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A B S T R A C T  
 

 

This paper discussed the scheduling problem of outpatients in a radiology center with an emphasis on 

priority. For more compatibility to real-world conditions, we assume that the elapsed times in different 
stages to be uncertain that follow from the specific distribution function. The objective is to minimize 

outpatients’ total spent time in a radiology center. The problem is formulated as a flexible open shop 

scheduling problem and a stochastic programming model. By considering the specific distribution 
function for uncertain variables, deterministic mixed integer linear programming (MILP) is developed 

such that the proposed problem can be solved by a linear programming solver in small size. Besides an 

effective heuristic method is proposed for the moderate size problem. To indicate the applicability of the 
proposed model, it has been applied to a real radiology center. The results from the proposed 

optimization models indicate an increase in outpatients’ satisfaction, as well as the improvement of the 

efficiency and productivity of the radiology center. 

doi: 10.5829/ije.2020.33.04a.11 

 

NOMENCLATURE Parameters 

Indices  m , n  Number of stages, Number of patients 

 , 1, 2, ...,i j n  Patient indices 
ik
  The length of stay of patient i in stage k  

 , 1, 2, ...,k l m  Stage indices ik
  The uncertainty distribution of 

ik
  

 1, 2, ..., ( )r r k  
Index of the number of parallel resources (resources 
or places) in each stage i

q  Priority index of patient i  

Variables  L A large number 

iklX  
1 if patient i passes through stage k  before stage l, 

k l  
( )1 −  Confidence level 

ijkY  
1 if patient i before patient j passes through stage

k , , ,i j i j   

1

ik
F

−
 

The inverse function of the normal distribution of 

elapsed time of patient i in stage k 

ikrZ  
1 if patient i at stage k receives healthcare from 

resource r C% 
The vector of objective function coefficients under 
uncertainty 

ikC  Completion time of patient i at stage k  A% 
The matrix of objective function coefficients under 

uncertainty 

imC  Completion time of patient i (at the final stage) b% The vector of sources under uncertainty 

  u% The upper bound of variables under uncertainty 

 
1. INTRODUCTION1 

 

Health care systems are the most costly and revenue part 

of each country's social security system. To provide 
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qualified services as well as controlled costs, health 

system management is vital. The related literature 

focuses on either the qualified patient or resource 

scheduling [1]. Qualified patient scheduling means 
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patient satisfaction enhancement. Reducing the elapsed 

and waiting times of patients in healthcare systems are 

among the main objectives of patient scheduling [1, 2]. 

Unfortunately, outpatient scheduling is difficult due to 

natural and artificial uncertainties. However, the focus of 

the literature is on the uncertainty caused by patient 

arrival variability, variability in health service duration, 

and length of stay. Such uncertainties in surgical suite 

scheduling have been mentioned [3-5]. From the 

mentioned uncertainties, service duration uncertainty is 

considered in this paper. 

In addition to the inherent uncertainties in healthcare 

system scheduling problems, prioritizing patients also 

enhances the problem difficulty [6]. The weight or 

priority level of patients and the necessity of using 

medical services are determined by the triage factor 

which includes five levels [6]. A higher priority level 

indicates a deterioration in the patient's physical 

condition and a more urgent need for medical care. 

Considering a five-level based patient's priority has 

approached this paper to the real cases. 

Although the patient's condition is frequently 

examined to determine the path of each patient and this 

path is not settled in many cases. For instance, transfer 

the patient to each stage in a specialized hospital 

radiology center is often not predetermined (as defined in 

an open shop scheduling problem). Besides, each stage 

commonly consists of more than one device. Hence, 

formulating the prioritized stochastic outpatient 

scheduling problem in a radiology center as a stochastic 

flexible open shop scheduling problem is logical. Despite 

considerable research carried out in the field of the 

flexible flow shop scheduling problem [7], few studies 

have been addressed the flexible open shop problem [8] 

but no paper focuses on the stochastic flexible open shop 

scheduling (SFOSS) problem. In this paper, we formulate 

prioritized patients scheduling as an SFOSS problem 

under the minimization of total prioritized elapsed times 

(total weighted completion times). Considering specific 

distribution functions (as normal) for health service 

duration, the problem is converted to a deterministic 

mixed-integer programming model.  

