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A B S T R A C T  

 

Super-resolution is a process that combines information from some low-resolution images in order to 

produce an image with higher resolution. In most of the previous related work, the blurriness that is 

associated with low resolution images is assumed to be due to the integral effect of the acquisition 
device’s image sensor. However, in practice there are other sources of blurriness as well, including 

atmospheric and motion blur that may be applied to low resolution images. The research done in this 

paper provides a super-resolution image from some low-resolution images suffering from blurriness due 
to defocus. In contrast to motion blur kernels that are sparse, the defocus blur kernel is non-sparse and 

continuous. Because of the continuity property of defocus blurring kernel, in this paper, we bound the 

gradient of blurring kernel using proper regularizers to satisfy this property. Experimental results on 
synthetic data demonstrate the effectiveness of the proposed method to produce high resolution and de-

blurred images from some blurry low-resolution images.  

doi: 10.5829/ije.2020.33.04a.04 
 

 
1. INTRODUCTION1 
 
Multi input super-resolution (SR) technique makes a high 
resolution (HR) image by combining some low 
resolution (LR) images from the same scene. The LR 
images are similar, but not identical. To produce such LR 
images the acquisition device is moved and/or rotated 
slightly each time a LR image is taken. These 
movements, known as warping, due to the sampling 
resolution limitation of the imaging sensor, cause each 
LR image to have different information. The SR 
combines this information to produce a HR image. 

SR is an inverse problem, meaning that it reverses the 
process of making LR images. LR images are made 
according to (1), known as observation or degradation 
model. 

𝐲𝑘 = 𝐃 × 𝐖𝑘 × 𝐇𝑘 × 𝐱 + 𝐧, 𝑘 = 1, … , 𝐿  (1) 

where, 𝐱 is an 𝑁𝑃 × 1 vector representing HR image and 

𝐲𝑘 𝑁 × 1 𝑘-th LR image vector, both are 

lexicographically represented and 𝑃 is the factor of 

increase in resolution. 𝐃 is 𝑁 × 𝑁𝑃 down-sampling 

matrix, 𝐖𝑘 and 𝐇𝑘 are 𝑁𝑃 × 𝑁𝑃 matrices representing 
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the warping and blurring operators, respectively, and 𝐧, 

an 𝑁 × 1 vector, models all noise of the process. 

According to observation model (1), HR image 𝐱, (i.e. the 

ideal image of the scene), is blurred, warped and down-

sampled, then contaminated by some noise to generate an 

LR image. The blurring operator 𝐇𝑘 is obtained from 𝐡𝑘, 

the blur kernel that is applied on 𝑘th LR image. 

To align all LR images, one of them, say 𝐲𝑟 , is chosen 

as a reference LR image. The alignment is performed by 

an image registration algorithm as a step in SR process or 

pre-computed beforehand. 

In most of the recent works (e.g. [1]), the blurriness 

to the LR images is known and is assumed to be due to 

the integral property of imaging sensor. However in 

practice, there are some other sources of blurring, such as 

out-of-focus blur, atmospheric blur and motion blur and 

often the blurriness is unknown. In previous work, we 

proposed a method to estimate the blur kernel associated 

with the HR image, using the LR image blurriness [2]. In 

this paper, we assume that the applied blur is due to out-

of-focus with unknown parameter and is the same for all 

the LR images (i.e. 𝐡𝑘 = 𝐡, 𝑘 = 1, … , 𝐿). This 
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assumption is fair, since the settings of acquisition 

process is identical for all the LR images taken from a 

scene in a short period of time. 

One problem in reconstructing 𝐱 given 𝐲 is the 

boundary pixels and the pixels near them. These pixels, 

due to blurring effect, depend on pixels located outside 

the boundary. To address this issue, one can make some 

assumptions about the pixels that are outside 𝐲, known as 

boundary condition (BC). While there are some boundary 

conditions such as periodic BC and zero BC that are 

commonly adopted by the researchers, none of them is 

accurate in practice. Similar to the work in [3], we 

exclude the boundary of the reconstructed image, by 

applying a masking matrix 𝐌 ∈ {0,1}𝑛×𝑚. Hence, taking 

into account the identical blur kernel for each LR and 

applying the masking matrix, the observation model in 

this paper can be represented as: 

𝐲𝑘 = 𝐃𝐖𝑘𝐌𝐇𝐱 + 𝐧, 𝑘 = 1, … , 𝐿.  (2) 

In (2), 𝐇𝐱 is corresponding to a same shape convolution 

(i.e. the size of 𝐇𝐱 is the same as 𝐱) and 𝐌𝐇𝐱 is 

corresponding to a valid shape convolution. 

