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A B S T R A C T  
 

The rotating machinery is a common class of machinery in the industry. The root cause of faults in the 

rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using 

artificial neural network learning for automated diagnosis of localized faults in rolling element 
bearings. The inputs of this technique are a number of features (harmmean and median), which are 

extracted from the vibration signals of the test data. Effectiveness and novelty of this proposed method 

are illustrated by using the experimentally obtained the bearing vibration data based on laboratory 
application. In this research, based on the fast kurtogram method in the time-frequency domain, a 

technique for the first time is presented using other types of statistical features instead of the kurtosis. 

For this study, the problem of four classes for bearing fault detection is studied using various statistical 
features. This study is conducted in four stages. At first, the stability of each feature for each fault 

mode is investigated, then resistance to load change as well as failure growth is studied. At the end, the 

resolution and fault detection for each feature using the comparison with a determined pattern and the 
coherence rate is calculated. From the above results, the best feature that is both resistant and 

repeatable to different variations, as well as the suitable accuracy of detection and resolution, is 

selected and with comparing to the kurtosis feature, it is found that this feature is not in a good 
condition in compared with other statistical features such as harmmean and median. The results show 

that the accuracy of the proposed approach is 100% by using the proposed neural network, even though 

it uses only two features. 

doi: 10.5829/ije.2020.33.04a.18 
 

 
1. INTRODUCTION1 
 

The desire and need for precision detection capabilities 

and precautionary predictions have long been equivalent 

to human use of complex and expensive machines. 

Efforts to develop and implement varying degrees of 

detection and anticipation capabilities have a long 

history. Exploiting rotary machines is one of the major 

challenges in maintenance and repair. Intelligent 

maintenance and repair, as well as diagnosis and 

prediction of deficiencies, are essential for the oil, gas, 

refinery, petrochemical, transportation, aerospace, 

military and commercial vessels, automation and other 

industries. Diagnosing and anticipating defects is one of 

the challenging issues of the health management system 
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and the anticipation of modern defects. Reduces the cost 

of support and operation, as well as the total cost of 

ownership over the life cycle, and improves the level of 

safety of many types of machinery and complex 

systems. The evolution of fault diagnostic monitoring 

systems for rotating equipment and other complex 

systems helps to realize that it is possible to identify 

predictive defects desirable and technically possible. 

The most important challenge is addressing the signal of 

roller bearing defects. Bearing defects are produced in 

the form of blows caused by passing roll elements on 

the surface of the failure. Identifying and monitoring 

these flaws is difficult, especially in the early stages of 

the defect, which is a very small failure and is easily 

covered with other components. Undoubtedly, all defect 

prediction techniques need to be further developed to 

better adapt to the characteristics of nonlinear systems 
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so that they can be used in real-world conditions. Yang 

et al. [1] used a new time-frequency domain called base 

track that was recently created. In fact, they used the 

application of this new method to extract the 

characteristics of the faulty roller bearing signals with 

internal and external cannon failures. They showed that 

the failure characteristics of the base tracking technique 

create a better resolution in the time-frequency domain. 

Liang and Bochalooi[2] proposed an energy operator 

method for frequency and domain division; they showed 

that the Tiger energy operator is suitable for extracting 

the frequency modulation and the amplitude of the 

vibrational signals of mechanical systems. Due to the 

continuity of frequency modulation information in this 

method, there is no need for multiple steps to remove 

unwanted components. So that the range of diamonds 

inherently in the energy operator can determine the 

failure frequency from the energy spectrum of the 

energy conversion. Suu et al. [3] presented a new 

compound-based Morellet wavelet filtering method that 

improves self-dependency. Initially, in order to 

eliminate the frequency of interference vibrations, the 

vibration signal is filtered by the midpoint filter 

specified by the Morellet wavelet. Also, the parameters 

associated with the Morellet wavelet, including the 

central frequency and bandwidth, are optimized by the 

genetic algorithm, whose target function is the 

minimization criterion for Shannon entropy. Doo et al. 

[4] introduced a new intelligent method for diagnosing 

rotary machines based on intrinsic mode decomposition, 

dimensional parameters, decomposition table, law 

inference algorithm called second editing tutorial for 

modified modules examples and modified strategy for 

implementing the presentation law. The EMD method 

for preprocessing vibrating signals is used to accurately 

derive the characteristics of the failure. Then, the non-

dimensional parameters extracted from the decomposed 

signals in the time domain and the Enolop spectrum in 

the frequency domain are obtained for the 

decomposition table. 

