
IJE TRANSACTIONS B: Applications  Vol. 33, No. 5, (May 2020)   1010-1019 
 

  

Please cite this article as: A. Namjoy, A. Bosaghzadeh, A Sample Dependent Decision Fusion Algorithm for Graph-Based Semi-Supervised 
Learning, International Journal of Engineering (IJE), IJE TRANSACTIONS B: Applications  Vol. 33, No. 5, (May 2020)   1010-1019 

 
International Journal of Engineering 

 

J o u r n a l  H o m e p a g e :  w w w . i j e . i r  
 

 

A Sample Dependent Decision Fusion Algorithm for Graph-based Semi-supervised 

Learning  
 

A. Namjoy, A. Bosaghzadeh* 
 
Faculty of Computer Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran 

 
 

P A P E R  I N F O   

 
 

Paper history: 
Received 15 February 2020 
Received in revised form 01 April 2020 
Accepted 01 April 2020 

 
 

Keywords:  
Affinity Graph 
Decision Fusion 
Label Propagation 
Multiple Features 

 
 
 

A B S T R A C T  
 

 

On many occasions, the evaluation of a phenomenon based on a single feature could not solely be 

resulted in comprehensive and accurate results. Moreover, even if we have several features, we don’t 
know in advance, which feature offers a better description of the phenomenon. Thus, selecting the best 

features and especially their combination could lead to better results. An affinity graph is a tool that 

can describe the relationship between the samples. In this paper, we proposed a graph-based sample-
based ranking method that sorts the graphs based on six proposed parameters. The sorting is performed 

such that the graphs at the top of the list have better performance compared to the graphs at the bottom. 

Furthermore, we propose a fusion method to merge the information of various features and improve the 
accuracy of label propagation. Moreover, a method is proposed for parameter optimizations and the 

ultimate decision fusion. The experimental results indicate that the proposed scheme, apart from 

correctly ranking the graphs according to their accuracy, in the fusion step, increases the accuracy 
compared to the use of a single feature. 

doi: 10.5829/ije.2020.33.05b.35 
 

 
1. INTRODUCTION1 
 
Recent technologies enabled us to easily gather diverse 

types of data. To create a big picture out of these 

different types of data for a specific problem (such as 

illness, biological process, or face recognition) we need 

to combine these types of data. One of the solutions is 

graph-based fusion which is obtained by creating a 

similarity matrix for each available type of data and 

then fusing them to have a complete spectrum of data 

[1]. In recent years, graph-based semi-supervised 

learning methods draw lots of attention in machine 

learning mainly, because of their flexibility and 

straightforward implementations [2–10].  

A graph is represented by three components G = (V, 

E, W) where V is a set of vertices (nodes) based on a 

dataset of X={xi, i= 1, …, N} where N is the number of 

samples, E is a set of edges with the dimension of N ×
N, and W is an N × N undirected weighting affinity 

matrix which represents the similarity between samples. 
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If the weight of an edge is larger than zero, it indicates 

that there is an edge between two vertices; otherwise, 

there is no edge between the two vertices [11]. 

A constructed graph alone cannot lend itself to an 

easy assessment and is not the final goal in machine 

learning. Graph-based label propagation is one of the 

well-known methods that adopt one or several graphs 

for the task of classification [2, 9, 12]. It essentially 

propagates the label of a vertex to its neighboring vertex 

based on the similarities coded in the affinity graph (i.e., 

W). 

The adopted graph plays an important role in the 

obtained result of label propagation. Indeed, given a real 

dataset as well as a machine learning task that uses this 

dataset, very often, knowing in advance the ideal graph 

for that dataset and for that task is a challenging task, if 

not unfeasible. Furthermore, graph construction 

methods have several parameters that need to be tuned. 

Moreover, some methods attempt to learn different 

metrics  based on  different  feature descriptors [13–16]. 
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Thus, in many cases, the best solution is to construct 

several graphs and then fuse them such that the resulted 

graph possesses useful information about each graph. 

This fusion can be performed either linearly like 

Sparse Multiple Graph Integration (SMGI) [17], deep 

graph fusion [18], and Multi-view Local Global 

Consistency [19] or non-linearly like Similarity 

Network Fusion (SNF) [1], Multi-modality Dynamic 

Label Propagation (MDLP) [11], and Nonlinear Graph 

Fusion [20]. 

Wang et al. [1] proposed a method called SNF. This 

method was utilized to combine the information of 

DNA, mRNA expression, and microRNA (miRNA) for 

five datasets of cancer. Their results have shown that 

their information fusion has significantly better 

performance than using one simple type of data. In 

SNF, feature selection and combination are done 

simultaneously. The combination algorithm transforms 

the graphs in a way that each strong  (weak) connection 

in many graphs is reinforced (weakened).  