Organization of this paper is as follows. In Section 2, 

we briefly review some previous related researches. Our 

method is proposed in Section 3. In Section 4 

experimental results are reported and finally, Section 5 

concludes the paper. 

 

 
2. BACKGROUND 
 
Super-resolution was initially developed by Tsai and 

Huang in 1970s [4]. They formulated the problem in 

frequency domain and used the shifting property of 

Fourier Transform to reconstruct HR image. The 

frequency domain approach for SR problem assumes that 

the warping applied to LR images is pure translation, i.e. 

no rotation is allowed. This assumption is a major 

limitation and a considerable deficiency in obtaining the 

SR image. Hence, development of SR algorithms was 

switched to spatial domain by the researchers. 

Observation model is a key factor in developing the 

SR algorithm. There are two main observation models: 

blur-warp and warp-blur [5]. In blur-warp model, as in 

(1), the ideal image 𝐱 is first blurred and then warped. 

Some authors use this model (eg. [6]). In contrast, in 

warp-blur model, the warping of 𝐱 is applied before 

blurring. The difference of these models is discussed in 

[7]. Using blur-warp model, the blur HR image can be 

straightforwardly estimated using optimization 

technique. Thus the SR problem is converted to a Blind 

Image Deconvolution (BID) problem. This approach, 

which has been used in some researches (e.g. [6], [8], and 

[9]), is employed in this paper. More details are provided 

in the next section. 

Algorithm 1. HR Blur Image estimation 

1 initialize 𝐛, choose 𝛾 and 𝑡ℎ𝑟. 

2 while true 

3  𝛁𝐛 ← ∑ −2(𝐃𝐖𝑘)𝑇(𝐲𝑘 − 𝐃𝐖𝑘𝐛)𝐿
𝑘=1  

4  𝐛new ← 𝐛 − 𝛾𝛁𝐛 

5  If (‖𝐛new − 𝐛‖ < 𝑡ℎ𝑟) break 

6  𝒃 ← 𝐛new 

7 end while 

SR and BID are both inverse and ill-posed problems. 

Meaning that, given blur image 𝐛, there are many pairs 

of image 𝐱 and blur kernel 𝐡 that 𝐛 can be produced by 

convolving them. (e.g. 𝐱 = 𝐛 and 𝐡: identity filter). So, 

additional information about unknowns must be provided 

to obtain a useful solution. This information can be 

supplied by regularization. Studies have shown that the 

gradients of natural images is sparse and have a heavy-

tailed distribution [10, 11]. Hence, we use the hyper-

Laplacian distribution that is a way to model heavy-tailed 

distribution and is frequently used in literature (e.g., 

[12]), as a proper regulizer for latent image. 

As latent HR image, unknown blur kernel needs 

regulizer too. Almeida and Figueiredo in [13] used 

positivity constraint for blur kernel (i.e. entries of blur 

kernel must be positive). In contrast to motion blur 

kernels that typically are sparse, defocus blur kernels are 

non-sparse and continuous. To achieve this non-sparsity, 

in addition to positivity constraint, we introduce a new 

regulizer to limit the gradient of the blur kernel. The 

details are addressed in the next section. 

 

 

3. PROPOSED METHOD 
 
Similar to some previous researches (e.g. [8] and [6]), our 

proposed SR process comprises of two phases. In the first 

step, the blurred high resolution image, 𝐛 = 𝐌𝐇𝐱, is 

recovered. Then, in the second step, 𝐛 is de-blurred to 

produce 𝐱. To recover the blurred HR image, 𝐛, we use 

gradient descend (GD) algorithm. Then, to reconstruct 

the HR image, 𝐱, and blur kernel, 𝐡, we use an iterative 

alternating optimization approach using Alternating 

Direction Method of Multipliers (ADMM) [14]. 

Super-resolution and de-blurring are both ill-posed 

inverse problems. To solve such problems, we need some 

additional information about the solution, known as 

regularizations. In this research, we use gradient of image 

as well as gradient of blur kernel as regulizers. The 

following subsections clarify our proposed method. 