Lee et al. [5] presented a new classifier based on the 

lattice framework for the classification of the friction 

grid for the problem of detecting bearing defects. This 

method does not need to determine any parameters and 

converges at a high speed with a small number of 

inference law. To illustrate the results, they used five 

datasets, and ultimately demonstrated their efficiency 

and accuracy compared to the same method of fuzzy 

network argumentation and other neural networks. 

Wang et al. [6] presented the advanced Kurtogram 

method for detecting roller bearing defects. The decoder 

is based on the elongation of the time signals that are 

filtered by the Fourier transform. Also, the 

transformation of the wavelet packet is also used as a 

substitute for the Fourier transform of the short time to 

analyze the signal in this method. This method helps in 

determining the location of frequency amplification 

bands for further modulation. Finally, the frequency 

characteristics of the ANOLOP signal are used to 

determine the type of bearing failure. Zhou and Chen 

[7] provided an intelligent diagnostic method based on 

the least squares of the back propagation machine 

optimized by the modified particle optimization method. 

First, the initial vibration signals are decomposed into 

several intrinsic mode functions, which is done by the 

EMD method and the energy attribute values extracted 

based on the energy-entropy of the IMF. Finally, the 

energy indicators extracted as breakdown property 

vectors, the IPSO-LSSVM classifier inputs, are used to 

identify the different failure patterns. 

Albuagbi and Trondaphilova [8] presented a method 

for identifying roller bearing defects. Their method 

consists of two main steps. Pretreatment of signals, 

based on several signal analysis algorithms and defect 

detection, which uses the pattern recognition process. 

The first step is, in fact, linear time constant based on 

automated modeling of regression. In the pre-

purification step, the spectral analysis method is used to 

remove noise from the signal. Baraldi and colleagues 

[9] presented a method to identify the beginning of a 

failure, to detect defective bearings in the system, to 

classify the type of failure, and to determine the severity 

of the failure. Their fault diagnosis is based on the 

hierarchical structure associated with the classification 

of the nearest neighbor K. Feature selection The 

vibration signals for the input of the fault diagnostic 

system are based on the packaging method based on the 

multi-objective optimization integrated with the binary 

differential algorithm and the KNN classifier. 

Vakharia et al. [10] presented an algorithm for 

detecting various bearing defects of measured 

vibrational signals. Characteristics such as elongation, 

squaring, mean, root mean squares, or more complex 

features such as Shannon entropy from the time domain, 

frequency domain, and discrete wavelet transform are 

calculated. Feature rating methods such as Qi square 

and Assist-F method are used to select the best feature.  

Singh et al [11] presented an algorithm based on a 

flexible, logically wavelet transform. Their method in 

frequency segmentation is flexible to produce a number 

of filters with a variety of bandwidths. The optimal filter 

selection, which is completely overlapping with bearing 

defects in the excited region, is performed based on the 

maximum amount of shock detection provided by the 

"self-bonding elongation of the intermediate energy" 

function.  

 

 

2. KURTOGRAM 
 

Despite the benefits of wavelet transformation, 

challenges include choosing the right mother-wavelet 
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from a variety of examples, as well as high 

computational costs, especially for smaller scale levels. 

These challenges have suggested different ways to 

improve the wavelet transform or different ways to 

select the appropriate maternal wavelet. Some of these 

improvements are mentioned in previous studies. On the 

other hand, these challenges in the transformation of the 

wavelet have led to the emergence of other methods, 

such as the spectral kurtosis and Kurtogram . 

The Kurtogram method is based on the Spectral 

Kurtosis, which is a high-order statistical method. In 

1983, the first use of the frequency spectrum was 

carried out by Dewey. In the following years, this 

method quickly progressed and improved for a variety 

of applications. Then, Anthony proposed in 2004 the 

elongation based on the Vold-Cramer decomposition, 

which described each non-terminal signal as the output 

of a variable-time linear system. 