Karasuyama and Mamitsuka [17] proposed a method 

for graph combination called SMGI, forcing sparsity on 

the graph fusion coefficients. Based on their claim, 

these sparse coefficients are not reachable by any other 

means. The basic idea is that among the created graphs, 

there might be some irrelevant and noisy information 

which make some graphs less important than others. 

These cases can be handled by controlling the 

coefficients of the graphs. The sparsity property has two 

advantages: 

1. Improving the prediction accuracy by removing 

irrelevant and noisy graphs 

2. Interpretable results, which means we could easily 

find informative graphs. 

Their experimental results indicated that the 

advantage of their model is not only in increasing the 

prediction accuracy but also in finding informative 

graphs. Their results and their comparisons show that 

the unique property of their method is the sparse 

weights. Meaning that there are few non-zero graph 

weights and many of graph weights are exactly zero. 

An et al. [19] extended the LGC [12] algorithm such 

that it learns from several graphs. They constructed one 

graph for each adopted feature descriptor and then 

combined them linearly with equal weights to form the 

fused graph. The resulted graph is then fed into the LGC 

method to estimate the class labels for the task of person 

identification. 

Lin et al. proposed a Dynamic Graph Fusion Label 

Propagation (DGFLP) method [21] that merged the 

information of features and labels. For each constructed 

graph, the DGFLP method assigned unequal adaptive 

weights according to the information available in each 

graph, while for the label space graph, they adopted a 

fixed value.  

The adoption of unequal weights in DGFLP and 

SMGI algorithms is motivated by the fact that the 

graphs that are constructed from various features and 

different graph construction algorithms do not have the 

same importance and information. Furthermore, in 

SMGI they show that the graphs constructed by varying 

the parameter of the graph construction technique can 

affect the information of the constructed graph. 

One of the main drawbacks of the above-mentioned 

methods is that they are not sample dependent, meaning 

that they adopt a fixed fused graph for all samples. 

However, this may not be the best solution, since, for 

each sample, a different combination of the graphs 

might be a good option. For instance, in the task of 

person identification, we can have graphs constructed 

based on fingerprints [22] and face [23] features. While 

for some people their fingerprint could be more 

discriminative, for some people their face might be 

more discriminative for identification. Hence, a better 

solution is that for each identity, separately decide 

which graph or combination of the graphs could be 

more discriminative. 

In this paper, we propose a sample dependent graph 

ranking method and a weighted decision fusion 

algorithm based on the information in each graph. The 

ranking algorithm sorts the graphs based on six 

weighted information extracted from the graphs. The 

ranking method sorts the graphs such that the graphs at 

the top of the list have the potential to provide accurate 

label in the label propagation task compared to the 

graphs at the bottom of the list. The graphs at the top are 

then employed for a combination phase, in which the 

results obtained from these graphs are then merged. In 

the decision fusion phase, we merge the decisions 

obtained from the most informative graphs and then 

decide about a sample label. 

The rest of this article is organized as follows: In 

Section 2 we explain the proposed method. Section 3 is 

dedicated to the experimental results, and Section 4 

concludes the article.  

 

 

2. PROPOSED METHOD 
 
2. 1. Preliminaries             Imagine we have N images 

in a classification task, where L out of N images are 

labeled and the remaining U=N-L images are unlabeled. 

For each image, we extract V features, hence, the 

feature vector will be {x1
(v)

, … , xN
(v)

}
v=1

V

 where x1
(v)

 is the 

vth feature vector with the dimensionality of Dv . Matrix 

Y ∈ ℝN×C contains the labels of the N samples for C 

classes. For each sample, we have a vector of 1 × C 

which  contains  1  for  the  corresponding class and 

zero  elsewhere.  Without  loss of generality, we sort the 
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data such that the labeled data comes first and then we 

put the data without the label. Hence, the data matrix 

will be like X = [x𝐿 , xU] where x𝐿 and xU represent the 

labeled and unlabeled data, respectively. Consequently, 

the adjacency matrix which shows the similarity 

between the data will have the following shape: 

𝑊 = [
𝑤𝑙𝑙 𝑤𝑙𝑢

𝑤𝑢𝑙 𝑤𝑢𝑢
]  

where 𝑤𝑙𝑙 represents the similarity between the labeled 

samples, 𝑤𝑙𝑢 shows the similarity of the labeled sample 

with unlabeled samples, 𝑤𝑢𝑙  demonstrates the similarity 

of unlabeled samples respect to labeled ones and 𝑤𝑢𝑢 

represents the similarity between unlabeled samples.  

