moreover, in [65-68], some methods and applications have 

been presented in which the DE algorithm determines its 

parameters in a self-adaptive manner. 

 

 

3. PROJECTILES OPTIMIZATION ALGORITHM 
 
In the PRO algorithm [69], we have attempted to double the 

accuracy and power. At PRO, we took advantage form the 

innovations and pros of other algorithms to avoid reinventing 

the wheel. This algorithm is inspired by the projectile motion 

in physics and is governed by its laws.  

The basic idea behind the PRO algorithm is derived from 

missiles launches. Since missiles must have the highest 

accuracy and least error in targeting, the process of moving 
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these projectiles can be considered as a model for 

optimization. 

As with the laws of physics related to this type of motion, 

we are faced with a set of parameters that control the motion 

of the projectiles. Such as acceleration of gravity in the 

launch environment, initial projectile velocity, launch angle, 

and intrusive forces such as friction. In the following the 

method of quantifying and calculating these parameters is 

described in the projectile algorithm step by step. 

Based on the pseudo-code presented in Figure 1, in the 

PRO algorithm similar to the other metaheuristic 

optimization algorithms, the first part is the initialization, in 

which all of the variables involved in the algorithm are 

introduced and initialized. After initializing the variables, to 

create each member of the population, which is called 

"projectile" here, random numbers with the uniform 

probability distribution are used in a determined range for 

each problem. Then, the cost of each member is calculated 

according to the considered cost function. Then, their 

maximum and minimum value are obtained. 

In the following, the main body of the algorithm is 

studied, which is inside the main loop. In this part of the 

algorithm, we use some of the principles, properties, and 

quantities of physics, such as the projectile motion rules, 

velocity, and gravitational acceleration. In the main loop of 

the algorithm, the members are sorted based on their costs in 

such a way that a member with the minimum cost is ranked 

as "first," and a member with the maximum cost is ranked as 

the "last." Then, the fitness of each member of the population 

is calculated by Equation (1), which results in a number in 

the range of (0, 1]. 

𝐹(𝑥𝑖) =
𝑁−(𝑅𝑎𝑛𝑘(𝑥𝑖)−1)

𝑁
  (1) 

In Equation (1), N denotes the total number of members 

(projectiles) and Rank(x) having a value in the range of 

{1,2,…, N}, determines the rank of each member i among all 

the members that is calculated based on C (xi) sorting, and C 

(xi) is the cost of member i that can be obtained through using 

the considered function (cost function) for optimization.  

After calculating the fitness F(x) for each member of the 

population, this fitness is used to determine the projectile 

launch angle according to Equation (2). It should be noted 

that as can be observed in Table 1, we have empirically 

considered the minimum and maximum angles tantamount to 

45° and 84°, respectively.  

( )min max min( ) ( )i ix F x   = + −  (2) 

In addition, to determine the gravitational acceleration for 

each projectile, fitness F(x) is used according to Equation (3). 

Here, we have experimentally considered the maximum and 

minimum values of the gravitational acceleration equal to 10 

m/s2 and 1 m/s2, respectively. 

( ) ( )( )min max mini iG x G F x G G= + −  (3) 

In Equations (2) and (3) all parameters are determined at the 

beginning of the algorithm, at the initialization section, 

except F(x) that is in the main loop of the algorithm and it is 

calculated separately for each member i, and in each 

iteration, it has a different value. The values given to the used 

parameters in the PRO algorithm are presented in Table 1. 

 

 

PRO Algorithm 

Initializing the projectile population (N) with random position, and 

velocity, gravitation, theta and change probability (CP) of each 

dimension (D) of the projectiles for moving in the search space; 

Evaluating the cost C( xi ) for each projectile i; 
Evaluating the rank Rank( xi ) for each projectile i by sorting the 

costs C( x ); 

For n = 1,…,
iter

N   (number of iterations) do 

For i = 1,…,N(number of projectiles) do 

Evaluate the fitness ( )
i

F x  using 

( ) ( )( )( )1 /
i i

F x N Rank x N= − − ; 

Update the theta  ( )
i

x  using 

( ) ( )( )
min max mini i

x F x   = + − ; 

Update the gravitation ( )
i

G x  using 

( ) ( )( )
min max mini i

G x G F x G G= + − ; 

Update the velocity ( )V n  using 

( ) ( ) ( )( )( )
max max min

1 / 1 ;
iter

V n V n N V V= − − − −  

For d = 1,…,D(number of dimensions) do 

Create random numbers
, ,2,i d i dr r by  

                   a uniform distribution ( )0,1U ; 

Evaluate the horizontal range R(
,i dx ) using 

                  ( ) ( ) ( )( ) ( )2 sin 2i i iR x V n x G x= and  

                   multiplied by
,i dr ; 

Create the new projectile
,2i dx  randomly using a 

normal distribution ( )( )2

, ,,i d i dN x R x with CP 

probability for each dimension,  

( )( )2

, , ,

,

,

2
2

,     

                     

i d i d i d

i d

i d

N x R x if r CP
x

x otherwise

  
=  
  

;  

End 

Evaluate the cost C2( 2ix ) for each new 

             projectile i; 

End 

Sort the x and x2 by costs of them (C, C2) and remove the 
worse half of them;  

Evaluate the rank Rank( xi ) for each projectile i that  

      remain from competitive exclusion by sorting costs; 
End 
 

 