 

3. 1. Estimating HR Blur Image               Based on the 

observation model (2), the HR blur image 𝐛 = 𝐌𝐇𝐱 is 

the solution of the optimization Equation (3): 

�̂� = arg min
𝑏

∑ ‖𝐲𝑘 − 𝐃𝐖𝑘𝐛‖2
2𝐿

𝑘=1   (3) 

To solve (3), we simply use the gradient descent (GD)  
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method [15] illustrated in Algorithm 1. In this algorithm, 

𝐛 is initialized by the up-sampled version of the reference 

LR image.  

Algorithm 2. Blind Image Deconvolution 

1 set �̂� to identity filter and 𝝀 = 𝝀0;  

2 repeat 

3  �̂� ← arg min
𝐱

𝐽𝝀(𝐱, �̂�) 

4  �̂� ← arg min
𝐡

𝐽𝝀(�̂�, 𝐡) 

5  update 𝝀 

6 until stopping criteria is satisfied 

 
3. 2. Blind Image Deconvolution            After 

estimating 𝐛, the SR problem reduces to BID, that is, 

estimating latent HR image 𝐱 as well as the unknown blur 

kernel 𝐡. These unknowns can be estimated alternatively: 

first, by initializing the blur kernel as identity filter, the 

latent image 𝐱 is estimated; then, given the estimated 

latent image, the blur kernel is estimated. This process is 

repeated until some criteria are satisfied. The details are 

illustrated inAlgorithm 2, where 𝐽𝝀(𝐱, 𝐡) is the cost 

function and 𝝀 is the regularization parameters that will 

be introduced later. 

In most deblurring methods, FFT-based convolution 

is used assuming periodic boundary condition (e.g. [12]). 

However, in practice the boundary condition is unknown. 

To take into account the unknown boundary conditions, 

as [3] we exclude the boundary of desired HR image 

using a masking matrix. Hence, our problem is 

formulated as a combination of blind image 

deconvolution and inpainting problem. 

As mentioned earlier, BID is an inverse and ill-posed 

problem. Hence, appropriate regulizers must be used to 

obtain useful solutions. Therefore, the following cost 

function is used in this paper to estimate the latent HR 

image and the blur kernel. 

𝐽𝝀(𝐱, 𝐡) = ‖�̂� − 𝐌𝐇𝐱‖
2

2
+ 𝜆1𝑅1(𝐱) + 𝜆2𝑅2(𝐱) +

𝜆ℎ𝑅ℎ(𝐡)  
(4) 

where, the first term is data-fidelity that penalizes 

inconsistency between the latent HR image 𝐱 and the blur 

HR image �̂�; 𝑅1(𝐱), 𝑅2(𝐱) and 𝑅ℎ(𝐡) are regularization 

functions that are defined later, and 𝜆1, 𝜆2 and 𝜆ℎ are the 

corresponding regularization parameters. In Algorithm 2, 

𝝀 is defined as 𝝀 = [𝜆1, 𝜆2, 𝜆ℎ]. As mentioned earlier, 

𝐌 ∈ {0,1}𝑛×𝑚 is a masking matrix that excludes the 

boundary pixels of the image. Similar to [9], in this paper 

we use generalized total variation (GTV) regularizer as 

𝑅1(𝐱) which is defined as (5): 

𝑅1(𝐱) = ‖𝐃0𝐱‖𝑞
𝑞

+ ‖𝐃45𝐱‖𝑞
𝑞

+ ‖𝐃90𝐱‖𝑞
𝑞

+ ‖𝐃135𝐱‖𝑞
𝑞
  (5) 

where, 𝐃𝜃 , 𝜃 ∈ {0, 45, 90, 135} is a partial derivative 

operator in direction that makes a 𝜃 degree angle with 

positive 𝑥-axis. As mentioned earlier, distribution of 

gradients of natural images can be modeled by hyper-

Laplacian distribution [12], this can be done by setting 

𝑞 ∈ (0, 1). 

