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A B S T R A C T  

 

This paper introduces a computational strategy to collaboratively develop the Galerkin Finite Volume 

Method (GFVM) as one of the most straightforward and efficient explicit numerical methods to solve 
structural problems encountering material nonlinearity in a small limited area, while the remainder of 

the domain represents a linear elastic behavior. In this regard, the Element Free Galerkin method (EFG), 

which is remarkably robust and accurate, but presumably more expensive, has locally been employed as 
a nonlinear sub-model to cover the shortcomings of the GFVM in the elastoplastic analysis. Since the 

formulations of these two methods are fundamentally different, the iterative zonal coupling has been 

accomplished using overlapping Multi-Grid (MG) patches with a non-matching interface and Iterative 
Global/Local (IGL) approach. The main property of such an algorithm is its non-intrusiveness, which 

means the complex nonlinear EFG solver is locally utilized over an elastic global GFVM without any 

geometric modification. This method is verified and investigated with available analytical and numerical 
solutions which gave quiet promising results showing the robustness and accuracy of the method. The 

Moving Least-Square approximation (MLS) has widely been applied on transfer level due to the non-
conforming interface at the patch edges, and easily allows us to attach complex geometries with different 

mesh patterns. The new type of Quasi-Newtonian accelerator is adopted on the global material 

constitutive matrices and its convergence property and accuracy is compared with dynamic Aitken 
accelerators for two-dimensional problems in MATLAB. Finally, various accelerator types and mapping 

strategies are also concerned in the examination. 

doi:10.5829/ije.2020.33.03c.03 
 

NOMENCLATURE 

Cwave  wave velocity uL, uG local and global displacement values 

rn  average size of equivalent control volume σL, σG local and global stress values 

ΩG, ΩL global and local domain 𝐹𝐺|𝐿, 𝑢𝐺|𝐿 interfacial nodal forces and displacements 

ΩG|L intersection of global and local domain P, R prolongation and restriction operators 

Dep elasto-plastic material constitutive matrix μ(k)  relaxation coefficient in the kth step 

dmax dimensionless size of the support domain KL  local stiffness matrix 

nl, ng unit outward normal vector Resk  the interfacial residual L2-norm error 

 
1. INTRODUCTION1 
 
In the numerical simulation of the material nonlinearity 

in large complex domains encountering small critical 

zones, it is very usual to implement a Finite Element (FE) 
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solver on the entire domain. According to the established 

procedures, the nonlinear equilibrium equations are 

solved by dividing the external load into individual load 

increments and using Newton’s method at each 

increment. These procedures could lead to unaffordable 
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calculation costs, particularly in extremely large domains 

or complex load patterns. One of the drawbacks of such 

single-models, which have been widely used in 

computational mechanics, is that the overall efficiency is 

intensively influenced by the small nonlinear zones. 

Multi-model approaches would be an appropriate 

answer to these limitations. The first choice is sub-

modeling in which a global linear solver followed by a 

local nonlinear “patch” which covered the demanding 

global zone and operated by the global displacements [1], 

[2] or stresses [3]. In this regard, multiple specific 

methods can separately be employed in their relevant 

part. Although practically acceptable and analytically 

accurate, those methods suffer from a series of 

limitations such as a one-way data transition which 

neglects the global influence of local plasticity [4]. 

Therefore, stress redistribution and displacement 

compatibility, cannot be globally obtained. In this regard, 

some researchers have recommended a global iterative 

correction [5, 6], or static condensation [7, 8] to modify 

global results. Nevertheless, most of those were 

introduced as structural zooming or mesh adaptation just 

for linear elasticity, and are not entirely applicable for 

nonlinear analysis. 

Another alternative is to employ multi-scale 

techniques [9] such as the micro/macro strategy [10], 

[11] or nonlinear localization techniques [12, 13]. Also 

the coupling techniques such as Implicit Direct Coupling 

Approach (IDCA) [14, 15],and Explicit Iterative 

Coupling Approach (EICA) [16] are the choice. In EICA 

solver, known as Neumann-Dirichlet, the required matrix 

dimension to solve the problem is much smaller than that 

of the conventional direct coupling. Whitcomb [6, 17] 

proposed The Iterative Global/Local (IGL) scheme based 

on EICA and noticed the severe converge problem to 

satisfy the equilibrium equation between the overlapping 

local grids and global background domain. In this regard, 

Carlos and Felippa [18] use Lagrange multipliers to 

satisfy the interface displacement compatibility, and 

various relaxation parameters were represented by 

Elleithy on transfer region to enhance the convergence 

level [19, 20]. In fact, those methods are robust and 

efficient, but they use complicated formulations which 

intrusively affect the global framework and therefore, 

commercial FE software or industrial data sets cannot be 

employed arbitrarily [21]. Although those techniques 

have proved their promising performance, it would be 

time-consuming and challenging to perform them in 

industrial applications. Consequently, they would be 

considered as a moderate solution, rather than an efficient 

practical technique. Recently, a non-intrusive IGL has 

been implemented by Duval and Passieux [22-27] to 

overcome the drawbacks by entirely releasing the global 

configuration. In this method, the global and local 

methods may include various geometric configurations, 

different mesh details, or independent governing 

constitutive laws. They can also be a separate piece of 

code, without any similarity. In spite of those efforts, the 

computational efficiency of such strategies is still an 

open issue and needs more discussion. 

In this paper, we have developed a zonal coupling to 

improve the linear-elastic Galerkin Finite Volume solver 

(GFVM) [28, 29] by nesting the nonlinear Element Free 

Galerkin (EFG) [30, 31] to consider the local plasticity in 

structural material. The method is built on the non-

intrusive IGL and some improvements are introduced 

that significantly enhance the accuracy and robustness of 

the method. The authors are globally utilized the GFVM, 

which is relatively efficient, accurate, and fast in terms of 

linear elasticity, to explicitly solve the problem and 

considerably simplify the modeling. Although the 

GFVM has proven to be effective in crack analysis [32], 

it is not preferable in terms of nonlinear analysis. 

Therefore, the EFG, which is more robust and mature 

technique, is patched with non-matching (nested) 

interface, to easily carry out the effects of local 

nonlinearity without suffering from heavy computational 

workload. The focus of the current study is to examine 

the feasibility of the explicit coupling for elastoplastic 

materials and the convergence of the proposed algorithm. 

Therefore, relatively simple elastoplastic problems with 

known analytical or finite element results are used for 

comparison to test the accuracy and efficiency of the 

proposed elastoplastic zonal coupling. 

This method has some advantages, such as simpler 

formulae and directly transferring the interfacial 

boundary values. Altogether, the results of three 

numerical examples show that the computational speed 

and precision of the coupled method are higher than that 

of the single nonlinear EFG model. 