Figure 1. PRO algorithm pseudo code 
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TABLE 1. The parameters and their determined values in the PRO 

algorithm which are the same and constant for all test functions 

Value Quantity Symbol 

D Number of projectiles N 

10E+4 Number of iterations in each run Niter

 

10, 50 Number of problem's dimensions D 

10E+4  D Maximum function evaluation MaxFE 

100 The upper limit of the search space LimUp 

-100 The lower limit of the search space LimLo 

10 m/s2 Maximum value of gravitational acceleration Gmax

 

1 m/s2 Minimum value of gravitational acceleration Gmin

 

84  Maximum initial launch angle in degree max

 

45°  Minimum initial launch angle in degree min

 

0.1 
The Change Probability of each dimension in 

each projectile 
CP 

Limup LimLo−

m/s 
Maximum value of initial velocity Vmax

 

Vmax   0.1 m/s Minimum value of initial velocity Vmin

 

 

 

Parameters are initialized in such a way to provide similar 

and impartial conditions for the comparison of this algorithm 

with other algorithms. These conditions have been presented 

in [70] and are not the best condition for the PRO algorithm.  

After determining the parameters of the launch angle and 

the gravitational acceleration, the initial velocity of the 

projectiles should be calculated. This value is constant here 

and similar for all the projectiles in each iteration. And in the 

first iteration, the initial velocity is equal to the 

predetermined value Vmax. In each iteration of the algorithm, 

an amount of the projectiles' initial speed is reduced based on 

Equation (4) so that in the last iteration, the initial speed is 

reached the predetermined value Vmin.  

However, to determine the initial values of the variables 

and update their values in this algorithm, other methods 

appropriate to the problem conditions may be applied. For 

example, the Euclidean distance of each projectile to the best 

projectile (member with the lowest cost) can be used to 

determine the fitness level, launch angle, gravitational 

acceleration, and initial velocity. 

( )max max min

iter

1
( )

1

n
V n V V V

N

−
= − −

−
 (4) 

where n denotes the current iteration of the algorithm, and 

the minimum and maximum of its values are 1 and Niter, 

respectively. 

After determining the required parameters, the horizontal 

range of each projectile should be calculated that is 

calculated from Equation (5) based on the physics laws 

governing the projectiles' motion.  

𝑅(𝑥𝑖) =
𝑉2(𝑛) 𝑠𝑖𝑛(2𝜃(𝑥𝑖))

𝐺(𝑥𝑖)
  (5) 

As can be seen in Figure 2, this figure shows the variations 

of the range (it is considered here as a movement in the 

problem space) with the variations in the launch angle. In this 

figure, the initial velocity and the gravitational acceleration 

in the launch site are considered to be equal to 20 m/s and 10 

m/s2, respectively. In addition, in Figures 3 and 4, the 

projectiles range amount with respect to the variations in the 

gravitational acceleration in the launch site, and the 

projectiles range amount with respect to the variations in the 

launch initial velocity are depicted respectively in which the 

launch angle is considered equal to 45∘.  
After determining the horizontal range value R(xi) for all 

members of the algorithm population, these values are 

multiplied by a random array in the range (0, 1) with a 

uniform distribution. These random numbers are different for 

each member and each dimension. This can be assumed as 

the effect of the disruptive forces on the projectiles' motion. 

However, we decide to apply the effect of the disruptive 

forces in two stages, and the first phase is applied in this 

section. 

Then, we determine in which dimension the member 

(projectile) can be altered, in other words, in which 

dimension of the problem space the projectile can be moved. 

This action is performed randomly and with CP probability 

for each dimension of the members. CP determines the 

change probability of each member in every dimension that 

is initialized at the beginning of the algorithm. 

 

 

 
Figure 2. The projectile range with respect to the variation of the 

launch angle, with the initial velocity of 20 m/s and the 

gravitational acceleration of 10 m/s2 
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Figure 3. The projectile range with respect to the variation of the 

gravitational acceleration in the launch point, with the initial 

velocity of 20 m/s and the launch angle of 45∘ 

 

 

 
Figure 4. The projectile range with respect to the variation of the 

projectile initial velocity with an angle equal to 45∘and the 

gravitational acceleration of 10 m/s2 

 

 
Now, after performing the previous steps, we can create 

new members in the algorithm; in other words, the projectiles 

can be launched. Obviously, each member is recognized by 

its coordinates in problem space, which are the dimensions' 

values of each member here. In order to specify the new 

members, we use the projectiles coordinates and their range 

amount (R(x)) and the dimensions that should be changed in 

each member. In this way, the coordinates of the new 

members are determined randomly by the normal probability 

distribution with the mean value xi,d, and the standard 

deviation R(xi,d), where xi,d  represents the mean value of  

dimension d for member i. Also, the number of new members 

of the algorithm is the same as the number of initial 

population members here and in each iteration of the 

algorithm. As mentioned earlier, the effect of the disruptive 

forces are applied in two stages due to the experimental 

observations on the PRO algorithm, the first stage was at the 

projectiles range R(x) determination time that was in the form 

of multiplying by random numbers with uniform distribution, 

and the second stage is implicitly in the new members' 

creation. As mentioned, in the section of creating new 

members, we used random numbers with normal distribution 

for creating new members. These random numbers are 

implicitly the second phase of applying the disruptive and 

friction forces. Otherwise, the randomly creation new 

members is not necessary, and the coordinates of the new 

member can be obtained by having the current coordinates 

and range of each member. 