The rest of this paper is organized as follows. A 

concise survey of related work is presented in the next 

section. In section 3, a basic foundation of a flexible open 

shop scheduling problem, as well as a stochastic 

programming model, is first described. Afterward, the 

deterministic MILP model is developed. Sections 4 and 

5 provide computational results and conclusions. 
 

 

2. LITERATURE REVIEW  
 

Elective and emergency patients have been widely 

considered in patient scheduling problems [1, 9]. The 

most interesting researches in the field of patient 

scheduling concerns elective patients [2]. In this paper, 

we focus on prioritized elective patient scheduling. 

Considering patients’ priority and capacity constraints, a 

stochastic dynamic programming model was proposed 

for surgical suit scheduling [6]. Considering patient 

priority and arrival time, a reactive scheduling method 

proposed to the patient’s waiting time minimization [10].  

From the mentioned patient scheduling problem 

uncertainties, service duration uncertainty is considered 

in this paper. To deal with healthcare service duration 

uncertainty, the following methods are mainly reported: 

− predicting service duration using statistical methods 

[11, 12];  

− estimation of service duration using practical 

percentile value [3]  

− assuming deterministic service duration [4, 13-15]  

− modelling uncertainty in healthcare service duration 

and /or patient length of stay using stochastic 

programming [5],  

− chance constraint programming [16, 17] and  

− Stochastic chance constraint programming [18]. 

Zhao and Li [19] presented a mixed integer 

programming (MINLP) model for operating room (OR) 

scheduling and proposed a constraint programming 

model to solve it. Wang et al. [20] handled the surgical 

suite problem subject to emergency surgery as a no-wait 

permutation flow shop scheduling problem and 

employed slack time insertion method to generate a 

predictive schedule. Jebali and Diabat [5] considered the 

OR and intensive care unit (ICU) capacity constraint as 

well as the uncertainty of surgery time duration and 

patient’s stay time in the ICU and the ward, they 

proposed two-stage stochastic programming model and 

employed sample average approximation (SAA) method 

to solve the problem. Saadouli et al. [3] discussed the real 

case problem of scheduling elective surgeries by 

considering the uncertainty of surgery and recovery time 

durations. They used a realistic estimation of surgery and 

recovery duration to protect against overtime and under-

utilization of the OR. They first employed a knapsack 

problem to select the operation to be scheduled, and then 

a MILP model was presented to assign the selected 

operation to ORs. Heydari and Soudi [4] formulated the 

surgical suite scheduling problem as a flexible flow shop 

scheduling problem. They considered emergency patient 

arrival as the source of uncertainty. They proposed a two-

stage stochastic programming model to generate a robust 

and stable surgery schedule. 

Decision making under uncertainty comes up in the 

lack of access to a variable probability distribution. In 

this case, chance constraint programming is one of the 

methods of uncertainty modeling in optimization. 

Otherwise, when a variable probability distribution it 

assumed to be known, applying stochastic programming 

is common [21-24]. Shylo et al. [16] are among the first 
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to apply chance constraint programming in surgery 

scheduling. They assume a normal distribution for 

surgery duration and converted the chance constraint 

programming model into an equivalent convex 

programming model. Former reports also apply a normal 

or lognormal distribution for OR durations [25]. 

The chance constraint programming model can be 

converted into a crisp one under the assumption of a 

special uncertainty distribution (e. g. normal distribution 

for surgery duration). In the case of general uncertainty 

distributions, the chance constraint programming model 

has generally approximated via sampling-based 

approaches (SAA and scenario approximation) and 

analytical approximation methods (e. g robust 

optimization) [26]. Deng et al. [17] proposed a stochastic 

chance constraint programming model to allocate and 

schedule surgeries in parallel ORs under undetermined 

problem parameters. Jebali and Diabat [18] applied SAA 

to approximate (flexible flow shop) stochastic chance 

constraint programming model under uncertain OR 

duration and patient length of stay (LOS) in ICU.  