Algorithm 3. Scaled ADMM 

1 Set 𝑘 = 0, choose 𝜇(𝑗) > 0, 𝐮0
(𝑗)

, and 𝐝0
(𝑗)

, for 𝑗 =

1, … , 𝐽. 
2 Repeat 

3     𝐫𝑘+1 ← ∑ 𝜇(𝑗)𝐽
𝑗=1 (𝐆(𝑗))

𝑇
(𝐮𝑘

(𝑗)
+ 𝐝𝑘

(𝑗)
)   

4     𝐳𝑘+1 ← [∑ 𝜇(𝑗)𝐽
𝑗=1 (𝐆(𝑗))

𝑇
𝐆(𝑗)]

−1

𝐫𝑘+1 

5     for 𝑗 = 1 𝑡𝑜 𝐽 do 

6                𝐮𝑘+1
(𝑗)

← prox𝑔(𝑗)/𝜇(𝑗) (𝐆(𝑗)𝐳𝑘+1 − 𝐝𝑘
(𝑗)

)  

7         𝐝𝑘+1
(𝑗)

← 𝐝𝑘
(𝑗)

− (𝐆(𝑗)𝐳𝑘+1 − 𝐮𝑘
(𝑗)

) 

8     End 

9     𝑘 ← 𝑘 + 1 

10 until stopping criteria is satisfied 

Experiments in [16] show that the second-order gradients 

of natural images have also heavy-tailed distribution. 

Hence, we use the regularizer (6) as 𝑅2(𝐱): 

𝑅2(𝐱) =  ‖𝐃𝑥𝑥𝐱‖𝑞
𝑞

+ ‖𝐃𝑥𝑦𝐱‖
𝑞

𝑞
+ ‖𝐃𝑦𝑦𝐱‖

𝑞

𝑞
  (6) 

where, 𝐃𝑥𝑥, 𝐃𝑥𝑦 and 𝐃𝑦𝑦 are second-order derivative 

operators in horizontal, vertical and diagonal direction, 

respectively.  

As mentioned earlier, the focus of this paper is on 

super-resolution of out-of-focus blur LR images. In 

contrast to motion blur kernel that is typically sparse, out-

of-focus blur kernel can be modeled as a disk kernel and 

is continuous. To force blur kernel to be continuous, we 

set 𝑅ℎ(𝐡) as (7). 

𝑅ℎ(𝐡) = ‖𝐃45𝐡‖1 + ‖𝐃135𝐡‖1  (7) 

The regulizer (7) limits the gradient of the kernel in two 

orthogonal directions. These directions are found 

experimentally. 

 

3. 3. ADMM Algorithm                To solve the cost 

function in (4), we use the Alternating Direction Method 

of Multipliers (ADMM) algorithm [14]. The ADMM 

algorithm is suitable to solve the following unconstrained 

minimization problem: 

min
𝒛∈ℝ𝑑

∑ 𝑔(𝑗)(𝐆(𝑗)𝐳)
𝐽
𝑗=1   (8) 

where, 𝐺(𝑔) ∈ ℝ𝑝𝑗×𝑑 are arbitrary matrices and 

𝑔(𝑗): ℝ𝑝𝑗 → ℝ are functions. Equation (8) can be rewriten 

as the constrained minimization (9), where 𝐮(𝑗) is the 

splitting variable. 

min
𝐳∈ℝ𝑛,𝐮(1)∈ℝ𝑝1,…,𝐮(𝐽)∈ℝ𝑝𝐽

∑ 𝑔(𝑗)(𝐮(𝑗))
𝐽
𝑗=1   

subject to 𝐮(𝑗) = 𝐆(𝑗)𝐳,   for 𝑗 = 1, … , 𝐽. 

(9) 

The ADMM algorithm to solve (9) is presented in 

Algorithm 3 where, the 𝐝(𝑗) is a dual variable and 𝜇(𝑗) is 

ADMM’s penalty parameter. In line 6 of the algorithm, 
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prox𝑔(𝑗)/𝜇(𝑗)  is the proximity operator of 𝑔(𝑗)/𝜇(𝑗). 

Proximity operator of function 𝑓 is defined as: 

prox𝑓(𝐯) = arg min
𝐱

1

2
‖𝐯 − 𝐱‖2

2 + 𝑓(𝐱).  