Now, in this step of the algorithm, the number of 

population members in the algorithm has doubled since the 

beginning of the algorithm main loop reached 2N; now, it is 

the time to apply the specified cost function to the new 

members of the population. This is necessary to perform the 

next stage, which is sorting all members according to their 

costs. After applying the cost function on the new members 

and sorting all the new and old members with respect to their 

costs, half of the population members with inappropriate 

(higher) costs are removed from the population. This action 

is called competitive exclusion. 

At the end of the algorithm main loop, the cost of the best 

member in each iteration can be stored in a variable such as 

Cbest. Then the counter of the algorithm loop is increased by 

one, and we return to the beginning of the loop that is the 

investigation of the loop end condition.  

All of the stages that have mentioned from the beginning 

of this section are repeated until the end condition of the loop 

will be satisfied; for example, until the value of the loop 

repetition counter reaches the predetermined amount. At this 

point, the repetition ends, and the algorithm is completed. At 

the end, the algorithm converges to the object point with the 

maximum fitness and minimum cost.  
 

 

4. ALGORITHM COMPARISON AND RESULTS 
 

In the PRO algorithm, we aimed for a better performance 

than other known algorithms in the optimization field. Thus, 

we compared it with the powerful and well-known particle 

swarm and differential evolution algorithms. In Tables 2 and 

3, the values corresponding to the parameters of these 

algorithms can be seen. These values are experimental and 

represent the algorithm’s best performance. 
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In this comparison, we used the test functions that have 

been introduced in [70] for measuring the algorithms' 

performance in the IEEE CEC 2017 conference. In addition, 

we compared the PRO algorithm with the particle swarm and 

differential evolution algorithms in two applied cases of 

multi-layer perceptron (MLP) neural networks training and 

pattern recognition by the GMM method. The obtained 

results from different cases are presented in Tables 4 to 7. 

Also, the obtained results for the practical cases have been 

presented in a graph form in Figures 5 and 6. As can be seen, 

the results show that the proposed algorithm performs better 

than the other algorithms. 

 
4. 1. Comparison Using the Test Functions          As 

mentioned earlier, the PRO algorithm was compared with the 

particle swarm and differential evolution algorithm on some 

test functions that have been used in the IEEE CEC 2017 

conference for algorithm comparison. In [70], the test 

functions have been introduced comprehensively. 

 

 
TABLE 2. The parameters and their determined values in the PSO 

algorithm which are the same and constant for all comparisons 

Symbol Quantity Value 

Iteration Number of iterations 10E+4 

Dimension (D) Number of problem dimensions 10, 50 

MaxFE Maximum function evaluation 10E+4D 

Particle Number of particles D 

1 Value of 1 0.3 

2 Value of 2 0.7 

Wmax Initial value of inertia weight 0.9 

Wmin final value of inertia weight 0.4 

 

 
TABLE 3. The parameters and their determined values in the DE 

algorithm which are the same and constant for all comparisons 

Symbol Quantity Value 

Iteration Number of iterations 10E+4 

Dimension (D) Number of problem dimensions 10, 50 

MaxFE Maximum function evaluation 10E+4  D 

PopSize Number of populations D 

F Impact factor of difference 1 

CR Probability of crossover 0.5 

 

 
 

 

The results of this comparison are presented in Tables 2, 

3, and 4. These comparisons were made similar to the 

presented method in [70], and based on the error between the 

difference of the optimization algorithms’ output and the 

ideal output as Equation (6). It should be noted that the 

purpose   of  optimization  in  these  comparisons  was  to  

find the minimum value of the functions in the given range 

[-100,100] for each function (minimization). 

𝐸 = 𝐶(𝑥𝑖) − 𝐶∗(𝑥𝑖)  (6) 

where C(xi) is the output of the optimization algorithm or the 

minimum acquired cost, and C*(xi) is the ideal output or the 

minimum accessible cost for each function by the 

optimization algorithms. 

Here, the comparisons were performed in such a way that 

appropriate initial conditions were considered for each of the 

three algorithms, and these conditions were constant for all 

comparisons. The initial conditions for the PRO algorithm 

are presented in Table 1. 

The comparison between the optimization algorithms 

was performed with an equal population size for algorithms. 

The number of members was equal to the number of problem 

dimensions (10 and 50). Moreover, each comparison was 

repeated 50 times, and each time the seed of random number 

generator was identical for all algorithms. So, the generation 

of random values would be the same for all algorithms, and 

the randomly generated numbers for the algorithms would be 

the same if possible. Also, the seed of the random number 

generators was different for each order of the comparison 

repetition. Furthermore, the maximum amount of the 

function evaluation for all algorithms was assumed to be 

equal to 10E+4  D, which was the end condition for the 

main loop of the algorithms.  

As can be seen in the comparison tables of the algorithms 

(Tables 4, 5, and 6), the results show that the performance of 

the PRO algorithm generally is much better than other 

algorithms for all the cases and on all the test functions.  

The tables give the best, worst, mean, median, and 

standard deviation (SD) of the results in 50 complete and 

separate runs of each algorithm for each test, respectively, in 

10 and 50-dimensional states in the corresponding columns. 

In these tables, the best results in each experiment are written 

in bold. As can be seen, in most cases the best results are for 

the PRO algorithm, especially when the dimensions are 

large. 