The graph can then be used for label propagation 

where the goal is to propagate the label of labeled nodes 

via an affinity graph such that the close nodes get 

similar labels. Mathematically, this can be considered as 

an optimization problem as 

min ∑ 𝑊𝑖𝑗
 

𝑛

𝑖,𝑗=1
‖𝑓𝑖 − 𝑓𝑗‖2

2  (1) 

where 𝑊𝑖𝑗
  is the similarity between xi and xj and 𝑓𝑖 and 

𝑓𝑗  are the predicted labels of xi and xj, respectively. The 

Gaussian Fields and Harmonic Functions (GFHF) [24] 

method adopts this function (i.e., Equation (1)) for label 

propagation. On the other hand, the LGC [25] method 

uses a second term with which it tries to minimize the 

distance between the predicted labels and real labels of 

labeled samples. The formulation of LGC is as: 

(2) min
1

2
(∑ 𝑊𝑖𝑗

 
𝑁

𝑖,𝑗=1
‖

𝑓𝑖

√𝐷𝑖𝑖
−

𝑓𝑗

√𝐷𝑗𝑗
‖2

2 + μ ∑ ‖𝑓𝑖 − 𝑦𝑖‖2
2𝐿

𝑖=1
)  

where 𝑦𝑖 is the real label and 𝑓𝑖 is the predicted label of 

xi, μ > 0 is the regularization parameter, and Dii is the 

summation of the ith row of the W matrix. 

 

2. 2. Algorithm of the Proposed Method            In 

this section, at first, we explain the preprocessing 

applied on the graphs, then we describe the proposed 

scores that we adopt for graph ranking and finally, we 

explain the proposed fusion technique. 

As we observed in Equations (1) and (2), the labels 

got spread according to the graph weights that connect 

the nodes. Consequently, the graph plays a critical role 

in the result of label propagation. Since in the label 

propagation algorithms the labels are spread through the 

edges, a wrong edge that connects two nodes that 

belong to two different classes can cause wrong 

labeling. Therefore, it is very important to eliminate 

these wrong edges in order to increase labeling 

performance.  In other words, there must be no 

connection between the samples that belong to two 

different classes. In other words, there must be no edge 

between two nodes of two different classes. Since we do 

not know the label of unlabeled samples, we cannot 

eliminate the wrong edges for them. However, this 

process could be readily done for labeled data, in 

𝑤𝑙𝑙  submatrix, where we have the true label of all nodes. 

Hence, we set to zero the weight of edges between the 

nodes that correspond to different classes.  

The second step in the proposed method is to sort 

the graphs with the help of six parameters. In the 

following, we explain each of the parameters adopted to 

evaluate the graphs. 

As we stated earlier in the article, the wrong edges in 

a graph can cause wrong labeling. On the other hand, 

correct edges (i.e., the edges that connect samples from 

the same class) can enhance the performance. The more 

correct edges in a graph, the better it performs in the 

label propagation. To determine how well the same 

class nodes are connected in each graph, we select 𝑤𝑙𝑙 

subgraph, where we have the label of nodes and 

evaluate its edges that connect the same class nodes. We 

consider wll as a good representation of the whole 

graph. In other words, if the same class nodes are well 

connected (high similarity) in the 𝑤𝑙𝑙 submatrix, one 

can expect that it happens in the whole graph. 

Therefore, we define the summation of intraclass 

weights (SWICW) for the class 𝑐 as the first parameter 

and calculate it as 

(3) SWICWc =  ∑ ∑ 𝑊𝑖𝑗
𝑐

𝑁𝑐

𝑗=1
 

𝑁𝑐
𝑖=1   

where 𝑁𝑐 is the number of samples in the cth class and 

𝑊𝑖𝑗
𝑐  is the weight (similarity) between the xi and xj 

samples in class c. The idea of using this parameter is 

that a graph with large weights between the samples of 

the same class is less prone to wrong label propagation.  

The other five parameters are based on the accuracy 

obtained on the labeled data. We define a backward 

label propagation scheme as follows. First, we 

propagate the label of labeled samples to the unlabeled 

samples via GFHF [24] method. Second, we consider 

the estimated label of unlabeled samples as their true 

labels and remove the label of labeled samples. It means 

that the labeled samples are considered as unlabeled and 

the predicted label of the unlabeled samples is 

considered as their true label. Third, we propagate the 

label of unlabeled samples to the labeled ones. Based on 

the results of backward label propagation on the labeled 

samples, we calculate the second, third, and forth scores 

by calculating the maximum, entropy, and standard 

deviation of membership probability of the class 𝑐 

according to Equations (4)- (6), respectively. 