The ensemble machine learning techniques were 

demonstrated for the detection of different AFB faults 

[12]. Initially, statistical features were extracted from 

temporal vibration signals and were collected using 

experimental test rig for different input parameters like 

load, speed and bearing conditions. Heidari [13] has 

proposed a reduct construction method based on 

discernibility matrix simplification. The method worked 

with the genetic algorithm. To identify potential 

problems and prevent complete failure of bearings, a 

new method based on rule-based classifier ensemble 

was presented. 

Li et al. [14] focused on the problem of accurate 

Fault Characteristic Frequency (FCF) estimation of the 

rolling bearing. Teager-Kaiser Energy Operator (TKEO) 

demodulation has been applied widely to rolling bearing 

fault detection. FCF could be extracted from vibration 

signals, which was pre-treatment by TKEO 

demodulation method. 

In the further development of the Kurtogram in 

2018, Musharrafzadeh and Fassana [15] showed that, 

despite the capabilities of the QuickTech method. 

Therefore, the autogram method is introduced. Which is 

largely similar to the same method, with the difference 

that the calculation of the elongation based on the self-

correlation of the signal obtained from the Envelop 

square in the frequency bands, which partially 

succeeded in increasing the accuracy of the failure 

detection and lowering the computational cost [16]. 

So according to the above, new methods such as 

spectral kurtosis, fast Kurtogram, autogram have been 

developed to replace the wavelet. All of these methods 

are based on the statistic feature of the kurtosis. In this 

study, a new time-frequency domain was introduced, 

and other commonly used statistical features are used 

instead of the kurtosis feature. The proposed process is 

as follows: 

1. Design of low pass and high pass filters for binary 
 

decomposition, as well as the design of low pass, band-

pass and high pass filters for ternary of signal analysis. 

2. The signal once decomposed into binary and ternary, 

then each section of the binary decomposition is again 

degraded the again binary and ternary, and the same 

trend continues for higher decomposition levels . 

3. Calculate common features for each section obtained 

from the previous step for comparison 

4. Choosing the proper features 

For this purpose, the feature should be chosen so 

that the time-frequency domain derives from the 

following conditions  : 

Firstly, the time-frequency domain must be robust 

and repeatable for failure with specified type and 

severity. That is, different measured signals for a failure 

type provide the same time-frequency domain  . 

Secondly, the time-frequency domain for each fault 

mode must be resilient and repeatable to changes in 

conditions such as load change. That is, with different 

loads, the same time-frequency domain is achieved  . 

Thirdly, The time-frequency domain for each failure 

should be robust and repeatable against the growth 

failure. In other words, in the case of breakdowns with 

different depths, but of the same type, the time-

frequency domain presents a relatively similar behavior  . 

Fourth, the ability to detect and differentiate the 

time-frequency domain of each feature is appropriate for 

various failures . Below are the statistical features that 

are being studied in this study: 

Data samples can have thousands (even millions) of 

values. Descriptive statistics can summarize these data 

into a few numbers that contain most of the relevant 

information. The following statistical parameters are 

used to detect incipient bearing damage: root mean 

square, interquartile range, skewness, mean, geometric 

mean, harmonic mean, mean excluding outliers, largest 

element, smallest element, most frequent value, 

standard deviation, variance, median, range, sum, 

trapezpidal integration, mean absolute deviation, 

moment and percentiles. where Xi (i=1, …, N) is the 

amplitude at sampling point i and N is the number of 

sampling points. µ is the mean of X, σ is the standard 

deviation of X, and E(.) represents the mathematical 

expectation. 

 
 
3. EXPERIMENTAL SETUP 
 

The vibration data used in this study were obtained from 

the dataset of the rolling element bearings under 

different operating loads and bearing conditions 

according to Table 1. The ball bearings are installed in a 

motor-driven mechanical system. An accelerometer, 

with a frequency range of 20-20 kHz is mounted on the 

motor housing at the drive end of the motor to acquire 

the vibration signals from the bearing. The data 
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collection system consists of a data recorder with a 

sampling frequency of 12 kHz per channel. The defect 

size (diameter, depth) of the three faults was the same, 

0.007”, 0.014”, 0.021” and 0.028”. Each bearing was 

tested under four different loads, (e.g. 0, 1, 2, and 3 hp 

corresponding to 0, 0.736, 1.491, and 2.237 kW). The 

motor speed during the experimental tests was 1720-

1797 r/min. The bearing dataset was obtained from the 

experimental system under the four different operating 

conditions: (1) normal condition; (2) inner race fault; (3) 

ball fault; and (4) outer race fault. 