 

3. 4. Estimating High Resolution Image             To 

estimate HR image (line 3 of Algorithm 3), we solve the 

following minimization problem 

�̂� = arg min
𝐱

‖�̂� − 𝐌𝐇𝐱‖
2

2
+ 𝜆1𝑅1(𝐱) + 𝜆2𝑅2(𝐱)   (10) 

To solve (10) using ADMM, the following setting is 

used: 𝐽 = 8 and 

𝐆(1) = 𝐇  (11) 

𝐆(2) = 𝐃0,  𝐆(3) = 𝐃45,        

𝐆(4) = 𝐃90,  𝐆(5) = 𝐃135 
(12) 

𝐆(6) = 𝐃𝑥𝑥 , 𝐆(7) = 𝐃𝑥𝑦 , 𝐆(8) = 𝐃𝑦𝑦  (13) 

𝑔(1)(𝐮(1)) =
1

2
‖𝐲 − 𝐌𝐮(1)‖

2

2
  (14) 

𝑔(𝑗)(𝐮(𝑗)) = 𝜆𝑗‖𝐮(𝑗)‖
𝑞

𝑞
,  𝑗 = 2, … , 8  (15) 

where,  

𝜆𝑗 = {
𝜆1 𝑗 = 2, … ,5
𝜆2 𝑗 = 6, 7, 8

  (16) 

In performing Algorithm 3, the main steps are lines 4 and 

6. Substituting (11) through (15), line 4 of the algorithm 

can be written as 

𝐳𝑘+1 ← 𝐀 (∑ 𝜇(𝑗)(𝐆(𝑗))
𝑇

(𝐮𝑘
(𝑗)

+ 𝐝𝑘
(𝑗)

)8
𝑗=1 )  (17) 

where,  

𝜇(𝑗) = {

𝜇1 𝑗 = 1
𝜇2 𝑗 = 2, … ,5
𝜇3 𝑗 = 6,7,8

  (18) 

and  

𝐀 = (∑ 𝜇(𝑗)(𝐆(𝑗))
𝑇

𝐆(𝑗)8
𝑗=1 )

−1

  (19) 

Solving line 6 of Algorithm 3 leads to the following 

proximity operators: 

prox𝑔(1)/𝜇1
(𝐯) = arg min

𝐱

1

𝜇1

‖𝐲 − 𝐌𝐱‖2
2 +

1

2
‖𝐯 − 𝐱‖2

2 = (𝜇1𝐈 + 𝐌𝑇𝐌)−1(𝐌𝑇𝐲 + 𝜇1𝐯)  
(20) 

prox𝑔(𝑗)/𝜇(𝑗)(𝐯) = arg min
𝐱

𝜆𝑗

𝜇(𝑗)
‖𝐱‖𝑞

𝑞
+

1

2
‖𝐯 −

𝐱‖2
2 , 𝑗 = 1, … , 8.  

(21) 

where, 𝐈 in (20) is an identity matrix and 𝜇(𝑗) is as (18). 

Equation (20) can easily be computed as discussed in 

[13]. Equation (21) has a closed form solution only for 

𝑞 ∈ {0,
1

2
,

2

3
, 1,

4

3
,

3

2
, 2}. For other values of 𝑞, one can 

solve the equation numerically and keep the solution in a 

lookup table for later iterations [12]; the same approach 

is used in this paper. 

 
3. 5. Estimating Blur Kernel              To estimate the 

blur kernel 𝐡, step 4 in Algorithm 2, the following 

minimization problem must be solved by another 

instance of Algorithm 3. 

�̂� = arg min
𝐱

‖�̂� − 𝐌𝐗𝐡‖
2

2
+ 𝜆ℎ𝑅ℎ(𝐡) ,  (22) 

where, 𝐗 is convolution matrix corresponding to latent 

image 𝐱, such that 𝐇𝐱 = 𝐗𝐡. 

The ADMM settings for solving (22) are: 𝐽 = 3, 

𝐆(1) = 𝐗  (23) 

𝐆(2) = 𝐃45,  𝐆(3) = 𝐃135  (24) 

𝑔(1)(𝐮(1)) =
1

2
‖𝐲 − 𝐌𝐮(1)‖

2

2
  (25) 

𝑔(𝑗)(𝐮(𝑗)) = 𝜆1‖𝐮(𝑗)‖
𝑞

𝑞
,  𝑗 = 2, 3  (26) 

Substituting the above equations in Algorithm 3 leads to: 

𝐳𝑘+𝟏 ←  𝐁 (𝜇(1)𝐗𝑇 (𝐮𝑘
(1)

+ 𝐝𝑘
(1)

) +

𝜇(2)𝐃45
𝑇 (𝐮𝑘

(2)
+ 𝐝𝑘

(2)
) + 𝜇(2)𝐃135

𝑇 (𝐮𝑘
(3)

+ 𝐝𝑘
(3)

)),  
(27) 

where, 𝐁 = (𝜇(1)𝐗𝑇𝐗 + 𝜇(2) ∑ 𝐆𝑗
𝑇𝐆𝑗

3
𝑗=2 )

−1
and  

𝜇(𝑗) = {
𝜌1 𝑗 = 1
𝜌2 𝑗 = 2, 3

  (28) 

Proximity operator of 𝑔(1)/𝜇(1) is similar to (20) and 

proximity operator of 𝑔(𝑗)/𝜇(𝑗), 𝑗 = 2, 3, is also similar 

to (21).  