(4) 𝑀𝑃𝑂𝐵𝑐 =  ∑ 𝑀𝑎𝑥(𝑓𝑖)
𝑁𝑐
𝑖=1   

(5) 𝐸𝑃𝑂𝐵𝑐 =  ∑ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑓𝑖)
𝑁𝑐
𝑖=1   

(6) 𝑆𝑃𝑂𝐵𝑐 =  ∑ 𝑆𝑇𝐷(𝑓𝑖)
𝑁𝑐
𝑖=1   
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where 𝑓𝑖 is a vector containing the membership 

probability of a sample belonging to each class. 

The main idea is that the high certainty of detecting 

a class would promote higher accuracy. Our simulations 

indicate that the normalized average of these three 

parameters can represent how well the graphs perform 

in the label propagation task. 

The fifth and sixth scores are based on the accuracy 

of backward label propagation. The first one (the fifth 

score) is the accuracy of the label propagation on all of 

the labeled samples. We assume that if the label 

propagation on the labeled samples has high accuracy, 

one can expect that the graph can well predict the label 

of unlabeled samples too.  

The sixth score predicts how well a graph performs 

in predicting the samples of each class. Since we 

consider the overall accuracy as an estimation of the 

overall performance of a graph, we select the class 

accuracy of a graph as a variable that explains how well 

the graph predicts the label of samples in a specific 

class. 

After calculating the six parameters explained 

above, for a labeled sample whose labels have been 

correctly estimated (in backward label propagation), we 

normalize the parameters such that their sum equals to 

one. The normalized parameters are then used as the 

optimal coefficients of each parameter. 

Moreover, we adopt the average number of graphs 

that correctly propagate the labels as the number of 

graphs that should be used in the fusion step (denoted 

by S in Algorithm 1). 

Finally, based on the obtained parameters, for each 

graph and each class, a rank is calculated which 

indicates the credibility of the opinion of each graph in 

predicting the samples in each class (Equation (7)). 

𝑅𝑎𝑛𝑘𝑐
𝑖 =  

𝐴𝑐𝑐_𝑡𝑜𝑡𝑎𝑙𝑖 ×  𝐴𝑐𝑐_𝑡𝑜𝑡𝑎𝑙_𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 +. ..  

𝐴𝑐𝑐_𝑐𝑙𝑎𝑠𝑠𝑐
𝑖 ×  𝐴𝑐𝑐_𝑐𝑙𝑎𝑠𝑠_𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 + . ..  

𝑆𝑊𝐼𝐶𝑊𝑐
𝑖 × 𝑆𝑊𝐼𝐶𝑊_𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡+ . ..  

𝑀𝑃𝑂𝐵𝑐
𝑖  × 𝑀𝑃𝑂𝐵_𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 − . ..  

𝐸𝑃𝑂𝐵𝑐
𝑖  ×  𝐸𝑃𝑂𝐵_𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡+. ..  

𝑆𝑃𝑂𝐵𝑐
𝑖 ×  𝑆𝑃𝑂𝐵_𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  

(7) 

where 𝑖 is the graph index and 𝑐 is the class index. 

To estimate the label of unlabeled samples, we 

perform as follows. For each unlabeled sample, we sort 

the graphs according to the calculated coefficients and 

select the graphs with high ranking values. Then, for 

each graph, we perform label propagation to obtain the 

predicted label vector of the unlabeled sample. Finally, 

we take the weighted average decision of each selected 

graph and report it as the label vector of the unlabeled 

sample. Algorithm 1 summarizes the proposed method, 

while Algorithm 2 describes the process of calculating 

the six graph parameters. 
Algorithm 1. The proposed sample-dependent decision 

fusion method 

Input: A set of graphs based on different features and 

parameters Wset, the label of labeled data LL 
 

Output: Label of the unlabeled samples  

------------------------------------------------------------------- 

Score Calculation 

1. Set to zero the weight of edges between the samples 

from different classes (𝑤𝑙𝑙). 

2. Perform label propagation and backward label 

propagation for input graphs. 

3. Calculate the six scores of the graphs (Algorithm 2). 

4. For each sample whose label is correctly estimated in 

backward label propagation, calculate the coefficients of 

six parameters based on the normalized average of 

parameters. 

------------------------------------------------------------------- 

Graph sorting and Decision Fusion 

5. For each graph: 

5-1. For each class: 

5-1-1. calculate the rank of each class in each graph 

(Equation (7)). 

6. For each unlabeled sample: 

6-1. Get the predicted class label and the class rank of 

each graph. 

6-2. Sort the graphs according to the class rank. 

6-3. Set the majority class label of the top S graphs as 

the label of the unlabeled sample. 