 
4. 2. Comparison Using Case Studies             In this 

section, we attempted to evaluate the PRO algorithm in real 

and practical applications. For this purpose,  we compared it  
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TABLE 4. Comparison results of algorithms using the test functions 1 to 10 

Result 
Dimensions Method Test 

SD Median Mean Worst Best 

1.56E+09 1.14E+09 1.29E+09 6.65E+09 1.24E+06 10 
PSO 

F1 

1.06E+10 3.21E+10 3.20E+10 5.83E+10 1.24E+10 50 

2.80E+03 1.56E+03 2.61E+03 1.11E+04 1.74E+00 10 
PRO 

7.81E+03 8.62E+03 1.10E+04 3.49E+04 2.20E+03 50 

1.39E+07 8.19E-09 2.83E+06 7.01E+07 7.82E-11 10 
DE 

2.33E+09 2.76E+10 2.75E+10 3.17E+10 2.12E+10 50 

3.27E+12 5.77E+08 1.01E+12 1.80E+13 4.03E+04 10 
PSO 

F2 

1.65E+73 3.05E+62 2.78E+72 1.16E+74 1.49E+50 50 

2.26E-03 3.92E-04 1.44E-03 9.19E-03 6.30E-06 10 
PRO 

8.96E+03 8.05E+01 1.43E+03 6.34E+04 9.82E-06 50 

5.99E+07 2.46E+01 1.26E+07 3.03E+08 1.24E-07 10 
DE 

3.08E+63 4.29E+60 5.27E+62 2.18E+64 6.48E+57 50 

3.13E+04 2.06E+04 3.33E+04 1.47E+05 4.35E+03 10 
PSO 

F3 

1.26E+05 3.79E+05 3.93E+05 7.84E+05 1.85E+05 50 

1.12E-03 9.70E-04 1.28E-03 5.90E-03 6.05E-05 10 
PRO 

2.94E+00 3.36E+00 4.09E+00 1.65E+01 1.01E+00 50 

1.52E+03 1.83E-05 4.17E+02 9.55E+03 1.95E-09 10 
DE 

2.66E+04 3.14E+05 3.15E+05 3.78E+05 2.51E+05 50 

1.91E+02 9.57E+01 1.37E+02 1.34E+03 9.29E+00 10 
PSO 

F4 

2.32E+03 3.92E+03 4.66E+03 9.93E+03 1.41E+03 50 

1.36E+01 9.31E-01 3.60E+00 7.18E+01 2.09E-03 10 
PRO 

5.64E+01 1.08E+02 1.14E+02 2.18E+02 2.10E+01 50 

1.85E+00 1.20E+00 1.61E+00 8.30E+00 1.13E-02 10 
DE 

3.18E+02 2.53E+03 2.55E+03 3.32E+03 1.95E+03 50 

2.50E+01 6.89E+01 7.14E+01 1.35E+02 2.46E+01 10 
PSO 

F5 

7.58E+01 4.95E+02 4.95E+02 6.75E+02 3.53E+02 50 

7.22E+00 1.99E+01 2.02E+01 3.38E+01 6.96E+00 10 
PRO 

5.77E+01 3.31E+02 3.29E+02 5.07E+02 1.99E+02 50 

3.00E+00 1.46E+01 1.41E+01 2.05E+01 6.14E+00 10 
DE 

1.87E+01 5.96E+02 5.98E+02 6.39E+02 5.50E+02 50 

1.61E+01 3.96E+01 4.13E+01 7.70E+01 6.45E+00 10 
PSO 

F6 

1.03E+01 7.29E+01 7.33E+01 1.06E+02 5.25E+01 50 

3.97E-04 3.00E-04 4.23E-04 2.54E-03 9.71E-05 10 
PRO 

1.74E-01 1.64E-02 9.77E-02 6.53E-01 1.04E-02 50 

6.58E-01 3.86E-01 5.36E-01 3.91E+00 1.95E-02 10 
DE 

2.83E+00 6.16E+01 6.15E+01 6.79E+01 5.49E+01 50 

3.98E+01 8.44E+01 9.16E+01 2.52E+02 3.54E+01 10 
PSO 

F7 

2.40E+02 1.22E+03 1.23E+03 1.78E+03 7.23E+02 50 

7.20E+00 2.47E+01 2.53E+01 4.43E+01 1.09E+01 10 
PRO 

4.32E+01 2.94E+02 2.97E+02 3.92E+02 2.10E+02 50 

4.67E+00 3.10E+01 3.09E+01 4.24E+01 1.84E+01 10 
DE 

1.08E+02 1.69E+03 1.67E+03 1.86E+03 1.34E+03 50 
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2.18E+01 4.46E+01 4.69E+01 1.33E+02 1.76E+01 10 
PSO 