In order to develop a robust fault diagnosis model 

that is able to identify the existence of different faults 

under varying load conditions, and to evaluate the 

proposed methods, this fault diagnosis problem is set as 

a four-class classification problem. 

 

 

4. RESULTS AND DISCUSSION 
 

4. 1. First Stage         First, the resistance of the time-

frequency domain of each figure must be checked for 

any specific failure. For this purpose, ten raw signals are 

 

 
TABLE 1. Dataset of Case Western Reserve University 

Fault 

Diameter 

Motor 

Load 

(HP) 

Motor 

Speed 

(rpm) 

Normal 
Inner 

Race 
Ball 

Outer 

Race 

Normal 

0 1797 

C1 

* * * 

1 1772 * * * 

2 1750 * * * 

3 1730 * * * 

0.007" 

0 1797 * 

C2 C3 

C4 

1 1772 * 

2 1750 * 

3 1730 * 

0.014" 

0 1797 * 

1 1772 * 

2 1750 * 

3 1730 * 

0.021" 

0 1797 * 

1 1772 * 

2 1750 * 

3 1730 * 

0.028" 

0 1797 * * 

1 1772 * * 

2 1750 * * 

3 1730 * * 

considered for each mode, then using one of the 

introduced features, the time-frequency domain is 

calculated and the resulting matrix is normalized. 

Finally, the standard deviation of ten time-frequency 

domains is calculated relative to each other. The lower 

standard deviation leads to be more robust and 

repeatable of the time-frequency domain. 
In Table 2, anyone whose total rank is less than that, 

the time-frequency domain resulting from it is more 

resistant and more repeatable. As you can see, the 

feature of kurtosis in this comparison is not good. 

 
 
4. 2. Second Stage          At this stage, the resistance of 

the time-frequency domain to the change in load must 

be checked. For this purpose, for each of the three types 

of failure, four magnitudes of the load are considered, 

and after using the time-frequency domain statistical 

features, and then, the standard deviation of the four 

time-frequency domains is calculated. Eventually, any 

feature whose total deviation is less than normal will 

naturally be more resistant to detecting according to 

Table 3. 

 

 

 
TABLE 2. The stability of each feature for each fault mode 

No. Feature 
Inner 

race 

Rank 

1 

Ball 

fault 

Rank

2 

Outer 

race 

Ran

k 3 

1 Kurtosis 1.039 18 2.242 19 0.722 16 

2 Rms 0.134 8 0.103 3 0.074 4 

3 IQR 0.299 13 0.289 11 0.398 12 

4 Skewness 1.401 20 2.382 20 0.911 19 

5 Mean 0.194 11 0.109 5 0.141 10 

6 Geomean 0.350 15 0.253 10 0.768 17 

7 Harmmean 0.993 17 0.922 16 0.524 13 

8 Trimmean 0.257 12 0.136 6 0.620 14 

9 Max 0.134 9 0.465 14 0.118 8 

10 Min 0.641 16 0.937 17 0.896 18 

11 Mode 1.363 19 1.295 18 1.128 20 

12 Std 0.090 5 0.187 9 0.090 5 

13 Var 0.049 3 0.105 4 0.036 3 

14 Median 0.315 14 0.357 12 0.637 15 

15 Range 0.144 10 0.467 15 0.114 7 

16 Sum 0.005 1 0.008 1 0.006 1 

17 Trapz 0.005 2 0.008 2 0.006 2 

18 Mad 0.096 6 0.172 8 0.120 9 

19 Moment 0.084 4 0.162 7 0.101 6 

20 Prctile 0.131 7 0.381 13 0.146 11 
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TABLE 3. Resistance of each feature to load change 