 

Algorithm 2. Calculate the value of six scores of graph 

evaluation 

Input: The set of constructed graphs based on different 

features and parameters Wset, the label of labeled data 

LL, the results of backward label propagation 𝑓𝑖 
 

Output: Six evaluation parameters namely,  𝐴𝑐𝑐_𝑡𝑜𝑡𝑎𝑙𝑖, 

𝑆𝑊𝐼𝐶𝑊𝑐
𝑖, 𝑀𝑃𝑂𝐵𝑐

𝑖,  𝐸𝑃𝑂𝐵𝑐
𝑖, 𝑆𝑃𝑂𝐵𝑐

𝑖  , 𝐴𝑐𝑐_𝑐𝑙𝑎𝑠𝑠𝑐
𝑖 . 

------------------------------------------------------------------- 

1. For each graph 𝑖 
2. Calculate the accuracy of backward label propagation 

and set it as 𝐴𝑐𝑐_𝑡𝑜𝑡𝑎𝑙𝑖 

3. For each class c=1,…, C do the following: 

3-1. Set 𝑆𝑊𝐼𝐶𝑊𝑐
𝑖  using Equation (3). 

3-2. Set 𝑀𝑃𝑂𝐵𝑐
𝑖 using Equation (4).  

3-3. Set 𝐸𝑃𝑂𝐵𝑐
𝑖 using Equation (5). 

3-4. Set 𝑆𝑃𝑂𝐵𝑐
𝑖   using Equation (6). 

3-5. Set 𝐴𝑐𝑐_𝑐𝑙𝑎𝑠𝑠𝑐
𝑖 as the accuracy of the 𝑐𝑡ℎ class. 

 
 

3. EXPERIMENTAL RESULTS 
 

In this section, we evaluate and analyze the results of 

the simulations. In Section 3-1, we explain the 

employed datasets. In Section 3-2, we present the 
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extracted features and the graph construction process. In 

Sections 3-3, 3-4, and 3-5, we evaluate the parameters 

and their correspondence with the accuracy of label 

propagation. Finally, in Section 3-6, we bring the result 

of the proposed ensemble method. All of the 

simulations have been carried out in the MATLAB 

environment. 

 

3. 1. Face Datasets           We employed four gray 

image datasets which are described as below: 

1. Extended Yale (Yale Ext): contains 16128 gray 

images from 28 persons in 9 different angles and 64 

different lighting situations. We selected a subset of 

data with 1774 images. 

2. PF01: contains the gray image of 103 persons, 53 

men, and 50 women, in 17 different situations (1 normal 

face, 4 different lightings, 8 different angles, and 4 

different face modes. 

3. PIE: We use a reduced dataset containing 1926 face 

images of 68 individuals which contain pose, 

illumination, and facial expression variations. 

4. Feret: we select a subset containing 1400 images of 

200 persons (7 images for each individual) [26]. 

Figure 1 shows some samples of these four datasets. 

 

3. 2. Feature Extraction and Graph Construction       
For each image in the dataset, we use seven descriptors. 

The first one is the pure grayscale image. Moreover, we 

extract three variations of Local Binary Pattern (LBP) 

[27] descriptor all with the radius of one and 

neighborhood size of eight. The concatenated LBP 

image, with the dimensionality of 900, the normalized 

histogram of the uniform LBP with the dimensionality 

of 59 and a block-based LBP with the dimensionality of 

944. For block-based LBP, the image is divided into 9 

cells and from each cell, the histogram of uniform LBP 

is calculated. The nine histograms are then concatenated 

to form a 944-dimensional feature vector. Furthermore, 

we extract Gabor feature with 5 scales and 8 

orientations that lead to a 2560 feature vector and 

finally two variations of a 9 channel Covariance feature 

[28]   (whole    image    and    block - based)    with   the 

 

 

 
(B)  

 
(A) 

 
(D)  

 
(C) 

Figure 1. samples of image datasets. (A) PF01, (B) Yale Ext, 

(C) Pie, (D) Feret 
 

dimensionality of 45 and 405 as image descriptors. For 

the block-based Covariance matrix, the image is divided 

into nine blocks and the extracted features from the 

blocks are then concatenated to form the 405-

dimensional feature vector. 

For the graph weight, we use L1_Roboust [29], 

which is a data self-representative method, meaning that 

one image is represented by the linear combination of 

the database and the contribution of each image is 

considered as its similarity and used as the edge weight. 

For each image descriptor, we used seven different 

threshold values (i.e., 0.05, 0.1, 0.5, 0.9, 1, 1.5, and 2) 

of the L1_Robust method to represent each sample 

where the coefficients obtained from each threshold is 

used to construct one graph. Hence, in total for each 

database, we constructed 49 graphs to use them in the 

selection and combination phases. 