F8 

6.67E+01 5.00E+02 5.08E+02 6.77E+02 3.85E+02 50 

1.05E+01 2.09E+01 2.27E+01 5.17E+01 5.97E+00 10 
PRO 

5.61E+01 3.31E+02 3.39E+02 4.80E+02 2.28E+02 50 

3.22E+00 1.70E+01 1.68E+01 2.40E+01 9.98E+00 10 
DE 

1.74E+01 6.01E+02 5.99E+02 6.34E+02 5.63E+02 50 

7.72E+02 8.61E+02 1.02E+03 4.44E+03 6.59E+01 10 
PSO 

F9 

4.98E+03 2.09E+04 2.11E+04 3.46E+04 1.17E+04 50 

1.84E+02 5.08E-06 4.36E+01 1.11E+03 8.81E-08 10 
PRO 

3.42E+03 1.31E+04 1.24E+04 2.24E+04 6.27E+03 50 

1.37E-01 2.68E-02 7.76E-02 7.70E-01 1.32E-05 10 
DE 

3.20E+03 2.84E+04 2.88E+04 3.60E+04 2.10E+04 50 

4.33E+02 1.46E+03 1.47E+03 2.54E+03 6.49E+02 10 
PSO 

F10 

1.01E+03 9.40E+03 9.37E+03 1.11E+04 6.34E+03 50 

2.22E+02 6.03E+02 6.08E+02 1.07E+03 1.25E+02 10 
PRO 

8.44E+02 5.45E+03 5.38E+03 6.96E+03 3.39E+03 50 

1.42E+02 5.37E+02 5.43E+02 8.53E+02 2.01E+02 10 
DE 

3.45E+02 1.25E+04 1.25E+04 1.30E+04 1.15E+04 50 

 

 

TABLE 5. Comparison results of algorithms using the test functions 11 to 20 

Result 
Dimensions Method Test 

SD Median Mean Worst Best 

1.53E+03 3.38E+02 9.47E+02 7.26E+03 1.44E+01 10 
PSO 

F11 

6.81E+03 7.56E+03 9.15E+03 3.14E+04 1.83E+03 50 

5.75E+00 1.10E+01 1.09E+01 2.41E+01 1.02E+00 10 
PRO 

5.23E+01 2.27E+02 2.23E+02 3.52E+02 1.05E+02 50 

4.86E+01 7.75E+00 2.21E+01 3.11E+02 4.10E-01 10 
DE 

3.38E+02 2.58E+03 2.59E+03 3.88E+03 2.03E+03 50 

1.21E+08 3.36E+06 4.29E+07 5.55E+08 2.41E+04 10 
PSO 

F12 

6.80E+09 7.07E+09 8.98E+09 3.94E+10 1.76E+09 50 

1.28E+04 1.04E+04 1.39E+04 4.18E+04 4.77E+02 10 
PRO 

1.16E+06 1.77E+06 2.04E+06 4.76E+06 2.29E+05 50 

9.78E+05 1.61E+03 1.99E+05 4.94E+06 8.48E+02 10 
DE 

1.97E+08 1.42E+09 1.42E+09 1.96E+09 1.01E+09 50 

1.86E+04 1.33E+04 1.84E+04 8.64E+04 1.03E+03 10 
PSO 

F13 

2.61E+09 1.41E+09 2.09E+09 1.27E+10 1.80E+05 50 

1.11E+04 9.60E+03 1.22E+04 3.13E+04 2.25E+01 10 
PRO 

1.06E+04 4.09E+03 9.42E+03 3.66E+04 2.18E+02 50 

2.47E+02 6.89E+01 1.36E+02 1.34E+03 6.40E+00 10 
DE 

3.50E+05 5.92E+05 6.69E+05 1.77E+06 1.83E+05 50 

8.51E+03 3.19E+03 8.31E+03 2.74E+04 1.57E+02 10 
PSO 

F14 

5.44E+06 1.39E+06 3.44E+06 3.19E+07 1.24E+05 50 

6.85E+03 2.77E+03 5.96E+03 2.26E+04 6.28E+00 10 
PRO 

6.88E+04 7.84E+04 9.05E+04 3.79E+05 1.68E+04 50 

7.38E+00 2.13E+01 2.00E+01 3.24E+01 2.93E-01 10 
DE 

1.97E+05 5.29E+05 5.49E+05 1.18E+06 2.36E+05 50 
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2.65E+04 2.01E+04 2.81E+04 1.09E+05 2.17E+02 10 
PSO 