In the present work, we extend the Quasi-Newtonian 

SR1 accelerator based on the material constitutive 

matrices to elastoplasticity. By means of this specific 

type of relaxation parameter, the iterative coupling 

between explicit and implicit solvers is easily become 

possible. The governing equation is obtained from the 

weak form of elastoplasticity over a local sub-domain, 

and the MLS approximation is used for data transferring 

on non-matching interfaces. The constitutive law is the 

small deformation, based on von Mises yielding criterion 

and strain general isotropic hardening. 

 

 

2. GALERKIN FINITE VOLUME (GFVM) ON GLOBAL 
ELASTIC DOMAIN 
 
GFVM is a precise, fast, and reliable numerical technique 

to solve boundary value problems, without any matrix 

operation, which was first introduced as a structural 

solver module of NASIR (Numerical Analyzer for 

Scientific and Industrial Requirements) software 

developed by Sabbagh-Yazdi et al. [32-35]. GFVM is an 
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iterative cell-vertex finite volume solver which solves the 

integral form of the governing equations on unstructured 

triangular meshes. This method is well-examined in 

various small strain mechanical problems as well as 

dynamic analysis [36], crack growth [37], dynamical 

failure [38, 39], and thermal elasticity [40]. 

According to this method, by multiplying the weight 

function (ω) by the Cauchy equation [33, 40], the 

Galerkin weak form is obtained as: 

∫ 𝜔. 𝜌
𝜕2𝑢𝑖

𝜕𝑡2𝛺
𝑑𝛺 = ∫ 𝜔. (�⃗�  . 𝐹𝑖⃗⃗ )𝛺

𝑑𝛺 + ∫ 𝜔. 𝑏𝑖𝛺
𝑑𝛺  (1) 

where b is the body force, 𝜌 the material mass density 

and 𝐹𝑖 the force vector. By step-by-step integrating the 

first term on the right-hand side of the Equation (1), it 

could be rewritten as: 

∫ 𝜔. (�⃗�  . 𝐹𝑖⃗⃗ )𝛺
𝑑𝛺 = [𝜔. 𝐹𝑖⃗⃗ ]𝛤 − ∫ (𝐹𝑖

⃗⃗ . �⃗� 𝜔)
𝛺

𝑑𝛺  (2) 

In Equation (2), while the weight function (𝜔) is equal to 

the linear interpolation function (𝜙), [𝜔. �̅�𝑖]𝛤 would be 

zero on the boundaries of the integration subdomain. The 

last term of the Equation (1) is discretized as follows: 

−∫ (𝐹𝑖⃗⃗ . �⃗� 𝜔)𝛺
𝑑𝛺 ≈ −

1

2
∑ (𝐹�̃�∆⃗⃗ 𝑙)𝑘
𝑁
𝑘=1   

= ∑ (�̃�𝑖1∆𝑥2 − �̃�𝑖2∆𝑥1)𝑘
𝑁
𝑘=1   

(3) 

In which ∆⃗⃗ lk is the normal vector of the kth surface. By 

applying the FDM concept to discretize the transient term 

of the Cauchy Equation by the algorithm mentioned by 

Sabbagh-Yazdi et al. [40] and by putting Equations (2) 

and (3) into (1), we finally have: 

(𝑢𝑖)𝑛
𝑡+∆𝑡
= 2(𝑢𝑖)𝑛

𝑡
− (𝑢𝑖)𝑛

𝑡−∆𝑡
+ 

3(∆𝑡𝑛)
2

2𝜌𝛺𝑛
[∑ (�̃�𝑖1∆𝑥2 − �̃�𝑖2∆𝑥1 + 𝐹𝑖)𝑘 +

2𝑏𝑖𝛺𝑛

3
𝑁
𝑘=1 ]

𝑡
  

(4) 

𝜎𝑖𝑗 = 𝑪𝑢𝑖,𝑗 ≈
1

𝐴𝑘
∑ 𝐶{𝑢𝑥𝛥𝑦 −𝑢𝑦𝛥𝑥 (𝑢𝑥𝛥𝑦 − 𝑢𝑦𝛥𝑥)}𝑚
3
𝑚=1   

(5) 

where Ak is the area of the triangular element associated 

with the boundary k, and tensions are calculated at the 

center of the triangular element. Note that the time 

interval ∆𝑡𝑛 does not have any physical interpretation in 

solving equilibrium problems and is only a virtual 

parameter used to solve the problem in an iterative 

manner [28]. The above explicit formulation requires an 

iterative process that converges during the progressive 

incremental procedure. In order to stabilize the explicit 

solution and to increase the convergence speed, 

appropriate time increment should be considered which 

depends on the material type and the control volume size 

which should be checked by Equation (6) for each control 

volume as follow: 

∆𝑡𝑛 ≤
𝑟𝑛

𝐶𝑤𝑎𝑣𝑒
  (6) 

where 𝐶𝑤𝑎𝑣𝑒  is the wave velocity and 𝑟𝑛 the average 

radius of equivalent circle that matches with the desired 

control volume [32]. 

 

 

3. NONLINEAR ELEMENT FREE GALERKIN (NL-
EFG) ON LOCAL DOMAIN 
 
For an elastoplastic state, the material stiffness 

continuously varies, and the incremental stress-strain 

relationship for each node is given by [41]: 

𝑑𝜎 = 𝐃𝑒𝑝𝑑𝜀  (7) 

where 𝐃𝑒𝑝  is the elastoplastic material constitutive 

matrix, and 𝑑𝜀 the overall strain increment as follows: 

𝑑𝜀 = 𝑑𝜀𝑒 + 𝑑𝜀𝑝  (8) 

where 𝑑𝜀𝑒 and 𝑑𝜀𝑝 are elastic and plastic strain 

increments. According to the Associated Flow Rule, the 

failure criterion is 𝑓(𝜎) = 0, where f is a failure function. 

According to the von Mises yield criterion, 𝑓(𝜎) =
𝜎2 3⁄ , where 𝜎 is the tensile yield stress. Having taken 

the derivatives, we obtain: 

𝑑𝑓 =
𝜕𝑓

𝜕𝜎
𝑑𝜎 +

𝜕𝑓

𝜕𝜀𝑝
𝑑𝜀𝑝 = 0  (9) 

For simplicity, taking 
∂f

∂σ
= 𝐚T and 𝐀 = −

𝜕𝑓

𝜕𝜀𝑝
𝐚, we can 

rewrite Equation (9) in the following form: 

𝐷𝑒𝑝 = 𝐷𝑒 −
𝐷𝑒𝑎𝑎

𝑇𝐷𝑒

[𝐴+𝑎𝑇𝐷𝑒𝑎]
  (10) 

 
 
4. ITERATIVE OVERLAPPING COUPLING 
 
Coupling (mixed) methods are classified as applied 

multi-model answers to overcome some of the limitations 

of single-model approaches. These techniques cover a 

wide range of multi-scale and multi-model approaches 

such as iterative coupling based on the Domain 

Decomposition (DD), direct coupling, multi-grid 

method, and IGLs. Each coupling method contains at 

least two separate systems of equations and 

corresponding results should be matched together on 

their boundary interfaces. It is quite crucial to mention 

that the main challenge, especially in the iterative 

schemes, is the convergence issue, and various 

alternatives have been proposed by several authors to 

overcome this issue. 