In spite of some results reported for stochastic 

flexible flow shop scheduling problem [27], few studies 

have been stated, even in the deterministic version of 

stochastic flexible open shop scheduling problem [8]. 

From the surgical suite modeling aspect, the literature 

focuses on modeling the surgery scheduling problem as 

parallel machine scheduling problem [19], flow shop 

scheduling problem [20], and flexible flow shop 

scheduling problem [3-5]. The essence of scheduling 

patients in a radiology center and a flexible open shop 

scheduling problem has similarities. So, it seems logical 

to formulate patients’ scheduling problems in the 

radiology center as a flexible open shop scheduling 

problem. To take advantage of effective methods of shop 

scheduling problem-solving, the problem is formulated 

as a flexible open shop scheduling problem and a 

stochastic programming model. Consequently, 

considering the specific distribution function for 

uncertain variables, a deterministic mixed integer 

programming is developed such that the proposed 

problem can be solved by a linear programming solver. 

To the best of our knowledge, no paper dealing with a 

stochastic flexible open shop (SFOS) as a model for the 

radiology scheduling problem under uncertainty. 

 

 

3. PROBLEM STATEMENT& FORMULATION 
 

In this paper, we investigate the prioritized elective 

radiology center scheduling problem with more than one 

resource in different stages such as ultrasound, magnetic 

resonance imaging, radiography, and computerized 

tomography (CT) scan. In a radiology center, patients do 

not need to go through all stages. That means the elapsed 

time of patients in some stages is zero. Also, transferring 

patients to a different stage is not predetermined. 

Moreover, as in reality, the elapsed time of patients in 

stages is not deterministic. Here, the under discussion 

problem is formulated as a SFOSS problem. Then, 

considering the specific distribution function for 

uncertain variables, a SFOSS model is converted to a 

deterministic mixed-integer linear programming model.  

The SFOSS problem consists of n patients (jobs) that 

should be processed on at most m stages (machines). 

There is more than one resource in at least one stage. The 

sum of the elapsed time of all prioritized patients (sum of 

weighted completion time of jobs) is considered to be 

minimized. The notations of the models have been 

introduced on the first page. Problem assumptions are as 

follows. 

• Each patient should be served on at most m stages. 

• The serving route of each patient is arbitrary. 

• At any time, at most one patient can be served on each 

resource. 

• All patients are available at time 0. 

• No preemption is allowed. 

• All the patients’serving (processing) times at each 

stage is not deterministic and considered as random 

parameters with an independent normal distribution.  
 

3. 1. Stochastic Programming Model              When 

all or some of the data parameters (in a linear 

programming (LP) model) are characterized by random 

variables, we deal with (linear) stochastic programming 

(SP). A usual matrix form of SP model may be as follows 

[28]: 

( )

min

0

, , ,

z CX

X b

X u

C A b u

=

 

 

=

%

%%

%

%% %% %
 

It is supposed that the probability distribution of %is 

known. An SP model of flexible open shop scheduling 

problem is as follows. 

1

min   
ii m

n

i

Cq
=

 , s.t. (1) 

  ,    
ikik

C i k   (2) 

( )1     , ,

             , ,

ik il ikl

il ik ikl

ik

ik

C C L X i k l k

C C LX i k l k





 + − −  

 + −  





 
(3) 

 (4) 

( ) ( )

( )

1 2   

  , , ,

2          

  , , ,

ik jk ijk ikr jkr

jk ik

ik

ik ijk ikr jkr

C C L Y L Y Y

i j i k r

C C LY L Y Y

i j i k r





 + − − − − −

 

 + − − − −

 









 

(5)  

  

(6) 



Z. Abtahi et al. / IJE TRANSACTIONS A: Basics  Vol. 33, No. 4, (April 2020)   598-606                                     601 
 

 

( )

1

1    ,     

r k

ikr

r

Z i k

=

=   (7) 

,       
ikim

i kC C   (8) 