F15 

6.05E+07 1.16E+05 1.14E+07 4.19E+08 3.27E+04 50 

6.68E+03 4.55E+03 6.74E+03 2.57E+04 2.21E+00 10 
PRO 

7.50E+03 8.30E+03 8.91E+03 3.08E+04 2.30E+02 50 

3.29E+01 2.06E+01 3.20E+01 1.26E+02 1.09E-01 10 
DE 

1.27E+04 3.26E+04 3.45E+04 5.94E+04 1.42E+04 50 

1.54E+02 4.96E+02 4.90E+02 8.83E+02 1.87E+02 10 
PSO 

F16 

6.92E+02 2.72E+03 2.76E+03 4.34E+03 1.30E+03 50 

1.39E+02 2.19E+02 2.21E+02 4.99E+02 5.56E-01 10 
PRO 

3.86E+02 1.90E+03 1.92E+03 2.93E+03 9.10E+02 50 

7.64E+01 4.39E+01 8.65E+01 3.10E+02 2.78E+00 10 
DE 

2.47E+02 3.30E+03 3.29E+03 3.76E+03 2.70E+03 50 

1.23E+02 1.26E+02 1.85E+02 6.11E+02 4.19E+01 10 
PSO 

F17 

1.40E+03 2.12E+03 2.48E+03 1.15E+04 1.50E+03 50 

4.88E+01 3.17E+01 5.17E+01 1.78E+02 1.31E+00 10 
PRO 

3.27E+02 1.38E+03 1.44E+03 2.30E+03 7.07E+02 50 

2.02E+01 2.45E+01 3.29E+01 1.20E+02 8.55E+00 10 
DE 

1.67E+02 1.89E+03 1.88E+03 2.20E+03 1.51E+03 50 

1.68E+04 1.13E+04 1.80E+04 5.39E+04 7.79E+02 10 
PSO 

F18 

2.50E+07 7.00E+06 1.44E+07 1.51E+08 8.83E+05 50 

9.88E+03 7.17E+03 1.09E+04 3.69E+04 1.99E+02 10 
PRO 

2.75E+05 5.48E+05 5.37E+05 1.19E+06 5.13E+04 50 

5.20E+02 3.84E+01 1.51E+02 2.71E+03 2.01E+01 10 
DE 

2.18E+06 6.27E+06 6.30E+06 1.23E+07 2.11E+06 50 

2.80E+06 1.33E+04 4.31E+05 1.99E+07 1.54E+02 10 
PSO 

F19 

1.95E+08 4.60E+06 3.69E+07 1.38E+09 3.57E+05 50 

8.47E+03 5.46E+03 8.08E+03 2.81E+04 3.58E+00 10 
PRO 

1.21E+04 1.55E+04 1.65E+04 4.25E+04 1.59E+02 50 

3.49E+01 2.92E+00 1.28E+01 2.19E+02 3.43E-01 10 
DE 

3.95E+04 3.77E+04 4.75E+04 1.71E+05 6.15E+02 50 

1.01E+02 2.44E+02 2.48E+02 5.14E+02 9.11E+01 10 
PSO 

F20 

3.66E+02 1.65E+03 1.66E+03 2.54E+03 9.31E+02 50 

1.09E+01 6.78E+00 1.17E+01 3.42E+01 2.74E-03 10 
PRO 

2.92E+02 1.14E+03 1.15E+03 1.85E+03 5.07E+02 50 

3.44E+01 2.12E+01 2.92E+01 2.07E+02 4.17E-02 10 
DE 

1.79E+02 1.43E+03 1.37E+03 1.68E+03 9.69E+02 50 

 

 

TABLE 6. Comparison results of algorithms using the test functions 21 to 30 

Result 
Dimensions Method Test 

SD Median Mean Worst Best 

5.60E+01 2.60E+02 2.46E+02 3.30E+02 1.15E+02 10 
PSO 

F21 

9.93E+01 7.51E+02 7.45E+02 9.96E+02 5.66E+02 50 

5.14E+01 2.35E+02 2.22E+02 2.69E+02 1.00E+02 10 
PRO 

5.65E+01 5.37E+02 5.48E+02 6.96E+02 4.07E+02 50 

6.06E+01 2.20E+02 1.74E+02 2.34E+02 1.02E+02 10 
DE 

2.12E+01 7.88E+02 7.82E+02 8.14E+02 7.08E+02 50 



M. R. Kahrizi and S. J. Kabudian / IJE TRANSACTIONS A: Basics Vol. 33, No. 10, (October 2020)   1924-1938                              1933 