In this paper, the GFVM was performed globally 

mainly due to its prominent speed and acceptable 

accuracy in linear parts of structural problems. Although 

GFVM is a vertex-based method which utilizes the 

Galerkin weighted residuals and linear shape functions 

for triangular elements, the final formulations were 



390                      S. R. Sabbagh-Yazdi and H. Najar-Nobari / IJE TRANSACTIONS C: Aspects  Vol. 33, No. 3, (March 2020)   387-400 

 

obtained without any shape function; therefore, it is 

classified as an explicit solution. In other words, the 

whole problem would be solved locally without any 

global matrix. For the part of the problems with nonlinear 

behavior, we need a more efficient method rather than 

GFVM, and it could be any of the well-known precise 

non-linear methods. Therefore, EFG was chosen to solve 

local nonlinearities.  

According to the fundamental differences between 

GFVM and EFG, the direct coupling of these two is not 

practically possible. Therefore the only choice is IGL and 

the best one would be the non-intrusive approach which 

has been implemented by Duval and Passieux [22-27]. 

One of the prominent advantages of the non-intrusive 

IGL is the integrity of the background mesh all over the 

solution processes. Therefore, the computational mesh 

outlasted completely intact during solution steps, which 

means the position and the number of nodes and elements 

always remain constant. Whereas many parameters are 

related to the nodal positioning and element geometries, 

most of the parameters such as tangential and orthogonal 

components of unit vectors, and the nodal and elemental 

surface area are calculated only once at the beginning of 

the solution. Altogether, the advantages of the non-

intrusive IGL are outlined as follows: 

• The background (global) mesh remains unchanged, 

which is especially valuable for cases where the global 

grid relates to a large-scale structure within a very large 

number of degree of freedom. Due to the reduction in the 

iterative computations caused by the generated grid, the 

stiffness matrix, force vectors and other global pa-

rameters were calculated once in the initialization of the 

computation. 

• With the material non-linearity or crack discontinuity, 

a local grid can be created for complex non-linear 

analysis, which could be overlapped on the global grid. 

• The local grid can be fully independent of the global 

background mesh. According to Figure 1, it can be 

observed that the local solution method can be different 

from the global model, in terms of the nodal distribution, 

density, layout, element degree of precision, and 

discretization techniques. 

• The local model is represented as a corrector operator 

to improve the background results. Therefore, any model 

with specific characteristics can be applied for the non-

linear area. As a consequence, a wide range of implicit 

and explicit numerical methods can be combined to 

increase the efficiency of the solution considering desired 

mechanical issues such as interaction, multi-scale, multi-

grid, and coupling problems. 

In terms of local and global positioning, coupled 

methods are divided into overlapping and non-

overlapping systems. In non-overlapping system, the 

global configuration and parameters should 

fundamentally change according to the solution results of 

the plastic zone. Such a strategy not only is in conflict 

with the non-intrusiveness but also would end up with a 

significant convergence dilemma. In overlapping 

concept, various scenarios can be considered, for the 

local and global pattern. The simplest one is to utilize a 

part of the background nodes as common global/local 

nodes. The number and position of these nodes exactly 

match with the corresponding global nodes. Therefore, 

the data transition between these overlapped areas is 

accurately attainable at common nodes without any 

specific operator. Since we need more level of 

complexity and accuracy in the nonlinear analysis at the 

limited area, enough nodal density and accuracy, would 

not be provided by the same nodal configuration. 

Therefore, as illustrated in Figure 1, the non-matching 

form, in which the interfacial nodes are not necessarily 

compatible together, could be a feasible strategy. 

 

4. 1. IGL Zonal Patching Formulation            The 

global/local technique, divides the material nonlinear 

analysis into two parts: 

(1) Linear elastic analysis of the global materials 

(2) The local nonlinear analysis to consider failure and 

fracture criteria 

 In this regard, the force equilibrium and the displace-

ment compatibility to pair ΩL and ΩG, are given as fol-

lows: 

𝑢 = {
𝑢Local          in nonlinear area only  

𝑢Global         everywhere else            
  

𝑢𝐿 = 𝑢𝐺                          on 𝛤 

𝜎𝐿𝑛𝑙 + 𝜎
𝐺𝑛𝑔 = 0         on 𝛤 

(11) 

uL, uG, σL and σG are the interfacial values of 

displacements and stresses on the transition region 

between global and local areas. ΩG|L is a part of the global 

domain, which overlaps with ΩL, and Γ is the local 

boundary. Also, nl and ng are normal boundary vectors on 

local and global boundary nodes. Based on the non-

intrusive framework, the solution algorithm contains 

only subdomain outputs, and the ultimate solution 

consists of neither a direct matrix relationship nor a 

combination of system matrices between different 

methods. In this regard, a special algorithm similar to the 

Newton-Raphson method may be used as follows [26]: 
 

 

 
Figure 1. Non-matching configuration of the IGL and 

interface boundary edges 
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1. Global initial solution: Solve the problem assuming 

the entire domain is in the elastic condition. 

2. Solution on local domain: The problem is solved 

locally affected by the parts of the global responses as 

boundary conditions. Although these boundary values 

can be nodal displacements or forces, the displacement 

integrity and compatibility would be guaranteed by 

displacement transition to the local edges. 

3. Calculation of the residual values: Convergence is 

fundamentally dependent on the response equilibrium 

between two overlapping domains. In order to satisfy 

Equation (11) and reach convergence, the interfacial 

residual norm should be minimized. 

4. Modification on the global material constitutive 

matrix and/or global stresses: If the residual norm of the 

displacements is not small enough, it will be added to the 

global domain as a correction value. 