No Feature 
Inner 

race 

Rank 

1 

Ball 

fault 

Rank 

2 

Outer 

race 

Rank 

3 

1 Kurtosis 1.092 19 2.636 19 0.450 12 

2 Rms 0.342 9 0.218 9 0.144 6 

3 IQR 0.405 12 0.234 12 0.642 15 

4 skewness 0.762 18 2.653 20 0.515 13 

5 Mean 0.378 11 0.227 11 0.238 11 

6 Geomean 0.594 15 0.236 13 1.968 20 

7 harmmean 0.561 14 1.163 16 1.310 19 

8 trimmean 0.511 13 0.215 8 0.672 16 

9 Max 0.339 7 0.299 14 0.151 8 

10 Min 0.599 16 1.761 18 0.555 14 

11 Mode 1.193 20 1.509 17 0.918 17 

12 Std 0.279 5 0.171 5 0.103 4 

13 Var 0.223 4 0.102 3 0.060 3 

14 Median 0.636 17 0.203 7 0.956 18 

15 Range 0.342 10 0.301 15 0.173 9 

16 Sum 0.019 2 0.015 1 0.012 2 

17 Trapz 0.019 1 0.015 2 0.012 1 

18 Mad 0.341 8 0.178 6 0.187 10 

19 Moment 0.332 6 0.168 4 0.147 7 

20 Prctile 0.213 3 0.222 10 0.112 5 

 

 

4. 3. Third Stage         In this section, it is necessary to 

select a feature that the time-frequency domain resulting 

from it will not fail against the growth of the failure. For 

this purpose, for each failure, four growth stages are 

considered and ultimately the standard deviation of the 

four time-frequency domains obtained for each feature 

is calculated and the results are presented in Table 4. 

 

4. 4. Fourth Stage       In this phase, the 

decomposability of the failures is investigated using the 

time-frequency domain derived from different statistical 

features. For this purpose, for each failure, a time-

frequency domain is already considered as a pattern, 

and then for each new signal, it receives the 

corresponding time-frequency domain and compares 

with the four previous patterns. Coherence has been 

used to calculate the similarity of each time-frequency 

domain with patterns. The coherence number is closer 

to one, the two are more similar, and it approaches zero, 

they are more different. 

Tables 5a and 5b have two parts; first, each 

breakdown is compared to its own pattern, the sum of 

which is the true column. Then, the similarity of each  

TABLE 4. Resistance of each feature to failure growth 

No Feature 
Inner 

race 

Ran

k1 

Ball 

fault 

Rank

2 

Outer 

race 

rank

3 

1 Kurtosis 3.614 20 3.323 20 5.262 19 

2 Rms 0.625 10 0.398 8 0.464 5 

3 IQR 1.120 13 0.415 10 3.880 18 

4 
Skewnes

s 
3.522 19 2.779 19 5.585 20 

5 Mean 0.798 11 0.607 12 0.564 6 

6 Geomean 1.451 16 1.068 15 3.591 16 

7 harmmean 1.249 15 1.147 17 3.230 15 

8 trimmean 1.020 12 0.834 13 2.216 14 

9 Max 0.387 4 0.317 4 0.256 3 

10 Min 1.156 14 1.444 18 0.569 7 

11 Mode 1.505 17 1.100 16 1.838 13 

12 Std 0.541 6 0.415 11 1.090 10 

13 Var 0.425 5 0.318 6 0.754 9 

14 Median 1.542 18 1.027 14 3.867 17 

15 Range 0.377 3 0.316 3 0.256 4 

16 Sum 0.067 2 0.052 2 0.076 2 

17 Trapz 0.067 1 0.052 1 0.076 1 

18 Mad 0.555 7 0.379 7 1.518 12 

19 Moment 0.576 8 0.400 9 1.374 11 

20 Prctile 0.582 9 0.317 5 0.722 8 

 

 

failure with the other failure patterns is compared, and 

their sum is also the false column. Now the feature is 

appropriate to have a greater true value and 

simultaneously the false value is low. For this review, 

Tables 5a and 5b are depicted in Figure 1. 

In Figure 1, the horizontal direction is reversed for a 

better look. Now the feature should be selected to have 

a more True value and less False value, or closer to the 

origin of Figure 1, so the two harmmean and median 

features are the most appropriate ones. 

Figure 2 is displayed using the kurtosis feature 

according to literature [17, 18]. As you can see, the first 

and third classes, as well as the second and fourth, are 

relatively similar. Then, this feature has less resistance 

and repeatability in contrast to the change in load and 

the growth of the failure and even in a certain fault. 