6.38E+02 1.79E+02 5.22E+02 2.73E+03 1.05E+02 10 
PSO 

F22 

1.34E+03 9.81E+03 9.43E+03 1.12E+04 3.53E+03 50 

4.73E+02 1.04E+02 3.58E+02 1.60E+03 1.00E+02 10 
PRO 

1.49E+03 6.26E+03 6.09E+03 8.26E+03 1.00E+02 50 

3.35E+01 1.06E+02 9.64E+01 1.53E+02 1.43E+01 10 
DE 

3.91E+02 1.29E+04 1.28E+04 1.36E+04 1.14E+04 50 

7.37E+01 3.91E+02 4.13E+02 6.49E+02 3.39E+02 10 
PSO 

F23 

1.98E+02 1.41E+03 1.43E+03 1.80E+03 9.69E+02 50 

1.51E+01 3.34E+02 3.36E+02 3.71E+02 3.13E+02 10 
PRO 

7.72E+01 8.35E+02 8.33E+02 9.98E+02 7.02E+02 50 

4.50E+00 3.18E+02 3.18E+02 3.30E+02 3.11E+02 10 
DE 

2.30E+01 9.97E+02 9.96E+02 1.03E+03 9.09E+02 50 

1.16E+02 4.15E+02 3.97E+02 5.96E+02 1.17E+02 10 
PSO 

F24 

1.60E+02 1.34E+03 1.35E+03 1.81E+03 1.07E+03 50 

9.37E+01 3.89E+02 3.67E+02 4.64E+02 1.00E+02 10 
PRO 

1.18E+02 1.04E+03 1.07E+03 1.39E+03 8.86E+02 50 

7.49E+01 3.54E+02 3.18E+02 3.71E+02 1.17E+02 10 
DE 

2.12E+01 1.02E+03 1.01E+03 1.05E+03 9.47E+02 50 

1.42E+02 4.74E+02 5.17E+02 1.21E+03 4.10E+02 10 
PSO 

F25 

1.45E+03 2.70E+03 3.13E+03 6.76E+03 1.21E+03 50 

4.20E+01 4.45E+02 4.30E+02 5.24E+02 2.00E+02 10 
PRO 

3.64E+01 5.40E+02 5.35E+02 5.81E+02 4.61E+02 50 

5.34E+01 3.99E+02 3.90E+02 4.33E+02 1.16E+02 10 
DE 

3.48E+02 2.81E+03 2.78E+03 3.45E+03 2.00E+03 50 

5.39E+02 1.40E+03 1.27E+03 2.09E+03 3.19E+02 10 
PSO 

F26 

1.63E+03 9.67E+03 9.71E+03 1.41E+04 5.81E+03 50 

5.52E+02 7.08E+02 8.87E+02 1.76E+03 2.00E+02 10 
PRO 

6.84E+02 4.90E+03 4.93E+03 6.45E+03 3.45E+03 50 

3.92E+01 3.87E+02 3.77E+02 4.30E+02 3.00E+02 10 
DE 

3.05E+02 6.98E+03 6.93E+03 7.35E+03 5.55E+03 50 

4.48E+01 4.80E+02 4.77E+02 5.84E+02 4.08E+02 10 
PSO 

F27 

2.35E+02 1.29E+03 1.34E+03 2.09E+03 9.92E+02 50 

3.38E+01 4.09E+02 4.25E+02 5.01E+02 3.89E+02 10 
PRO 

1.23E+02 8.65E+02 8.59E+02 1.13E+03 6.48E+02 50 

3.85E+00 3.95E+02 3.95E+02 4.10E+02 3.90E+02 10 
DE 

2.91E+01 6.80E+02 6.82E+02 7.49E+02 6.13E+02 50 

1.79E+02 6.19E+02 6.53E+02 1.11E+03 3.16E+02 10 
PSO 

F28 

1.61E+03 3.69E+03 3.96E+03 7.81E+03 1.44E+03 50 

1.39E+02 5.84E+02 5.01E+02 6.46E+02 3.00E+02 10 
PRO 

2.62E+01 5.04E+02 4.98E+02 6.10E+02 4.59E+02 50 

6.42E+01 4.29E+02 4.46E+02 6.12E+02 3.70E+02 10 
DE 

8.09E+02 2.43E+03 2.57E+03 4.30E+03 1.16E+03 50 

1.54E+02 5.21E+02 5.46E+02 9.18E+02 3.13E+02 10 
PSO 

F29 

9.54E+02 3.63E+03 3.73E+03 7.62E+03 2.54E+03 50 

5.98E+01 3.23E+02 3.30E+02 5.00E+02 2.52E+02 10 
PRO 

3.59E+02 1.31E+03 1.32E+03 2.23E+03 5.31E+02 50 

1.13E+01 2.53E+02 2.54E+02 2.86E+02 2.38E+02 10 
DE 

2.76E+02 2.80E+03 2.78E+03 3.24E+03 2.09E+03 50 
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3.23E+06 1.87E+06 2.84E+06 1.56E+07 1.00E+04 10 
PSO 

F30 

5.52E+08 1.44E+08 3.76E+08 2.75E+09 4.72E+07 50 

4.39E+05 1.63E+04 2.67E+05 1.28E+06 1.43E+03 10 
PRO 

3.63E+05 1.02E+06 1.11E+06 2.25E+06 6.55E+05 50 

3.70E+05 1.71E+05 3.67E+05 8.83E+05 1.34E+03 10 
DE 

8.71E+06 2.98E+07 3.10E+07 4.98E+07 1.74E+07 50 

 

 
with the PSO and DE algorithms in two practical cases, one 

is relevant to minimizing the mean squared error (MSE) in 

training level of the MLP neural networks, and the other is to 

obtain the most suitable pattern for a predetermined Gaussian 

mixture by the Gaussian mixture model (GMM) method. 

Both cases can be considered as a type of minimization. As 

can be seen in Table 7 and Figures 5 and 6, the performance 

of the PRO algorithm in these cases is better than other 

algorithms.  

In the case that was relevant to the MLP neural network 

training [71], the MLP method was used for the classification 

of the Iris flower dataset. In this case, the purpose was to 

minimize the cost function, mean squared error, in the MLP 

neural network training. This error shows the difference 

between the actual and ideal output of the neural network. 

The number of hidden neurons was considered equal to 10, 

in which case the dimensions of the vector of neural network 

parameters (weights and biases) had 83 dimensions for 

optimization. Moreover, 50% of the whole dataset was used 

for training the neural network, in other words, we set the 

value of the variable, fraction of data for training, equal to 

0.5. 

In the application about the GMM, it should be noted that 

this model has several applications in different problems 

such as data processing, for example, speech and image 

processing, as in [72, 73]. The application of GMM is usually 

in the pattern recognition and modeling stage. In a standard 

approach for the training of the Gaussian mixture model 

parameters, the EM algorithm [74] has been used; however, 

we used the PSO, DE, and PRO algorithms for comparison 

instead of EM algorithm. In this case, we used a Gaussian 

test model with four Gaussian components by ten 

dimensions. Then by using GMM that was based on the 

intended optimization algorithms, the best pattern for this 

model was adapted. In this experiment, based on the 

determined properties for the test model, the number of the 

dimensions of the GMM vector parameters for the 

optimization  was  equal  to  84,  and  these  parameters 

included mean vectors, covariance matrix, and Gaussian 

weights. 

Figures 5 and 6 show that the PSO and DE algorithms 

have the drawback of early convergence to the local optimum 

points and stick in these local optimum points. According to 

these graphs, PSO and DE algorithms have been converged 

approximately in iteration 200 and even earlier. However, the 

PRO algorithm performed much better than these two 

algorithms from this point of view. As can be seen from these 

figures, the PRO algorithm has not been fully converged 

even until the last iteration of the algorithm. It can be drawn 

from results that the PRO did not stick in local optimum 

points and tended to more optimization. In addition, the 

speed of convergence to the global optimum point was much 

higher in the PRO algorithm than the other two algorithms in 

comparison. this notable difference in the convergence speed 

of algorithms can be clearly seen in Figures 5 and 6. Also in 

Table 7, the best results in each test are written in bold. As 

can be seen, in both cases the best results are for the PRO 

algorithm. 
 