In the conducted experiments, to obtain results less 

dependent on the selected set of labeled\unlabeled 

samples, we repeat each experiment for 10 different 

combinations of labeled/unlabeled set and report the 

average of the accuracy.  

 

3. 3. SWICW Parameter        In this section, we 

evaluate the results of graph ranking based on the 

proposed SWICW criteria. For a visual comparison, we 

put data from the same class alongside each other. For a 

good graph, we expect to observe large weights for the 

samples having the same class label and weak weights 

between the data of different classes. This causes a 

block shape graph wherein each block we have the 

samples correspond to the same class. Figure 2 shows a 

part of the graphs that have the highest SWICW, where 

Figure 3 shows the graphs with the lowest SWICW. As 

we observe in Figure 2, the graphs have a block shape 

which means that there exist edges between the samples 

from the same class, while in Figure 3 we observe that 

there is no clear edge between the nodes of the same 

class. This results visually confirms the goodness of 

these criteria.  

For a quantitative evaluation of the proposed 

criteria, for each of the 49 graphs built based on 

different features and parameters, the matching of 

SWICW values to the accuracy of label propagation 

methods LGC and GFHF are calculated and evaluated 

for one combination of label data (30%) and unlabeled 

data (70%) and also the average of 10 combinations. 

First, based on a specific combination of data, the 

SWICW values and the accuracy of label propagation 

methods LGC and GFHF have been compared (SWICW 

split). As we know, different combinations of 

labeled/unlabeled could result in different outcomes. 

Therefore, for evaluating how well the labeled data 

could be generalized for the entire data, the average 

accuracy of label propagation methods LGC and GFHF 

for 10 different  combinations of labeled  and  unlabeled 
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(A) 

 
(B) 

Figure 2. Part of the graphs that have the highest SWICW 
values in (A) PF01, (B) Pie databases. 
 

 

 
(A) 

 
(B) 

Figure 3. Part of the graphs which have the lowest SWICW 

value in (A) PF01 and (B) Pie datasets. 
 

 

data for all 49 graphs were compared to the values of 

SWICW (means of 10 splits). Then, the results were 

sorted decadently based on the SWICW parameter and 

reported. We expect to observe low label propagation 

accuracy for the graphs with low values of SWICW and 

high accuracy for the graphs with high values of 

SWICW. We plot the SWICW parameter and the 

accuracy for PIE, Ext Yale, PF01 and FERET datasets 

in Figure 4. As the results show in Figure 4, although in 

some cases the proposed criteria are not completely 

matched to the label propagation accuracy, in most 

cases, the graphs with the high label propagation 

accuracies are located at the beginning of the list while 

the graphs at the end of the list have low accuracies. 

 

 

 
(A) 

 
(B) 

 
(C) 

 
(D) 

Figure 4. Comparison of SWICW and label propagation 

accuracy of LGC and GFHF (for one and average of ten 

combinations) on (A) Pie, (B) Yale Ext, (C) PF01, and (D) 

Feret databases 
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3. 4. Comparison between the Accuracy of Label 
Propagation and Backward Label Propagation          
As we stated before, first, we perform the label 

propagation for all of the graphs and then the label is 

propagated backward. In this phase, the estimated labels 

of unlabeled data are propagated to the labeled data 

(which in here are considered as unlabeled data). Since 

we have the true labels, the accuracy of label 

propagation for each graph and each class is calculated. 

The goal of this experiment is to observe how well the 

backward label propagation accuracy can mimic the 

forward label propagation accuracy. 

In Figure 5, the average accuracy of label 

propagation (on the unlabeled samples) and backward 

label propagation (on the labeled samples) for different 

combinations of labeled and unlabeled data are 

calculated for four datasets. "GFHF L3 mean 

accuracies" and "GFHF L4 mean accuracies" denote the 

accuracy of label propagation for 3 and 4 labeled data 

and "GFHF UL3 mean accuracies" and "GFHF UL4 

mean accuracies" indicate the backward label 

propagation accuracies, respectively.  

It should be noted that for instance, if we have 9 

samples per class and 3 are used as labeled and 6 as 

unlabeled, in the backward label propagation we will 

have 6 labeled and 3 unlabeled samples. In Figure 5, the 

horizontal axis is label propagation accuracy and the 

vertical axis is the graph number (49 graphs). As we 

observe, the accuracy of backward label propagation 

shows similar behavior compared to the label 

propagation on the unlabeled samples. In other words, 

when the backward LP accuracy is high, the LP on 

unlabeled samples is high too and when backward LP 

accuracy is low, the LP on unlabeled samples is low too. 

Hence, by comparing the backward LP accuracies on 

the labeled samples, one can estimate which graph will 

have a higher accuracy on the unlabeled samples. 