Figure 3 is derived using the harmmean feature. As 

you can see, all four classes are different, and the time-

frequency domains of each fault with its failure pattern 

match entirely. In the tables of the first stage to the third 

stage can be perceived as a good repeatability status 

against load change and deterioration. 
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TABLE 5a. Comparison with a pattern and the coherence rate 

No Feature 1,1 2,2 3,3 4,4 True 1,2 1,3 

1 kurtosis 0.49 0.73 0.40 0.84 2.45 0.15 0.37 

2 Rms 1.00 1.00 0.98 1.00 3.98 0.23 0.27 

3 IQR 0.99 0.94 0.90 0.99 3.81 0.22 0.27 

4 skewness 0.44 0.56 0.41 0.54 1.95 0.28 0.35 

5 Mean 1.00 1.00 0.98 1.00 3.98 0.24 0.27 

6 geomean 1.00 0.99 0.97 0.99 3.95 0.24 0.26 

7 harmmean 0.98 0.92 0.90 0.94 3.74 0.23 0.23 

8 trimmean 1.00 0.99 0.98 1.00 3.97 0.24 0.26 

9 Max 0.98 0.98 0.95 1.00 3.91 0.30 0.29 

10 Min 0.85 0.64 0.46 0.69 2.64 0.43 0.32 

11 Mode 0.77 0.60 0.72 0.66 2.74 0.36 0.22 

12 Std 0.99 0.99 0.97 1.00 3.95 0.24 0.28 

13 Var 1.00 1.00 0.99 1.00 3.98 0.35 0.39 

14 median 1.00 0.98 0.98 0.97 3.92 0.23 0.27 

15 Range 0.98 0.98 0.95 0.99 3.90 0.30 0.29 

16 Sum 1.00 1.00 1.00 1.00 4.00 0.66 0.62 

17 Trapz 1.00 1.00 1.00 1.00 4.00 0.66 0.62 

18 Mad 0.99 0.98 0.97 1.00 3.94 0.23 0.28 

19 moment 0.99 0.99 0.97 1.00 3.95 0.23 0.29 

20 Prctile 0.99 0.98 0.96 1.00 3.93 0.26 0.28 

 

 
TABLE 5b. Comparison with a pattern and the coherence rate 

1,4 2,1 2,3 2,4 3,1 3,2 3,4 4,1 4,2 4,3 False 

0.07 0.18 0.19 0.39 0.38 0.15 0.10 0.10 0.39 0.12 2.57 

0.27 0.23 0.51 0.60 0.26 0.54 0.83 0.27 0.62 0.80 5.44 

0.25 0.22 0.47 0.46 0.25 0.49 0.75 0.26 0.44 0.70 4.78 

0.29 0.26 0.30 0.26 0.33 0.30 0.26 0.23 0.30 0.28 3.44 

0.26 0.23 0.48 0.56 0.26 0.51 0.81 0.26 0.57 0.79 5.25 

0.25 0.23 0.44 0.50 0.26 0.47 0.72 0.24 0.52 0.69 4.81 

0.22 0.23 0.38 0.41 0.23 0.41 0.51 0.22 0.42 0.47 3.96 

0.25 0.23 0.45 0.52 0.26 0.48 0.79 0.25 0.52 0.77 5.02 

0.33 0.28 0.62 0.79 0.28 0.67 0.81 0.32 0.79 0.79 6.27 

0.32 0.45 0.36 0.44 0.33 0.37 0.35 0.39 0.56 0.34 4.66 

0.27 0.42 0.20 0.40 0.07 0.06 0.16 0.38 0.56 0.15 3.24 

0.29 0.23 0.55 0.64 0.27 0.59 0.78 0.29 0.67 0.76 5.59 

0.35 0.34 0.67 0.70 0.38 0.72 0.83 0.34 0.73 0.81 6.59 

0.24 0.23 0.43 0.46 0.25 0.45 0.67 0.23 0.48 0.69 4.64 

0.34 0.28 0.63 0.79 0.29 0.67 0.81 0.33 0.79 0.80 6.32 

0.59 0.67 0.96 0.93 0.62 0.96 0.98 0.60 0.94 0.98 9.50 

0.59 0.67 0.96 0.93 0.62 0.96 0.98 0.60 0.94 0.98 9.51 

0.28 0.23 0.52 0.59 0.26 0.56 0.78 0.28 0.61 0.76 5.38 

0.29 0.23 0.53 0.61 0.27 0.57 0.78 0.28 0.63 0.76 5.47 

0.31 0.24 0.56 0.72 0.27 0.61 0.78 0.30 0.75 0.76 5.83 

 
Figure 1. Coherence rate of each feature 

 