 0, 1 , ,
ikl

i k l kX     (9) 

 0, 1 , ,
ijk

i j i kX     (10) 

    0, 1 , ,
ikr

ri kZ    (11) 

The objective function is represented in Constraint 1, 

which aims to minimize the prioritized total elapsed time 

of all patients. The relationship between completion time 

and elapsed time of each patient is represented in 

Constraint 2. Constraints 3 and 4 are sequence 

constraints. That is, a patient can take at most one 

medical care at a time. Constraints 5 and t 6 are resource 

constraints. That is, at each resource, only one patient can 

be served (i.e. a patient can be served before or after 

another patient on a particular resource). Each patient is 

assigned to one resource at each stage in Constraint 7. 

The maximum completion time calculation of each 

patient is performed in Constraint 8. Constraints 9-11, 

define decision variables. 

 

3. 2. Mixed Integer Linear Programming Model                
We assume that patients’ staying time at each stage 

follows from the independent normal distribution. The 

inverse function of the normal distribution of elapsed 

time of patient i in stage k (
1

ik
F

−
) is calculated such that 

the confidence level is ( )1 − . Considering the specific 

distribution function for uncertain variables, a stochastic 

programming model is converted to a deterministic 

mixed-integer programming model [28]. The MILP 

model for SFOSS problem is presented from 12 to 22.The 

interpretation of the constraints is the same as the 

previous model. Constraints 13 and 2 are equivalent. 

Constraints 14, 15 illustrate sequence constraint on 

( )1 − level of confidence. Constraints 16, 17 ensure that 

each place (or service) can be assigned to the one patient 

at a certain time under a certain confidence level. 

Constraints 18-22 are the same as Constraints 7-11. 

1

min 
i

n

i m

i

Cq
=

  

s.t. 

(12) 

( )1
1  , 

ikik
C F i k




−
−   (13) 

( ) ( )

( )

1

1

1 1

  , ,

1

  , ,

ik

il

ik il ikl

il ik ikl

C C F L X

i k l k

C C F LX

i k l k









−

−

 + − − −

 

 + − −

 









 

(14) 

 
 

 (15) 

( ) ( ) ( )

( ) ( )

1

1
    

1 1 2

   , , ,

1 2

  , , ,

ik

jk

ik jk ijk ikr jkr

jk ik ijk ikr jkr

C C F L Y L Y Y

i j i k r

C C F LY L Y Y

i j i k r









−
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 + − − − − − −
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(16) 

 

 (17) 

( )

1

1    ,

r k

ikr

r

Z i k
=

=    (18) 

,  
ikim i kCC   (19) 

 0,1 , ,
ikl

X i k l k    (20) 

 0,1 , ,
ijk

X i j i k    (21) 

 0,1 , ,
ikrZ i k r   (22) 

 

3. 3. SWSPTB Heuristic             Open shop scheduling 

problems tend to be NP-hard in most cases. Particularly 

very little can be said concerning the total weighted 

completion time’s objective function. The total 

completion time open shop scheduling problem is 

strongly NP-hard for more than 2 machines [29]. 

Therefore, the flexible open shop scheduling total 

weighted completion time problem will not be easier. 

Here, a new heuristic is proposed for total weighted 

completion time (TWCT) flexible open shop scheduling 

problem in moderate size.  
Recently, the weighted shortest processing time block 

heuristic (WSPTB) was proposed to solve TWCT open 

shop scheduling problem [8]. The details of WSPTB are 

as follows [8].  

Let  ( , )p i k  as the deterministic length of staying time of 

patient i at stage k. suppose that

, 0 2 , 0n lm l n m = +       , 

a. Set
1

( , ),1 ,1

m

i

k

P p i k i n k m
=

=     ,
i i i

R P q=  and

,
( , )

i k i
r p i k q= .  

b. Re index the patients according to the non-

decreasing order of ,1
i

R i n  .  

c. For the first lm  patients, every m patients are 

assigned in one block from the beginning. Then, the 

last  patients are assigned to the last block.   

d. In each patient assignment, the priority is given to 

the patients with the smallest
, ( , )

ii k p i k qr = . 
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e. Schedule the l blocks without any delay or pre-

emption. 