According to the above explanations, the correction 

of the global solution will appear in the following form 

[42]: 

𝐊𝐺𝑈𝐺
𝑘+1 = 𝐹𝐺

𝑘 + 𝑅𝑒𝑠𝑘  

𝑅𝑒𝑠𝑘 = [𝐊𝐺|𝐿𝑈𝐺
𝑘] − [𝑅𝐊𝐿𝑈𝐿

𝑘+12] 
(12) 

where 𝐹𝐺
𝑘 and 𝑈𝐺

𝑘 are the global force and displacement 

vectors in step kth, and R is the Restriction operator which 

maps local nodal values on global nodes. In this article, 

(𝑘 − 1
2
) always refers to local step between (𝑘 − 1)𝑡ℎ and 

(𝑘)𝑡ℎ global steps, and (𝑘 + 1
2
) refers to local step between 

(𝑘)𝑡ℎ and (𝑘 + 1)𝑡ℎ global steps. Multiplying 𝐊𝐺
−1 by both 

sides of Equation (12), we get: 

𝑈𝐺
𝑘+1 = 𝑈𝐺

𝑘 + 𝐊𝐺
−1𝑅𝑒𝑠𝑘  (13) 

𝑈𝐿 in Equation (13) is defined as: 

𝑈𝐿
𝑘+12 = 𝑈𝐿

𝑘−12 + 𝑃[∆𝑈𝐺
𝑘] 

∆𝑈𝐺
𝑘 = 𝑈𝐺

𝑘−1 − 𝑅𝑈𝐿
𝑘−12 = 𝐊𝐺

−1𝑅𝑒𝑠𝑘 

(14) 

where 𝑃 is the Prolongation operator to map global nodal 

values on local nodes. These interfacial values converge 

with regard to the following relationships and after 

several iterations (usually less than 5). 

𝐊𝐿𝑈𝐿
𝑘+1 = 𝐹𝐿    with   𝑈𝐿

𝑘+1|
𝛤
= 𝑃𝑈𝐺

𝑘+1|
𝛤

 (15) 

These steps continue until 𝑅𝑒𝑠𝑘 or ∆𝑈𝐺
𝑘+1 reduces to a 

predefined value. In Equation (15), KL and KG are the 

local and global stiffness matrices. In many cases, such 

as commercial software, it is almost impossible to extract 

the stiffness matrix. Moreover, in explicit solvers such as 

Matrix free GFVM, practically the stiffness matrix is 

meaningless. Here, based on the GFVM explicit solution 

in Equation (4), the displacements are the function of the 

last two sub-iterations as below: 

𝑢𝑡+∆𝑡 = ∑ 𝑈(𝑢𝑡 𝑢𝑡−∆𝑡  𝜎 𝑓 𝑏)𝑁
𝑚=1   (16) 

Then, according to the Hooke’s law, Equation (13) can 

be modified as follow: 

𝑢𝐺
𝑘+1 = 𝑢𝐺

𝑘 + ∑ 𝑈({𝑢𝐺
𝑘 −𝑁

𝑚=1

[𝑃𝑇𝑢𝐿
𝑘+
1

2]}  𝜎𝐺  𝑓𝐺  𝑏𝐺)  

(17) 

If the local stresses are mapped onto the global domain 

as boundary tractions: 

𝐹𝐺
𝑘+1 = 

𝐹𝐺
𝑘 + ∑ 𝐹 (𝑢𝐺

𝑡  {𝑓𝐺
𝑘 − [𝑃𝑇𝐊𝐿𝑢𝐿

𝑘+1
2]}  𝑏𝐺)

𝑁
𝑚=1   

(18) 

In Equations (17) and (18), the local nonlinear EFG is 

implicitly solved as follow: 

𝑢𝐿
𝑘+12 = 𝑢𝐿

𝑘−12 + 𝑃 [𝑢𝐺
𝑘 − 𝑅𝑢𝐿

𝑘−12]  (19) 

Multiplying 𝐊𝐿 by both sides of Equation (19), we get the 

local force vector: 

𝐹𝐿
𝑘+12 = 𝐊𝐿𝑢𝐿

𝑘+12 = 𝐹𝐿
𝑘−12 + [𝜎𝐿

𝑘−12 − 𝑃𝜎𝐺
𝑘]|
𝛤𝑖
, �⃗� 𝑙
𝑖  (20) 

Equations (17) to (20) are the underlying framework of 

the proposed method. The convergence of these values 

will be obtained by Equation (15). Although these 

equations comprehensively represent the solution 

technique, since the non-linear computations never 

perform globally, the global stiffness would be more than 

the local one in the same area. Due to this inconsistency 

in the nonlinear zone, severe errors and instabilities 

would happen all over the solution domain. Disparity on 

stiffness amplitudes makes forces and displacements 

impossible to be concurrently balanced and practically 

complete convergence would never occur, and even after 

the convergence, the captured answer would not be valid. 

In this situation, to balance the forces and displacements, 

depending on which type of parameters transfer on 

transition zones, we encounter the following cases: 

1. Sending (𝜎𝐺
𝑘), and receiving (𝑢𝐿

𝑘+12) in return: in such 

circumstances, the global stresses (𝜎𝐺
𝑘) are sent to local 

edges as a Neumann boundary traction, and in return, the 

local displacements (𝑢𝐿
𝑘+1 2⁄ ) are received as a Dirichlet 

boundary condition on the global interface. The 

mentioned transformed boundary traction is equal to: 

∆𝑇𝐿
𝑘+12 = 1

2
∑ (∆𝜎𝐺

𝑘, �⃗� 𝑙
𝑖)
𝑘

𝑁
𝑘=1   

∆𝜎𝐺
𝑘 = 𝜎𝐿

𝑘−12 − 𝑃𝜎𝐺
𝑘 

(21) 

Here, the displacement compatibility would be 

automatically satisfied by enforcing the local nonlinear 

deformations on global interface. To control the force 

equilibrium, if (𝐃𝐺
𝑒 )𝑘+1 is updated according to the 

corresponding local values, the 𝜎𝐺
𝑘+1 would be 
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automatically adjusted by each of the following equal 

terms: 

𝜎𝐺
𝑘+1 = 𝑃𝑇𝛔𝐿

𝑘+12   (22) 

𝜎𝐺
𝑘+1 = (𝐃𝐺

𝑒 )𝑘+1𝜀𝐺
𝑘+1  (23) 

Otherwise, if (𝐃𝐺
𝑒 )𝑘+1 is not modified, the results of 

Equation (23) will be much greater than Equation (22), 

because of the more global stiffness. Therefore, it is 

always preferred to update 𝜎𝐺
𝑘+1 by Equation (22) at the 

end of the solution, to achieve the force equilibrium. 

2. Sending (𝑢𝐺
𝑘), and receiving (𝛔𝐿

𝑘+1 2⁄ ) in return: here, 

the global displacements (𝑢𝐺
𝑘) are sent to local edges as 

Dirichlet boundary condition, and the global stresses 

would be updated by the returned local stresses (𝛔𝐿
𝑘+1 2⁄ ) 

at the end of each iteration. In this case, if (𝐃𝐺
𝑒 )𝑘+1 is 

modified according to the corresponding local values, 

(𝜎𝐺
𝑘+1) would also be adjusted by Equations (22) or (23). 