 

 
TABLE 7. algorithms comparison results in GMM and MLP experiment in 50 separate runs and population members quantity equal to 10 

members and the maximum function evaluation of 10E+4 

Result 
Method Test 

SD Median Mean Worst Best 

1.52E-01 2.59E-01 2.93E-01 1.02E+00 1.13E-01 PSO 

MLP 3.74E-02 5.06E-02 5.75E-02 1.86E-01 5.12E-03 PRO 

2.81E-01 1.33E+00 1.29E+00 2.01E+00 6.62E-01 DE 

1.17E+00 5.38E+01 5.37E+01 5.61E+01 5.16E+01 PSO 

GMM 3.56E+00 4.13E+01 4.25E+01 5.29E+01 3.74E+01 PRO 

3.64E-01 5.49E+01 5.49E+01 5.58E+01 5.41E+01 DE 

 



M. R. Kahrizi and S. J. Kabudian / IJE TRANSACTIONS A: Basics Vol. 33, No. 10, (October 2020)   1924-1938                              1935 

 

 
Figure 5. Comparison of the convergence rate of the algorithms 

in the GMM test 
 

 

 
Figure 6. Comparison of the convergence rate of the algorithms 

in the MLP test 

 
 

5. CONCLUSION 
 

In this paper, we introduced a new optimization algorithm. 

The projectiles optimization (PRO) algorithm is a new 

metaheuristic optimization algorithm that its method is based 

on the projectiles' motion, and its main idea is based on the 

properties of this type of motion in physics. In addition, the 

PRO algorithm is a population-based algorithm.  

In this essay, we attempted to introduce the PRO 

algorithm and analyze its performance and compare it with 

the two most powerful algorithms in the optimization field, 

in which they were selected among the metaheuristic 

optimization algorithms and were most similar to the PRO 

algorithm. These comparisons were performed to evaluate 

the accuracy and performance level of the PRO algorithm 

with respect to other algorithms. 

The obtained results from the comparison of PRO 

algorithm with PSO and DE algorithms generally showed the 

preference of this algorithm in all the cases and even despite 

the limitations applied on the comparison to get more fair 

conditions. The preference of the performance and accuracy 

of the PRO algorithm was much more notable than the PSO 

and DE algorithms, especially in high dimensional tests.  

In the experiments, we observed that the PRO algorithm 

had a higher degree of desire for optimization than other 

algorithms. This means that the PRO algorithm performs 

much better than the other algorithms and has not the early 

convergence and sticking in local optimum points, which are 

considered as drawbacks and weak points. Furthermore, the 

speed of convergence to the global optimum point in the PRO 

algorithm is much higher than other algorithms. In other 

words, the PRO algorithm is able to provide a better balance 

between the exploration and exploitation compared to the 

other algorithms. Because a metaheuristic algorithm 

performs more efficiently if it can provide an appropriate 

balance between diversification and intensification. 

In the next work, we intend to improve the power and 

accuracy of the PRO algorithm to the best possible level by 

using the dynamic and optimum updating and self-adaptive 

initialization of variables associated with the algorithm. 
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Persian Abstract 

 چکیده 
آنها استفاده  یبرا کیکلاس یهااز روش توانیدشوار که نم  یسازنهیمسائل به یهستند که برا یسازنهیبه یهاتمیاز الگور یدینسبتا جد یهاگونه یفراابتکار یسازنهیبه یهاتمیالگور

 یده یکه ا  دیجد  ی فراابتکار  یسازنه یبه  تمیالگور  ک یمقاله    نی . در اندیآی به حساب م  یسازنهیمسائل دشوار به  ی گسترده برا  ار یشده و بسشناخته   ی ند و روشار د  یکرد کاربرد فراوان 

و  افتیحوزه دست  نیدر ا یسازنهیبه یهاتمیالگور ریسا نسبت به یبهتر جیآن بتوان به نتا  یلهیتا به وس شودیاست ارائه مشده  یبرداردهیا کیزینوع حرکت در ف کیآن از  یاصل

 یهاتم یرا با الگور  یسازنه یبه  تمی الگور  نیها، ابتدا اپرتابه  یسازنه یبه  تمی الگور  یمقاله بعد از معرف  ن یرو در ا  نی را تجربه کرد. از ا  یدیجد  ر یتر مسمطلوب   یقطهبه ن  دنیرس  یبرا

 ی هاتم یبا الگور  یعمل  ی ها را در دو مورد از کاربردهاپرتابه   یسازنهیبه  تم یو در ادامه، عملکرد الگور  میکرد  سهیتوابع سنجش معروف، مقا  یبر رو   حوزه و  ن یشناخته شده و قدرتمند ا

 یسازنه یبه  تمی الگور  شتریدقت به مراتب ب  یدهندهکه نشان   میامختلف آورده  یهاحالت   یگوناگون و برا  یهاها و شکل را در جدول   هاسهی مقا  نی ا  جیو نتا  میمورد سنجش قرار داد  گرید

 . باشدی م گرید یهاتمی گورها نسبت به الپرتابه

 