 

 
Figure 2. The Fast Kurtogram using kurtosis feature 

 

 

 
Figure 3. The Fast Kurtogram using harmmean feature 



674                                               B. Attaran et al. / IJE TRANSACTIONS A: Basics  Vol. 33, No. 4, (April 2020)   668-675  

 

5. THE PROPOSED METHOD FOR DIAGNOSTICS 
 

The characteristics of proposed artificial neural network 

for diagnostics task are described as following: 

1. Data Division: Random (dividerand) 

2. Training: Scaled Conjugate Gradient (trainscg) 

3. Performance: Mean Squared Error (mse) 

4. The best features for diagnostics: Kurtogram + 

harmmean 

This optimal neural network is shown in Figure 4. The 

mean squared error is plotted according to Figure 5. 

The plot of error histogram with 20 bins and the 

gradient and validation checks at epoch 72 are 

demonstrated in Figure 6. The results of fault diagnosis 

is depicted in Figure 7. 

 

 

 
Figure 4. The structure of ANN for proposed method 
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Figure 5. Plot of mean squared error 
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Figure 6. Plot of error histogram with 20 bins 
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Figure 7. Plot of training, test and validation confusion matrix 
 

 

6. CONCLUSION 
 

In this paper, based on the technique of fast kurtogram, 

the novel technique was introduced on other types of 

statistical features instead of the kurtosis for the first 

time. To this purpose, we examined the issue of four 

classes of bearing fault detection by using 20 different 

statistical features. This study was conducted in four 

stages. At first, the stability of each feature was checked 

for each failure. Then resistance to load change and 

failure growth was studied. At the end, the resolution 

and fault detection for each feature was calculated. 

From the above results, the best feature, which was both 

resistant and repeatable to different variations, as well 

as accurate detection and resolution was selected, and it 

was found that the kurtosis is not well-positioned in 

comparison with other statistical attributes such as 

harmmean and median. In this research that was done 

based on kurtogram method, in fact instead of using 

kurtosis feature, other statistical features were utilized. 

In future work, it can be implemented that instead of 

using time signal in the frequency bounds, at the first 

the signal processing methods will be applied, then 

kurtosis feature will be calculated from signal 

processing, and the result will be compared with the 

kurtogram method. In this work, we have investigated 

the problem of automatic bearing fault diagnosis using 

machine learning methods based on artificial neural 

network. These methods consist of feature extraction, 

feature selection, and classification. eventually only two 

features with better performance were chosen as the 

input features to the classifier and have been verified by 

the machinery fault simulator test rig.  
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Persian Abstract 

 چکیده 
ی فیچر کرتوسیس ارائه شده است. برای  در این مقاله بر مبنای روش کرتوگرام سریع در حوزه زمان فرکانس، تکنیکی برای اولین بار با استفاده از دیگر انواع فیچرهای آماری بجا

بررسی قرار گرفته است. این مطالعه در چهار مرحله انجام شده است. ابتدا ختلف مورد ی تشخیص عیب بیرینگ را با استفاده از فیچرهای آماری م این مطالعه مسئله چهار کلاسه

پذیری و ست. در انتها میزان تفکیک مقاوم بودن هر فیچر برای هر نوع خرابی بررسی شده، سپس مقاوم بودن در برابر تغییر بار و همچنین رشد خرابی مورد مطالعه قرار گرفته ا

تفاده از مقایسه با یک الگو از قبل مشخص شده و میزان سازگاری محاسبه شده است. از نتایج فوق بهترین فیچری که هم در برابر تغییرات فیچر با اس تشخیص خرابی برای هر 

که این فیچر وضعیت مشاهده شد پذیری مناسبی داشته باشد انتخاب خواهد شد و با مقایسه با فیچر کرتوسیس گوناگون مقاوم و تکرارپذیر باشد و هم دقت تشخیص و تفکیک

 مناسبی در مقایسه با دیگر فیچرهای آماری از جمله هارمیان و مدیان ندارد. 
 