Otherwise, due to the lack of returned displacement 

enforcement and differences between stiffnesses, the 

displacement compatibility would never be satisfied. 

Therefore, in return, not only the stresses but also the 

global material constitutive matrix should be updated by 

the local one. Meanwhile, to stabilize the static 

equilibrium, it is necessary to tie up at least two couples 

of neighbouring nodes. 

3. Sending (𝑢𝐺
𝑘), and receiving (𝑢𝐿

𝑘+1 2⁄ ) in return: in 

this case, the two-way displacement transition would 

guarantee solution convergence, but it is important to 

notice that the smaller the distance between these two 

transition areas, the higher the number of iterations. In 

fact, if these areas have any overlap, the results of the 

corresponding nodes would be exactly the same, which 

means that the solution will never converge. 

4. Sending (𝜎𝐺
𝑘), and receiving (𝛔𝐿

𝑘+1 2⁄ ) in return: in 

this case, due to the lack of displacement consistency, the 

solution would be converged so hard; therefore, this 

approach will not be recommended. 

In this paper, the first and second of the above cases are 

considered based on the following iterative algorithm 

which visualized in Figure 2. 

 

4. 2. Convergence Algorithm Using Iterative 
Neumann-Dirichlet [19] 
• Step 1: Solving the global problem disregarding any 

local effect and obtaining {𝑢𝐺
0} and {𝜎𝐺

0} values. 

• Step 2: Calculation of stresses {𝜎𝐺
𝑘} and 

displacements {𝑢𝐺
𝑘} on global domain from Equations (4) 

and (5), at the beginning of each iteration (𝑘 = 1,2, …). 

• Step 3: Mapping global stresses {𝜎𝐺
𝑘} or global 

displacements {𝑢𝐺
𝑘} on the local transition boundary as a 

traction 𝐹𝐿
𝑘+1 2⁄

 or as an essential boundary condition 

𝑢𝐿
𝑘+1 2⁄

 based on the Equations (19) and (20) as follows: 

𝑢𝐿
𝑘+1
2|
𝛤𝑖
= 𝑢𝐿
𝑘−1
2|
𝛤𝑖
+ 𝑃∆𝑢𝐺

𝑘|
𝛤𝑖

  (24) 

𝐹𝐿
𝑘+1
2|
𝛤𝑖
= 𝐊𝐿𝑢𝐿

𝑘−1
2 + [𝝈𝐿

𝑘−1
2 − 𝑃𝜎𝐺

𝑘]|
𝛤𝑖
, �⃗� 𝑙
𝑖  (25) 

• Step 4: Computing 𝛔𝐿
𝑘+12 and 𝑢𝐿

𝑘+12 values and interpo-

lating them on global interfacial nodes as {𝐹𝐺|𝐿
𝑘+1} or 

{𝑢𝐺|𝐿
𝑘+1} as follows: 

{𝑢𝐺|𝐿
𝑘+1} = 𝑢𝐺

𝑘+1|
𝛤𝑖
= (1 − 𝛼) 𝑃𝑇 , 𝑢𝐿

𝑘+12|
𝛤𝑖
+ 𝛼𝑢𝐺

𝑘|
𝛤𝑖

  (26) 

{𝐹𝐺|𝐿
𝑘+1} = 𝐹𝐺

𝑘+1|
𝛤𝑖
= (1 − 𝛽)𝑃𝑇 , 𝜎𝐿

𝑘+1
2, �⃗� 𝑗
𝑖𝐺 + 𝛽𝐹𝐺

𝑘|
𝛤𝑖

  (27) 

where α and β are relaxation parameters to accelerate and 

guarantee the convergence, which will be presented, in 

more details, in section 0. 

• Step 5: Modifying global displacements {𝑢𝐺
𝑘+1} or 

{𝜎𝐺
𝑘+1} at local boundary for next computational step 

according to the Equations (17) and (18) using the last 

accelerated boundary values. 

• Step 6: Convergence control: 

if ⟨

‖𝑢𝐺
𝑘+1−𝑢𝐺

𝑘‖

‖𝑢𝐺
𝑘+1‖
< 𝜀

‖𝐹𝐺
𝑘+1−𝐹𝐺

𝑘‖

‖𝐹𝐺
𝑘+1‖
< 𝜀
∶ {stop} else:  {𝑘 → 𝑘 + 1}  (28) 

In the above algorithm, steps 2-5 are called multi-grid 

cycles. 

 
 

 
Figure 2. Flowchart for nonlinear zonal coupling 
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4. 3. Convergence, Relaxation Parameters, and 
Accelerators              The most critical point in iterative 

coupling is the convergence, which depends on the 

differences in tensions, deformations and mechanical 

properties of the materials on two overlapping areas and 

their boundaries. Figure 3 illustrates the linear oscillation 

of the global/local edges in order to match together. To 

accelerate the convergence speed, and smoothen the 

oscillations, some relaxation parameters should be 

implemented. One of these acceleration techniques is the 

quasi-Newtonian family in which the Symmetric Rank 

One (SR1) formula was employed to accelerate the 

convergence rate by Gendre et al. [26]. Although it 

enhances the convergence speed, the updating process of 

the global stiffness is complicated. 

Another acceleration technique that modifies 

interface parameters without updating the global stiffness 

matrix is Aitken's ∆2 accelerator [43]. This method is one 

of the most effective accelerators which linearly 

converge and relax the iterative processes as follow: 

𝑢𝐺
𝑘+1 = 𝜇(𝑘)𝑃

𝑇𝑢𝐿
𝑘+
1

2 + (1 − 𝜇(𝑘))𝑢𝐺
𝑘   (29) 

where 𝜇(𝑘) is the relaxation coefficient in the kth step 

obtained from the results of the two previous steps, 𝑢𝐺
𝑘+1 

is the displacement value used in the next global step and 

𝑃𝑇𝑢𝐿
𝑘+1 2⁄

 is the processed local displacement at the end 

of kth step. In order to estimate the optimum relaxation 

factor, the following functional is considered [16]: 

𝑓(𝜆) = ‖𝑢𝐺
𝑘+1 − 𝑢𝐺

𝑘‖
2
  (30) 

By putting Equation (29) in Equation (30), we have: 

𝑓(𝜇(𝑘)) = ‖𝜇(𝑘) {𝑃
𝑇𝑢𝐿
𝑘+
1

2 − 𝑃𝑇𝑢𝐿
𝑘−
1

2} + (1 −

𝜇(𝑘)){𝑢𝐺
𝑘 − 𝑢𝐺

𝑘−1}‖

2

  

(31) 