 
3. 5. Comparison of the Accuracy of the Label 
Propagation and the Features Extracted from the 
Label Vector             As we explained in Section 2, the 

mixture of maximum, entropy and standard deviation of 

the label vector can yield proper estimation for the 

performance of a graph. In Figure 6, we plot the label 

propagation accuracy and the average of the three 

above-mentioned parameters. For the four face 

databases as we can see, when the feature parameter 

from the label vector is high, the accuracy is high too 

while the low value of the proposed feature corresponds 

to the graphs with low accuracies. It indicates that this 

feature, although adopts only the label of the labeled 

samples, can well predict the accuracy of each graph on 

the unlabeled samples. 

 

 
(A) 

 
(B) 

 
(C) 

 
(D) 

Figure 5. The accuracy of label propagation and backward 

label propagation for GFGF (average of ten different 

combinations). (A) Pie, (B) Yale Ext, (C) PF01, (D) Feret. 

 

 
3. 6. Results of Decision Fusion           In this section, 

we numerically evaluate the proposed sample dependent  
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(A) 

 
(B) 

 
(C) 

 
(D) 

Figure 6. Comparison of the average of the three proposed 

parameters (maximum, entropy and standard deviation of class 

membership probability) with the average accuracy of the 

label propagation for (A) Pie, (B) Yale Ext, (C) PF01, (D) 

Feret 

 

 

fusion method. Table 1 compares the results of the 

proposed method with SMGI, the graphs with the 

highest accuracy (denoted by “Best”),  and the lowest 

accuracy (denoted by “Worst”) for the four face 

datasets. For each database, we considered five different 

combinations of labeled and unlabeled data (10%, 20%, 

30%, 50%, 60% as labeled and rest as unlabeled). For 

each number of labeled samples, we repeat the 

experiments for ten different combinations of 

labeled/unlabeled and calculate the accuracy. The 

average accuracy for Pie, Yale Ext, PF01, and Feret 

database are plotted in  Figures 7-10, respectively where 

the horizontal axis denotes accuracy of label 

propagation method and the vertical axis (1 to 5) 

indicates 10%, 20%, 30%, 50%, 60% labeled samples. 

Furthermore, we report the average and standard 

deviation of ten combinations of labeled/unlabeled 

samples in Table 1. As we observe, for Feret, PF01, and 

Pie database the proposed method outperforms the 

single graph with the highest accuracy. Furthermore, in 

the Yale Ext dataset, the proposed method outperforms 

the best graph when 50% and 60% of samples are used 

as labeled data. Moreover, for all databases and the 

number of training samples, the proposed method has 

higher accuracy compared to the SMGI method. 

In Table 2, we report the average CPU time, over 10 

different runs, for the proposed method and that of the 

SMGI algorithm on Extended Yale and Feret datasets. 

As we can see, despite the better accuracy of the 

proposed method, it has a higher CPU time compared to 

the SMGI. This is mainly because, in the proposed 

method, we have two processes of label propagations, 

forward and backward label propagation. An interesting 

observation is that in the proposed method, the CPU 

time  decreases  till  50%  of  labeled  samples  and after 
 

 

TABLE 1. Comparison between the proposed method and 

SMGI and the Best and Worst graph 

 
 

Dataset Labeled percent 10% 20% 30% 50% 60%

# Labeled samples 1 2 3 4 5

Best 60.11±10.6 74.9±10.5 84.31±8.3 90.17±13.8 92.6±12.5

Worst 14.88±3.5 19.84±4 25.08±5.3 32.02±7.4 35.68±8.8

Proposed method 67.02±12.8 87.97±9.1 97.68±2.7 99.87±0.3 100±0

SMGI 42.15±15.7 44.1±16.7 66.38±22.3 61.02±15.6 79.03±19.1

# Labeled samples 2 4 6 9 11

Best 75.74±5.9 85.41±3.1 89.76±4.3 93.60±2.7 95±2.3

Worst 21.15±2.6 23.39±2.5 25.23±1.1 27.94±2.3 29±4.5

Proposed method 88.56±4.9 96.99±1.3 99.08±0.5 99.84±0.2 100±0

SMGI 46.87±18.1 65.2±17.6 80.97±6.3 87.24±6.7 88.89±4.3

# Labeled samples 3 6 9 14 17

Best 74.94±5.9 85.92±3.5 90.3±1.6 94.05±2.9 94.3±2.4

Worst 15.31±2 21.33±2.6 25.05±3.2 30.62±1.8 31.99±3.3

Proposed method 75.66±4.6 90.74±2.4 96.22±0.6 98.88±1.3 99.66±1.4

SMGI 33.48±21.7 45.69±22.7 51.77±24.6 91.69±3.7 92.35±2.8

# Labeled samples 6 12 18 30 36

Best 99.21±0.3 99.53±0.1 99.58±0.2 99.71±0.3 99.74±0.3

Worst 35.12±1.9 43.31±3.5 49.12±2.8 54.72±2.0 56.88±3.2

Proposed method 96.92±1.4 99.01±0.3 99.56±0.3 99.86±0.1 99.88±0.1

SMGI 89.48±11.7 97.07±0.9 98.16±0.8 98.83±0.4 99±0.2

yaleExt

pie

pf01

Feret
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Figure 7. Comparison of the proposed method’s accuracy 

respect to SMGI, the best and worst graph for the Pie dataset 

 