WSPT rule has been proven to be asymptotically optimal 

for 
1

/ /
n

i i

i

m
W CP

=

  [8]. This result is stated as an 

asymptotically optimal lower bound to the total weighted 

completion time flexible open shop scheduling problem 

[8]. We modify WSPTB heuristic to solve TWCT 

stochastic flexible open shop scheduling problem. The 

details of the Stochastic Weighted Shortest Processing 

Time Block (SWSPTB) heuristic are as follow. 

a. Set 1
1

1

,1 ,1
ik

m

i

k

F i n kF m

−

=

−
=     ,

1

i i i
R F q

−

= and 

1

, iki k i
Fr q


−

= .  

b. Assign the first (1)mr  patients to the first block, the 

patients in [ (1) 1, (1) (2)]mr mr mr+ + to the second 

block, the patients in 
1

1 1

( ) 1, ( )

d d

t t

m r t m r t

−

= =

+
 
  
   to the 

block d  and so on.  

c. In each patient assignment, the priority is given to 

the patients with the smallest
1

, iki k i
Fr q


−

= . 

d. Schedule every block in turn without any delay or 

pre-emption. 

 
3. 3. 1. Illustrative Example             Suppose that 5 

outpatients pass through 3 stages in the radiology center. 

Each stage contains 2 identical resources.  The length of 

stay in each stage follows from a normal distribution with 

a confidence level of 0.95. We formulate this, as a 

stochastic flexible open shop scheduling problem with 

n=5, m=3 and ( ) 2r k = .  

The inverse normal cumulative distributions of 

service times with a confidence level of 0.95 are as 

follows. 
 

 

 Patient1 Patient2 Patient3 Patient4 Patient5 

Stage1 43 83 44 48 31 
Stage2 58 112 60 66 42 

Stage3 115 54 169 62 26 

qi 1 3 3 4 5 

 

The patients are sorted according to the value of iR as 

{Patient1, Patient2, Patient3, Patient4, Patient5}. Here 

there is one block (because there are (1) 6r m =  sources 

and all patients are included in one block). Patient5 passes 

through k stages according to the increasing order of the 

value of 
5,kr (i.e.

5,3 5,1 5,2, ,r r r ).  

Therefore, patient5 will be served first in stage 3 then 

1 and finally 2. In the same manner, patient4 will be 

served first in stage 1 then 3 and 2. The second patient’s 

path will be stage3-stage1-stage2. Generated schedule 

executing SWSPTB is given in Figure 1. As can be seen 

in Figure 1, the service route for patient3 and also patient1 

will be stage 1, stage 2 and stage 3. The objective value 

of the SWSPTB schedule is 3048. 

Generated schedule for an illustrative example, 

executing the SP model in CPLEX 12.6 is given in Figure 

2. The objective value of the optimal schedule is 2998. 

 

 

4. COMPUTATIONAL RESULTS 
 

The computational results will be discussed in two parts; 

implementation of the proposed model on a real 

radiology center data to evaluate the performance of the 

model and its applicability and the validation of the 

proposed model and SWSPTBT heuristic.  

 

4. 1. Validation of SWSPTB Heuristic           To 

evaluate the performance of the proposed heuristic 

method, the relative deviation (RD) between the 

proposed heuristic and the exact mixed-integer linear 

programming (MILP) method is obtained via Equation 

(23) where O.F is j j

j

W C . 

( ). .

.