To achieve the optimum value for 𝜇(𝑘), one should 

compute the extremum of Equation (31) by deriving from 

this parameter. If we assume 𝑃𝑇𝑢𝐿
𝑘+1 2⁄ − 𝑃𝑇𝑢𝐿

𝑘−1 2⁄ =

∆(𝑃𝑇𝑢𝐿
𝑘+1 2⁄ ) and 𝑢𝐺

𝑘 − 𝑢𝐺
𝑘−1 = ∆𝑢𝐺

𝑘 , then by sorting the 

equation, the value of 𝜇(𝑘) is obtained as follow: 

𝜕𝑓(𝜇(𝑘))

𝜕𝜇(𝑘)
= 2‖𝜇(𝑘)∆(𝑃

𝑇𝑢𝐿
𝑘+
1

2) + (1 −

𝜇(𝑘))∆𝑢𝐺
𝑘‖‖∆(𝑃𝑇𝑢𝐿

𝑘+
1

2) − ∆𝑢𝐺
𝑘‖ = 0  

(32) 

⇒ 𝜇(𝑘+1) = −𝜇(𝑘)

(∆𝑢𝐺
𝑘 ,(∆𝑢𝐺

𝑘−∆(𝑃𝑇𝑢𝐿
𝑘+
1
2)))

‖∆𝑢𝐺
𝑘−∆(𝑃𝑇𝑢𝐿

𝑘+
1
2)‖

2   

The relaxation coefficient obtained from Equation (32) 

must be  calculated  and used for each  step between  two 

 
Figure 3. 1D representation of convergence concept in 

global/local method at the interface boundary 

 
 

individual domains. For the first two iterations, 𝜇(𝑘) is 

assumed to be equal to one, i.e. 𝑢𝐺
0 = 𝑃𝑇𝑢𝐿

0 and 𝑢𝐺
1 =

𝑃𝑇𝑢𝐿
1. It is also possible to use this coefficient by 

replacing the stress instead of the displacement in order 

to modify the global stresses as follows: 

𝜎𝐺
𝑘+1 = 𝜇(𝑘)𝑃

𝑇𝛔𝐿
𝑘+
1
2 + (1 − 𝜇(𝑘))𝜎𝐺

𝑘 (33) 

Also, to modify the global material matrix we have: 

𝐃𝐺
𝑘+1(𝑥) = 𝜇(𝑘)𝑃

𝑇𝐃𝐿
𝑘+
1

2(𝑥) + (1 − 𝜇(𝑘))𝐃𝐺
𝑘(𝑥)  (34) 

Another way to accelerate the convergence is to use 

Quasi-Newtonian methods to update the stiffness matrix. 

If ∆𝑢𝐺
𝑘 = 𝑢𝐺

𝑘+1 − 𝑢𝐺
𝑘  and ∆𝑓𝐺

𝑘 = 𝑓𝐺
𝑘+1 − 𝑓𝐺

𝑘, then by SR1 

and secant equations, 𝐊𝐺
𝑘+1 would be calculated as 

follows [23], [26]: 

𝐊𝐺
𝑘+1 = 𝐊𝐺

𝑘 +
(∆𝑓𝐺
𝑘−𝐊𝐺
𝑘∆𝑢𝐺
𝑘)(∆𝑓𝐺

𝑘−𝐊𝐺
𝑘∆𝑢𝐺
𝑘)
𝑇

(∆𝑢𝐺
𝑘)
𝑇
(∆𝑓𝐺
𝑘−𝐊𝐺
𝑘∆𝑢𝐺
𝑘)
≅ 𝐊𝐺
𝑘 +

(𝑓𝐺
𝑘+1)(𝑓𝐺

𝑘+1)
𝑇

(∆𝑢𝐺
𝑘)
𝑇
(𝑓𝐺
𝑘+1)

  

(35) 

As noted above, in many cases, access to the stiffness 

matrix is not possible, or the method is fundamentally 

matrix-free. In GFVM, the only parameter between stress 

and strain values is the material constitutive matrix, and 

here we can use Equation (35) to update this matrix 

instead of the stiffness matrix. 

𝐃𝐺
𝑘+1 = 𝐃𝐺

𝑘 +
(∆𝜎𝐺
𝑘−𝐃𝐺
𝑘∆𝜀𝐺
𝑘)(∆𝜎𝐺

𝑘−𝐃𝐺
𝑘∆𝜀𝐺
𝑘)
𝑇

(∆𝜀𝐺
𝑘)
𝑇
(∆𝜎𝐺
𝑘−𝐃𝐺
𝑘∆𝜀𝐺
𝑘)
≅ 𝐃𝐺
𝑘 +

(𝜎𝐺
𝑘+1)(𝜎𝐺

𝑘+1)
𝑇

(∆𝜀𝐺
𝑘)
𝑇
(𝜎𝐺
𝑘+1)

  

(36) 

The 𝐃𝐺
𝑘+1 obtained from Equations (34) or (36) could be 

implemented to compute global stress and displacement 

based on Hooke’s law on (𝑘 + 1)𝑡ℎ step. The total error 

at each iteration is estimated by L2-norm based on 

Equation (37). The iteration should be continued until 

this value is reduced by 𝜀 = 10−5. 

𝑇𝑜𝑙 =

𝑆𝑞𝑟𝑡{∑ {(𝑈𝑥
〈𝑗〉
|
𝐺𝐹𝑉𝑀
−𝑈𝑥
〈𝑗〉
|
𝐸𝐹𝐺
)
2

+(𝑈𝑦
〈𝑗〉
|
𝐺𝐹𝑉𝑀
−𝑈𝑦
〈𝑗〉
|
𝐸𝐹𝐺
)
2

}𝑁
𝑗=1 }

𝑆𝑞𝑟𝑡{∑ {(𝑈𝑥
〈𝑗〉
|
𝐺𝐹𝑉𝑀
)
2

+(𝑈𝑦
〈𝑗〉
|
𝐺𝐹𝑉𝑀
)
2

}𝑁
𝑗=1 }

 

× 100% < 𝜀  

(37) 
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The proposed non-intrusive overlapping concepts can be 

categorized into four following different types as shown 

in Table 1. 

 
 
5. NUMERICAL EXAMPLES 
 
In this section, two numerical examples of two-

dimensional elasto-plasticity problems are solved using 

the coupled GFVM-EFG method. The examples include 

the cantilever beam subjected to a concentrated load, and 

a finite plate with a hole. Results from the proposed 

method are verified with EFG and FEM results using 

commercial software ANSYS. Since EFG and FEM 

results are approximate solutions, very dense mesh 

density was implemented to regard these solutions as 

practically exact. These models are also used for 

comparison; therefore, care was taken to ensure that all 

nodes in a proposed model coincide exactly with a subset 

of nodes in the corresponding EFG or FEM model in 

order to facilitate direct comparison. 