 

 
Figure 8. Comparison of the proposed method’s accuracy 

respect to SMGI, the best and worst graph for Yale Ext dataset 

 

 

 
Figure 9. Comparison of the proposed method’s accuracy 

respect to SMGI, the best, and worst graph for the PF01 

dataset 

 

 

 
Figure 10. Comparison of the proposed method’s accuracy 

respect to SMGI, the best, and worst graph for the Feret 

dataset 
 

that, the CPU time of the proposed method increases 

again. This is because by increasing the number of 

labeled samples, even though the unlabeled samples 

decreases, in the backward label propagation, we 

propagate the labels to the labeled samples. Hence, after 

50% of the labeled samples, we again observe an 

increase  in  the  total  CPU  time  of  the  proposed 

method. 

 
 

TABLE 2. Elapsed CPU time of the proposed method versus 
SMGI 

Dataset Labeled percent 
Run Time (seconds) 

Proposed method SMGI 

Yale Ext 

10% 9.27 3.31 

20% 7.91 2.55 

30% 7.13 2.44 

50% 6.17 2.43 

60% 6.27 2.39 

Feret 

10% 6.25 4.60 

20% 5.72 3.72 

30% 5.41 3.56 

50% 5.39 3.36 

60% 5.68 3.19 

 

 
4. CONCLUSION 
 
In this article, we proposed a ranking method that 

predicts how well a graph will perform in a 

classification task. By the fusion of six different 

indicators, we assign a score to each graph which 

enables us to sort and select the graphs with the best 

performance in the consecutive learning task. In 

addition to that, the proposed parameter indicates how 

well a graph can predict the samples in a specific class. 

Moreover, we proposed a sample dependent fusion 

technique that fuses the decisions obtained from each 

graph. Experimental results on four face databases with 

different combinations of the labeled\unlabeled samples 

show that the proposed ranking method can well sort the 

graphs according to their performance in the 

consecutive label propagation task and the proposed 

fusion method can enhance the accuracy compared to 

the single graph use and SMGI algorithm.  

For future works, we intend to evaluate the effect of 

eliminating connections of samples in different classes 

on the final accuracy. Moreover, in the case that we 

have a few labeled data, the proposed method could not 

reach a suitable performance. Therefore, we intend to 

propose a fast graph selection method that is not 

dependent on the size of the labeled data. 
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Persian Abstract 

 چکیده 

 شیاز پ توان¬ینم م،یداشته باش یژگیاگر چند و یو مناسب منجر نشود. به علاوه، حت قی دق جیتک ممکن است به نتا یژگیو کیبر اساس  دادیرو کی یابیاز موارد ارز یاریدر بس

 کیمقاله،  نیدهد. در ا شنمای را ها¬نمونه نیارتباط ب تواند¬یاست که م ی. گراف شباهت ابزارکند¬یم انیاز رخداد مورد نظر را ب یبهتر فیتوص یژگیکرد که کدام و نییتع 

 ردپذی¬یانجام م  طوری ها¬. مرتب کردن گرافکند¬می مرتب  را ها¬شده گراف شنهادیکه با استفاده از شش پارامتر پ  مکنی¬یم یگراف و نمونه معرف یبرمبنا سازی¬روش مرتب

  در  ها¬گراف بی کردن پارامترها و ترک نهیبه یروش برا  ک ی ن،یدارند. علاوه بر ا ستیل یانتها های¬نسبت به گراف یترقرار دارند عملکرد به ستیل یکه در بالا هایی¬که گراف

در مرحله   کند،¬یدقت آنها مرتب م یبر مبنا ی رستد به را ها¬گراف نکهیعلاوه بر ا یشنهاد یکه روش پ دهد¬ینشان م سازی¬ادهیپ  جیشده است. نتا هیارا یرگی¬میصمت سطح

 .دهد¬یم شیدقت را نسبت به استفاده از تک گراف افزا ب،یترک
 

http://ra.adm.cs.cmu.edu/anon/2003/CMU-CS-03-175.pdf