SWSPTB MILP

SWSPTB

O F O F
RD

O F

−
=  (23) 

Since the run time of the stochastic model is intensively 

enhanced for a moderate number of jobs (even in a 
 

 

 
Figure 1. Generated schedule executing SWSPTB 

 

 

 
Figure 2. Optimal schedule of illustrative Example 
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problem with 2 stages), the objective function of the 

small-size exact MILP method executed by branch and 

bound (B&B) algorithm in CPLEX 12.6 is compared 

with that one of the heuristic method executed in Matlab 

R2013b on Intel CORE i7 2.6GHz. B&B is an exact 

optimization method to solve Np-hard combinatorial 

optimization problems [30] as a shop-scheduling 

problem  [31]. We consider up to 4 stages with 2 identical 

devices in each stage. 100 stochastic service times are 

generated from a normal distribution with a confidence 

level of 0.95 for every case. According to experimental 

results from the public websites of the radiology 

departments in IRAN, same as Razavi Supra specialized 

Hospital, the average duration of each stage has been 

extracted.  In each case, the variance was considered as 

one-tenth of the mean. The average duration of a general 

ultrasound is about 5 to 30 minutes in practice, so the 

average times in this stage have been extracted from a 

normal distribution with an average of 5 to 30 minutes. 

Likewise, the mean times of service in other stages are 

extracted as follows. 

Abdominal Anomalies, Liver Ultrasound and CT-

Scan are respectively considered [15, 20], [10, 15], [10, 

30] minutes. Also, different types of Digestive Radiation 

are considered [20, 30], [30, 60], [30, 45], [120, 240], and 

different types of MRI as [30, 90].  

The efficiency of SWSPTB is remarkable from two 

aspects; the elapsed time of solving problems (of 

different sizes) is short, and the gap between SWSPTB 

and the exact methods is up to 10 percent. CPLEX 12.6 

is unable to solve problems with more than three stages, 

and in these cases, a runtime error occurs (see Table 1).  

It is expected that with a lower confidence level, the 

total time spent by patients in the radiology department 

is reduced, and vice versa. The computational results 

confirm that considering the higher confidence level, 

increases the total elapsed time in the radiology center 

(see Table 2). The elapsed times in Tables 2 and 3 are 

obtained by CPLEX from MILP method. In addition, by 

increasing the variance of the health care service times, 

the total elapsed time will increase (see Table 3). 

 

 
TABLE 1. The Relative Deviation between the objective 

function of the exact and heuristic method for the small size 

problems 

( , )m n  
CPLEX 

12.6 

Elapsed 

Time (S) 
SWSPTB 

Elapsed 

Time (S) 
RD 

(2,5) 2826 0.56 2969 2.0 0.048 

(2,6) 4533 0.68 4603 9.0 0.0152 

(2,7) 4981 0.90 5213 3.3 0.0445 

(2,8) 5514 1 5731 3.3 0.0378 

(2,9) 6770 17 7148 3.3 0.0528 

(2,10) 6931 81 7476 5.6 0.0728 

(2,11) 7936 2933 8059 10 0.0152 

(3,5) 2998 3 3048 2.1 0.017 

(3,6) 4338 10 4631 6.7 0.068 

(3,7) 5287 77 5699 9.6 0.078 

(3,8) 7425 602 7903 14.2 0.064 

(3,9) - 16200  15.5  

(4,5) 4855 1713 5097 50 0.05 

(4,6) - 3624    

m: the number of stages 

n: the number of patients 

 

 

An increase in the variance of service times can be 

implicitly interpreted as an insufficient experience 

service provider or inappropriate physical condition of 

the patients, such as senility, Weakness, etc. A further 

reduction in total elapsed time due to a 5% reduction in 

the confidence level compared to a 10% reduction in 

service times’ standard deviation (see Figure 3). 

 

4. 1. Case Study               To evaluate the performance of 

the proposed heuristic, it has been applied in a radiology 

center. In this under-studied radiology center, patients are 

scheduled according to a pre-reserved list.  
This radiology center has two ultrasound devices, one 

CT-Scan device and one radiation device.  