 

5. 1. A Cantilever Beam Subjected to a Concen-
trated Loading            A plane stress cantilever beam 

subjected to a concentrated load applied monotonically 

in ten increments at the free end is considered. This case 

was previously examined by Cheng [44] and we compare 

our results to examine the validity of the solution. The 

length of the beam is L=8m, the height and width are 1m, 

and the concentrated load is F=1N (see Figure 4). The 

material modulus of elasticity is E=105Pa, the Poisson’s 

ratio is ν=0.25 and the yielding stress is σy=25Pa. The von 

Mises yield criterion is used and the linear strain 

hardening modulus is equal to 20kPa. The global domain 

consists of 633 nodes and 1107 triangular elements. The 

maximum nodal distance of the local EFG domain is 

 

 
TABLE 1. Non-intrusive classification based on the interface 

parameters 

Method Prolonged data Restricted data 

M1(a), M1(b) Displacement Constitutive matrix 

M2(a), M2(b) Traction 
Displacement & 

Constitutive matrix 

(a) Aitken's Δ2, (b) Quasi-newton SR1 

 

 

 

 
Figure 4. Cantilever beam subjected to a concentrated load 

2cm. The local EFG solver uses a circular zone as the 

support domain of each node, and the scaling parameter 

determining the size of the support domain is dmax=3. The 

initial local domain has 162 uniformly distributed nodes 

and it proportionally changed and increased at each load 

increment. The local domain boundary is set to be at least 

the 5 cm distance from the edges of the non-linear area. 

We use the coupled method presented in this paper to 

solve the global problem. Figure 5 shows the numerical 

solutions of the displacements uy at y=0. It is shown that 

the numerical results of the proposed method are in 

excellent agreement with the ones obtained with the non-

linear EFG and FE ANSYS software. 

Figure 6 shows the load-displacement diagram of the 

midpoint at the left-end of the beam. The non-linear 

behavior of the beam can apparently be seen, and it is 

quite clear that the entire results have good agreement 

with the FEM results. 

 

5. 2. Finite Plate with a Circular Hole              The next 

numerical example is a plane stress finite plate with a 

circular hole in the center subjected to a uniform 

displacement in y direction at the top and bottom sides of 

the plate. This problem is well-known in academic 

literature, so our results and procedures would also be 

compared with Jianfeng [45] to examine the validity of 

the non-linear solution. For simplicity, only a quarter of 

the plate was modeled due to the symmetric condition, 

using proper boundary conditions (illustrated in Figure 

7). The modeled part of the plate is 5m by 5m in which 

the part of the circular hole of 1m radius is located at the 
 

 

 
Figure 5. The uy displacements at y=0 

 

 

 
Figure 6. The cantilever load-displacement diagram at the 

end of the beam 
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lower left corner. The global model has 951 nodes and 

1794 triangular elements (see Figure 11a1–c1). The 

maximum nodal distance in the local EFG domain is 

5cm. The local EFG solver uses a circular zone as the 

support domain of each node, and the scaling parameter 

determining the size of the support domain is dmax=3. The 

material is ASTM A514 structural steel with Young’s 

modulus of 2.1e5 MPa, Poisson’s ratio of 0.3, yield stress 

of 900 MPa, and tangent modulus of 1000 MPa. All 

methods mentioned in Table 1 are considered in this 

example. To clarify the basic concept of the M2 method, 

the transmitted global stresses over the local boundaries 

are illustrated in Figure 8 as boundary tractions. 

The yielding initially occurs on the critical value of 

Uy equal to b=0.7672cm and at the edge of the circular 

hole. By increasing the computed value of Uy to 1.303b, 

1.824b, and 2.346b, the L2-norm comparison between 

the entirely converged displacements of the proposed 

modeling strategy using various non-intrusive interfacing 

methods and ANSYS solution is represented in Table 2. 

Figures 9 and 10 present the distribution of σyy and 

von Mises stress (𝜎𝑉𝑀) along y=0, and the good 

agreement between proposed method and the ANSYS 

results is indicated. As can be seen, the maximum value 

of the σyy, as expected, is about 9000 kg/cm2. The 

spreading of plastic zone for various amount of Uy is 

shown in Figure 11a–c. For each case, the local 

configuration and the plastic area are visualized and 

compared. The final local node numbers at the end of the 

solution, as illustrated in Figure 11a1–c1, are 180, 367, 
 

 

 
Figure 7. The upper right quadrant of the plate with a hole 

 

 

 
Figure 8. 𝜎𝑉𝑀 on global deformed shape Uy =2.346b 

TABLE 2. L2-norm errors in comparison with ANSYS 

 Method Uy=1.303b 1.824b 2.346b 

Coupled 

EFG-GFVM 

M1 3.05e-5 1.53e-4 5.95e-4 

M1(a) 9.32e-6 2.80e-5 5.59e-5 

M1(b) 1.18e-5 3.30e-5 7.27e-5 

M2 1.13e-4 1.08e-4 2.20e-3 

M2(a) 7.50e-5 2.03e-4 5.67e-4 

M2(b) 8.10e-5 2.51e-4 8.04e-4 

 

 

and 1284 for various Uy values. It is quite clear that the 

plastic area is intensively spread after its initiation. 

To determine the efficiency of the proposed method, 

the comparison with Single-EFG-model with various 

node densities for Uy=2.346b=1.8cm is performed. The 

corresponding accuracy and CPU time for each method 

are represented in Table 3. We can see that at the same 

level of accuracy, the CPU time for single EFG model is 

761 sec, which is 11% more than that of the proposed 

coupled M2(a) method (682 sec). However, more 

efficiency and accuracy may be achieved for GFVM-

EFG model, if the more accurate non-intrusive 

interfacing method is applied. Therefore, it can be stated 

that the coupled one can improve the solution accuracy 

and efficiency compared to the traditional EFG method. 

The CPU time for M1(a) and M1(b) is 912 and 871 sec, 

 

 

 

Figure 9. σyy along y=0 for Uy=824b 

 

 

 
Figure 10.  σVM along y=0 for Uy=824b 
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which is 33% and 27% more than M2(a) and M2(b). This 

is absolutely due to the more iteration in M1 than M2. 

The 𝜎𝑉𝑀 on deformed shape of the problem domain 

has been illustrated in Figure 12. Moreover, the 𝜎𝑉𝑀 is 

separately presented for Uy =2.346b on local and global 

configuration in Figure 13. As can be seen, good 

agreement between overlapping local and global results 

is indicated. In these figures the displacements are 

multiplied by 100 for clarity. 

To demonstrate the iterative behavior of the proposed 

method, the comparison between M1 and M2 models has 

been implemented and the results are respectively 

illustrated in Figure 14 and Figure 15. At each load step, 

Global/Local and Newton-Raphson (NR) iterations are 

performed individually until the decrease of L2-norm 

comes within 10-5. In M2 (Figure 15) convergence was 

obtained with less than 9 coupling iterations at maximum 

state, but in M1 (Figure 14) the number of essential 

iterations is more than 9. In both of these figures, the 

overall errors seem to diverge, but in fact, the local area 

is continually getting larger and the corresponding initial 

error is increased. 