Finally, after estimating the blur kernel in (27), its 

negative entries are set to zero. 

 

 

4. EXPERIMENTS 
 
To evaluate the proposed method, we apply it on some 

synthetic LR images. The LR images are produced 

according to observation model (2) from 10 images 

depicted in Figure 1 and three blur kernels of size 7 × 7, 

11 × 11 and 15 × 15. We set the factor of increase in 

resolution to 2 (P = 2) and SNR about 50. 

In the experiments, the parameters are experimentally 

initialized as follows: 𝜆1 = 1, 𝜆2 = 0.16, 𝜆ℎ = 0.1, 𝑞 =
0.8, 𝜇1 = 1, 𝜇2 = 𝜆1/2, 𝜇3 = 𝜆2/2, 𝜌1 = 1, 𝜌2 = 𝜆ℎ/2. 

Updating  𝝀 (line 5 of Algorithm 2) is done as 𝜆𝑖 =
max(𝛼𝜆𝑖 , 𝜖𝑖) , 𝑖 = 1, 2, where 𝛼 =  0.7 and 𝜖1 = 𝜖2 =
10−6  and 𝜆ℎ is fixed in all iterations. 

In our implementation, varying penalty parameters, 

described in [14],  are used to  adaptively change all 𝜇(𝑗) 
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Figure 1. Images used in our first experiments 

 

 

in each iteration of both instances of ADMM algorithm. 

Similar to [13], the image estimate (line 3 of Algorithm 

2) is computed with 20 iteration of the first instance of 

Algorithm 3 and initialized with 𝐝0
(𝑗)

= 0, 𝐮0
(𝑗)

= 𝐆(𝑗)�̂� 

(where �̂� is the estimate of previous iteration of 

Algorithm 2). Also, the blur kernel estimate (line 4 of 

Algorithm 2) is computed with 10 iteration of the second 

instance of Algorithm 3 and initialized with 𝐝0
(𝑗)

= 0, 

𝐮0
(𝑗)

= 𝐆(𝑗)�̂� (where �̂� is the estimate of previous 

iteration of Algorithm 2). The warping parameters of the 

LR images in the experiments are assumed to be known. 

In Figure 2, an applied blur kernel, one LR image, the 

blur HR image and the best reconstructed HR image are 

shown for the Cameraman image. The difference in the 

size of HR image and Blur HR image is due to applying 

masking matrix 𝑴.  

In Table 1 the structural similarity (SSIM) index [17] 

of the best reconstructed HR image by the proposed 

method and the method presented in [16] for all (image, 

kernel) pairs is illustrated. 

The SSIM index ranges from 0 to 1. Its higher value 

indicates that the reconstructed image is more similar to 

the original image. As shown in Table 1, the proposed 

method is superior to the existing method in providing a 

more quality SR image. 

 

TABLE 1. Comparison between the proposed method (ours) 

and the method in [16] 

Image name Method 
Kernel size 

𝟕 × 𝟕 𝟏𝟏 × 𝟏𝟏 𝟏𝟓 × 𝟏𝟓 

Baboon 
ours 0.7093 0.5585 0.4179 

[16] 0.6158 0.4534 0.3918 

Boat 
ours 0.8814 0.7993 0.7309 

[16] 0.8023 0.7110 0.6505 

Cameraman 
ours 0.8907 0.8381 0.7561 

[16] 0.8190 0.7630 0.7202 

Girl 
ours 0.8913 0.8359 0.7793 

[16] 0.8481 0.8343 0.8004 

House 
ours 0.8707 0.8305 0.7714 

[16] 0.8272 0.8114 0.7547 

Man 
ours 0.9171 0.8433 0.7414 

[16] 0.8178 0.7153 0.6493 

Onion 
ours 0.9229 0.8725 0.7719 

[16] 0.8517 0.7875 0.6694 

Parrot 
ours 0.9272 0.8877 0.8368 

[16] 0.8448 0.8127 0.7776 

Pepper 
ours 0.8708 0.8478 0.8012 

[16] 0.8351 0.8094 0.7912 

Tire 
ours 0.9248 0.7908 0.7104 

[16] 0.8221 0.7674 0.6295 

The reported SSIM of the proposed method is for the best 
reconstructed HR image 

 