To simplify problem-solving, it's assumed that devices in 

each stage are similar. Also, it is assumed that patients  

 

 
TABLE 2.The effect of confidence level variation on the 

patient’s total prioritized elapsed time 

Confidence Level 0.9 0.95 0.99 

(m,n)    

(2,5) 2538 2826 4001 

(2,6) 3418 4533 5650 

(2,7) 3809 4981 5904 

(2,8) 3852 5514 6132 

(2,9) 4841 6770 7680 

(2,10) 5121 6931 7959 

(2,11) 6959 7936 9236 

(3,5) 2841 2998 4244 

(3,6) 4017 4338 5407 

(3,7) 5103 5287 6509 

(3,8) 6695 7425 7950 
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TABLE 3. The effect of the healthcare service times variance 

changing on the total prioritized elapsed time 

variance 0.01 0.1 0.2 

(m,n)    

(2,5) 2678 2826 4440 

(2,6) 4406 4533 4667 

(2,7) 5091 4981 6353 

(2,8) 5972 5514 6437 

(2,9) 6300 6770 7674 

(2,10) 6690 6931 8256 

(2,11) 7908 7936 8786 

(3,5) 2692 2998 4710 

(3,6) 3627 4338 4954 

(3,7) 4865 5287 6160 

(3,8) 5129 7425 8555 

 

 

 
Figure 3. Comparison of the effect of reducing the service 

time variances with the effect of reducing the level of 

confidence on the total elapsed times 
 

 

 

arrive on time as in the pre-reservation list and not-shown 

(a person who has made a reservation, booking, or 

appointment but neither keeps nor cancels it) is not 

considered. There are 8 working hours in the radiology 

center (9 -13 AM and 15-19 PM). Data are collected for 

10 working days to estimate the Average Number of 

patients per hour (ANPH), the average number of 

requests for each service per hour as well as the average 

service times in different stages. According to the 

collected data, the average referrals percent per hour for 

different services were respectively estimated 40, 30, 20 

and 10% for ultrasound, CT scan, radiography, and 

ultrasound together with radiography.  

According to the observations, the proposed method 

outperforms the actual system in terms of the average 

total prioritized elapsed time (see Figure 4). 

 

 

 
Figure 4. The comparison of the average total elapsed time 

of patients per hour according to the actual system and the 

proposed heuristic method 
 

 

5. CONCLUSION 
 

Considering service times uncertainty, scheduling of 

patients in a radiology department of the supra 

specialized hospital has been modelled in this research. 

Since patients did not need to go through all stages and 

transferring patients to different stages was not 

predetermined, a stochastic flexible open shop 

scheduling problem was proposed to model the problem. 

Besides, considering the priority of patients in this center 

has made the problem more applicable. Enhancement of 

patient satisfaction has been intended in this paper as a 

minimization of the elapsed times of all patients.  

By considering normal distribution for service times, 

the stochastic model was converted to the deterministic 

one. CPLEX 12.6 has been implemented to solve the 

small-size proposed deterministic MILP model. Besides, 

a heuristic method has been proposed to solve the 

moderate-size flexible open shop scheduling problem.  

To indicate the applicability of the proposed model, it 

has been applied to a real radiology center. The 

computational experiment has proven the efficiency and 

simplicity of deployment of the proposed solution 

method.   
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Persian Abstract 

 چکیده 
شود زمان سپری شده در هر مرحله غیر قطعی بوده و بررسی قرار گرفته است. فرض می بندی شده در یک مرکز رادیولوژی مورد در این مقاله زمانبندی بیماران سرپائی اولویت

ی صورت یک مسئلههای سپری شده بیماران در مرکز رادیولوژی است. این مسئله به سازی مجموع زمان کند. تابع هدف مسئله، کمینه از تابع توزیع آماری مشخصی پیروی می 

ریزی عدد صحیح مختلط  ریزی تصادفی فرموله شده است. با فرض تابع توزیع آماری مشخص برای متغیرهای غیرقطعی، یک مدل برنامه رنامه زمانبندی کارگاه باز و یک مدل ب

سباتی حاکی از افزایش سطح شود. نتایج محاعلاوه، یک الگوریتم ابتکاری برای مسائل با سایز متوسط پیشنهاد میشود. بهریزی خطی پیشنهاد میافزارهای برنامهقابل حل با نرم

 وری مرکز رادیولوژی است.رضایتمندی بیماران و همچنین بهبود کارائی و بهره

 

 
  

 