Figure 16 shows the Newton-Raphson iteration 

 

numbers and their corresponding L2-Norm errors. As can 

be seen, both of these values intensively decrease after 

the first coupling iteration. 

 

 
TABLE 3. The CPU time (sec) vs. accuracy in the last load 

increment 

 Method Number of nodes Time (sec) L2-norm 

Coupled 

EFG-GFVM 

M1 

(951 global nodes 
& 1284 local 

nodes) 

2226 5.95e-4 

M1(a) 912 5.59e-5 

M1(b) 871 7.27e-5 

M2 1650 2.20e-3 

M2(a) 682 5.67e-4 

M2(b) 690 8.04e-4 

Single-EFG-model 

(415 nodes) 38 8.86e-3 

(951 nodes)* 167 1.03e-3 

(2913 nodes) 761 5.80e-4 

(5141 nodes) 1975 1.17e-6 

* The same node distribution as global mesh 

 

   
c-1 b-1 a-1 

   
c-2 b-2 a-2 

   
c-3 b-3 a-3 

Figure 11. Spreading of plastic zone: a) 𝑈𝑦 = 1.303𝑏, b) 𝑈𝑦 = 1.824𝑏 c) 𝑈𝑦 = 2.346𝑏 
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Figure 12. von Mises stress contour on the global and local domain for Uy being 1.303b, 1.824b, and 2.346b respectively 

 
 

 

 

Figure 13. σVM on the global and local deformed shape 

respectively at Uy =2.346b 

 

 

 
Figure 14. The convergence error at each iteration in M1(a) 

and M1(b) 
 

 

 
Figure 15. The convergence error at each iteration in M2(a) 

and M2(b) 

 

Figure 16. Newton-Raphson iterations through 5 coupling 

iterations in M1(a) 

 
 
6. CONCLUSION 
 
In this paper, a non-intrusive IGL is presented to analyze 

linear structure with local nonlinearity. This algorithm 

extends the iterative global/local method to treat non-

matching (incompatible) interface mesh. Since the 

algorithm is non-intrusive, it can be easily applied by 

various numerical techniques to the analysis of large-

scale structure with local nonlinear phenomenon in 

engineering. In this regard, the GFVM and EFG methods 

are implemented respectively as global and local 

configuration due to their advantages. 

Due to the non-conforming (nested) interface at the 

patch edge, the virtual interface is introduced to link the 

global coarse mesh and the local fine nodes, using the 

properties of MLS approximation to guarantee the 

reliability of the method. 

Since the convergence rate is relatively slow, 

especially when the interface geometry is complicated, 

the simple and efficient acceleration techniques based on 

Aitken’s ∆2 and Quasi-Newtonian SR1 method are 

employed to improve the convergence property. 

In order to verify the algorithm, numerical 

experiments are conducted on 2D model with local 

plasticity. The accuracy of this algorithm is validated by 
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comparing it with an approximate numerical reference 

FE model. 

To summarize the achievements of coupling local 

Non-linear EFG and global linear GFVM Solvers for 2D 

modeling of local plasticity in structural material, the 

following main conclusions can be stated: 

(1) The algorithm is very robust in non-matching 

interface data transfer, which can overcome the 

accumulation of the numerical error during iterative 

analyses. Thus, it is very efficient in numerical 

performance and can lead to a more general and wider 

application in local nonlinear analyses. 

(2) Aitken’s ∆2 acceleration method is significantly 

efficient to speed up the convergence rate and improve 

the accuracy, especially for the complex interface 

geometry cases. 

(3) Since the MLS-based data transfer scheme is very 

feasible to implement, the IGL algorithm is highly non-

intrusive with the traditional FE environment to treat 

non-matching meshes. In consequence, this IGL method 

is very suitable to analyze large-scale structure with local 

nonlinearities in engineering. 

The computational results demonstrated in this paper 

show that for the cases in which the nonlinear plastic 

zone may be limited to a small portion of the 

computational domain, coupling local nonlinear 

comparison with global linear GFVM (in conjunction 

with application of non-intrusive interface boundary data 

transmission) provides better efficiency and accuracy 

than using a nonlinear method (like EFG) for the entire 

domain. The proposed computational efficiency of the 

proposed method is promising for its application in time 

dependent (progressive) non-linear structural problems. 
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 چکیده

 

آنها   یبخش کوچکی از دامنه است والاستیک  عمدتاًآنها ی دامنه کهاین مقاله یک تکنیک عددی برای حل ترکیبی مسائلی 

با دقت  (GFVM)بر این اساس، روش گالرکین حجم محدود خطی  ه نموده است.ئاراشده باشد، غیرخطی  یوارد محدوده

برای تحلیل الاستوپلاستیک    (EFG)روش بدون المان غیرخطی گالرکین  ناسب برای تحلیل الاستیک کل حوزه و  و سرعت م

 صورتهب  ل در هر روش،حبا توجه به اختلاف بنیادین معادلات    تحلیل فوق  .صورت موضعی مورد استفاده قرار گرفته استهب

های و بر اساس آن، گرهصورت گرفته است  جزئی  –تفکیک دامنه و کلیای،  های چندشبکهالگوریتمر اساس  ب  شوندهغیرداخل

)دامنه   GFVMی دامنهروی  غیرخطی نواحی درریزتر  ی صورت یک شبکهه ب )دامنه محلی( روش بدون المان غیرخطی 

  پایه، اقدام به تحلیل بندی ولکاری در فرمشبکه و یا دست در  این الگوریتم بدون هیچ گونه تغییر .شودپوشانی میهمکلی( 

بادل اطلاعات بین این دو شبکه از طریق اپراتورهای خاص و با کمک تقریب  تنماید. می  لاستیک خطیادر بستر  غیرخطی 

با توجه به ماهیت تکراری حل، به منظور افزایش نرخ گیرد. روی فصل مشترک انجام می (MLS) حداقل مربعات متحرک

  استفاده شده است و  )∆ 2Aitken’s(و دینامیکی  Quasi)-(Newtonianمختلف شبه نیوتنی های شتاب دهنده ازگرایی، هم

باشد نیز  سختی بر اساس ماتریس رفتاری هر المان میی شبه نیوتنی که به جای ماتریس ی جدید از شتاب دهندهیک نسخه

های تیز  دوبعدی دارای سوراخ و یا دارای لبههای عددی متعددی روی صفحات مثال  ،همچنین  ارائه و بررسی گردیده است.

  مد نظر قرار گرفته است.
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