 

In Another experiment, the proposed method was 

applied on another fifty natural images. Table 2 shows 

the average of the SSIM index as well as average of the 

Mean Square Error (MSE) of all sixty (10 + 50) images 

for each blur kernel. 

 

 

   

(a) 

 
(b) (c) (d) (e) 

Figure 2. (a) Applied blur kernel (𝟏𝟏 × 𝟏𝟏), (b) One of LR image, (c) Blur HR image, (d) Reconstructed HR image (SSIM: 

0.8381), (e) Result of  [16] (SSIM: 0.7630) 
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TABLE 2. Average of SSIM and MSE of the proposed method 

(ours) and the method in [16]  on 60 test images 

 

 

experiments, the loop in Algorithm 2 is iterated by a 

predefined number (say, 50 times), then the best 

reconstructed image is chosen manually. In Figure 3, the 

SSIM evaluation metric of the reconstructed image in 

each iteration is shown. Another drawback of the 

proposed method is that the kernel size must be provided 

beforehand. In the experiments, the size of the kernel in 

each dimension is set to the size of the ground truth kernel 

plus two. As future works, we intend to cope with these 

deficiencies. 

 

 

 
Figure 3. SSIM metric of reconstructed HR image in each 

iteration 

 

 

5. CONCLUSIONS 
 

Regularization is a key technique in signal and image 

reconstruction. In this paper, to reconstruct a high 

resolution image from some defocus-blurred low 

resolution images, we propose a new regularizer to apply 

on unknown blur kernel. The proposed regularizer uses 

the continuity property of defocus blur kernel. Evaluation 

results show applying the proposed regularizer improves 

the quality of the reconstructed high resolution image. 

In addition to the mentioned future works in previous 

section, this research can be extended by finding 

appropriate regularizer for other types of blur kernel, e.g., 

Gaussian blur. 
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Evaluation 

metric 
Method 

Kernel size 

𝟕 × 𝟕 𝟏𝟏 × 𝟏𝟏 𝟏𝟓 × 𝟏𝟓 

SSIM 
ours 0.9025 0.8253 0.7296 

[16] 0.8165 0.7383 0.6690 

MSE 
ours 0.0009 0.0020 0.0037 

[16] 0.0026 0.0033 0.0045 

The reported SSIM of the proposed method is for the best 

reconstructed HR image. 
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Persian Abstract 
 

 چکیده 

کند. در اغلب کارهای گذشته، فرض تعدادی تصویرِ با دقت کم از صحنه را ترکیب کرده و تصویری با دقت زیاد از صحنه ایجاد میپذیری فرایندی است که اطلاعات  ابرتفکیک 

گری باشد، تواند به دلایل دیگر تصویر است. اما در عمل، عامل تاری تصاویر کم دقت می گیری حسشد که تاری اعمال شده به تصاویر کم دقت به خاطر خاصیت انتگرال می

مقاله فرض بر آن است که از جمله تاری عدم تمرکز عدسی دستگاه اخذ تصویر، تاری ناشی از اغتشاشات جوی و تاری ناشی از حرکت جسم یا دوربین و یا هر دو. در این 

پارچه ته تاری ناشی از عدم تمرکز عدسی تنک نبوده و یکای تنُک دارد، هسدقتی تصاویر به خاطر عدم تمرکز عدسی تار باشد. بر خلاف تاری ناشی از حرکت که هستهکم

ها بر روی تصاویر پارچه دست یابیم. نتایج آزمایشای یکساز مناسبی مقید کردیم تا به هستهاست. به همین دلیل، ما در این تحقیق گرادیان هسته تاری را با استفاده از منظم

 دی برای ایجاد تصویری با دقّت زیاد و رفع تارشدگی با ترکیب تعدادی تصویر کم دقت و تار است. دهنده کارایی روش پیشنهاشده نشان سازیشبیه
 

 


