
IJE TRANSACTIONS C: Aspects Vol. 33, No. 3, (March 2020) 366-376

Please cite this article as: S. M. M. Salehi, A. A. Pouyan, Detecting Overlapping Communities in Social Networks using Deep Learning,
International Journal of Engineering (IJE), IJE TRANSACTIONS C: Aspects Vol. 33, No. 3, (March 2020) 366-376

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

Detecting Overlapping Communities in Social Networks using Deep Learning

S. M. M. Salehi*, A. A. Pouyan

Department of Computer Engineering, Shahrood University of Technology, Shahrood, Iran

P A P E R I N F O

Paper history:
Received 14 December 2019
Received in revised form 14 January 2020
Accepted 17 January 2020

Keywords:
Community Detection

Overlapping Communities
Deep Learning

Social Networks
Graph Embedding

A B S T R A C T

In network analysis, the community is considered as a group of nodes that is densely connected with

respect to the rest of the network. Detecting the community structure is important in any network analysis

task, especially for revealing patterns between specified nodes. There are various approaches in literature
for community, overlapping or disjoint, detection in networks. In recent years, many researchers have

concentrated on feature learning and network embedding methods for nodes clustering. These methods

map the network into a lower-dimensional representation space. In this paper, we propose a model for
learning graph representation using deep neural networks. In this method, a nonlinear embedding of the

original graph is fed to stacked auto-encoders for learning the model. Then an overlapping clustering

algorithm is employed to extract overlapping communities. The effectiveness of the proposed model is
investigated by conducting experiments on standard benchmarks and real-world datasets of varying

sizes. Empirical results exhibit that the presented method outperforms some popular community

detection methods.

doi: 10.5829/ije.2020.33.03c.01

1. INTRODUCTION1

In most complex systems, data can be represented as

networks like transportation networks, citation networks,

World Wide Web, co-authorship networks, and social

networks. Analyzing these networks yields insight into

their structures. Growing attention has been paid to this

analysis in recent years, particularly due to the

omnipresence of such networks in real-world [1].

Social network analysis (SNA) is a novel research

topic in the field of computer science. The goal of SNA

is to explore associations between social entities, and to

figure out the features and properties of the entire

network, usually by graph theory. A graph is a means of

describing relationships among a set of specified items.

Given a graph G = (V, E), V is a set of n nodes (vertices),

and E is a set of m edges (links). In a social network,

nodes represent individuals, and their social interactions

are presented by edges. The network structure, for

unweighted networks, can be determined by an n×n

adjacency matrix A. Each element Aij of A is equivalent

to 1 if there is an edge that connects nodes i and j.

Otherwise, it is 0.

*Corresponding Author Email: mahdi_salehi@shahroodut.ac.ir

(S. M. M. Salehi)

Community structure is a shared property in many

social networks. Despite the lack of a unique definition

for the community, a community is assumed to represent

a group of nodes where the number of connections

between these nodes is greater than connecting with other

nodes in the network. A community is considered as a

group of nodes similar to each other, but different from

other nodes in the network. Individuals that are in a

similar community have comparable properties [2] such

as social ties, interests, occupation, location, etc.

Community structure often unravels precious

information of interest. Community detection (CD) in

networks indicates an exciting problem with several

applications, particularly for knowledge extraction from

social networks. Several CD algorithms have been

presented for the division of a social network into

communities [3]. Within the community detection

framework, much attention is given to the identification

of disjoint communities. In disjoint (separated or non-

overlapping) CD, a node may belong to only one

community. However, in real-world scenario, a node

may belong to more than one community that leads to

overlapping communities. For instance, a person may

mailto:mahdi_salehi@shahroodut.ac.ir

S. M. M. Salehi and A. A. Pouyan/ IJE TRANSACTIONS C: Aspects Vol. 33, No. 3, (March 2020) 366-376 367

forge connections to many social groups such as friends,

family, and co-workers [4].

This overlap is a remarkable feature of most real-

world networks. Naturally, nodes may be a member of

multiple communities. Therefore, by forcing each node

into a single community, we miss much information and

may obtain a misleading characterization of the

underlying community structure.

A good comparison is shown in Figure 1 for this

problem. Figure 1a displays an undirected social graph

comprising of 18 individuals and Figure 1b shows the

four isolated communities of the social network from

Figure 1a. Here nodes 6, 13, and 14 in Figure 1c are

overlapping nodes that can be shared by two or three

communities.

Over the last decade, numerous methods have been

presented for the detection of community. In the

following section, these methods are explained in detail.

Some of these methods have a number of drawbacks or

limitations including inability to support the concept of

overlapping, or high costs of computation for large

graphs.

In this research, we introduce an effective algorithm

to address the detection of overlapping communities by

incorporating the community structure into graph

embedding. Our formulation combines the strengths of

random walk methods and deep learning architectures in

a framework. The proposed algorithm maintains both the

global and local structure of a network. Experimental

results exhibit the efficacy of the presented method on

some benchmarks and real-world networks.

This paper is organized as follows. Section 2 reviews

the literature on community detection algorithms in

networks, with emphasis on overlapping methods.

(a) input graph

(b) Disjoint CD (c) overlapping CD

Figure 1. An example of a small social network; disjoint

(non-overlapping) vs. overlapping community structure [5]

Section 3 explains the design of the proposed algorithm

in detail. It presents preliminaries such as the concept of

node representation, deep learning components, and an

overlapping clustering algorithm used on deep learning

output. In Section 4, we outline our experiments on some

computer-generated and real-world networks. Section 5

presents the results of experiments and compares our

algorithm with a few overlapping community detection

algorithms. Finally, conclusion is drawn in Section 6.

2. RELATED WORKS

The detection of overlapping and non-overlapping

communities represents two distinct problems. That is,

the algorithms used to detect non-overlapping

communities could not be readily applied to other

overlapping counterparts. Hence, a variety of algorithms

have been introduced to exhibit the structures of

overlapping communities [6, 7].

The algorithms for detecting communities in graphs

can be divided into several categories based on diverse

parameters, such as the actual operational methods [3], or

the fundamental concept of the community [8]. In this

section, we present an abridged overview of a few

algorithms for community detection.

Community detection can be performed by detecting

the denser areas of the network. A dense community is a

group of vertices where the number of edges is

substantially greater than the number of edges expected

in a random graph (without any community structure).

With this approach, community detection can be

considered as optimizing a specific density function until

no further augmentation is possible. Modularity [9] is a

famous density function that is used to detect disjoint

communities. Chen et al. [10] presented an extended

version of modularity for overlapping community

detection.

Communities could be assumed as parts of the graph

obtained by removing all edges (i.e., bridges) that

connect these parts to each other. Girvan-Newman (GN)

algorithm is a famous method in this category [11]. It

conducts hierarchical clustering (dividing a network into

preferred numbers of clusters). GN relies on a centrality

measure called betweenness. At each step, it involves

counting the shortest paths between all pairs of vertices

that exist in the network, sorting edges by their

betweenness values, and removing edges with the most

value (i.e., a bridge). Cluster Overlap Newman Girvan

Algorithm (CONGA) extends GN for discovering

overlapping communities in networks [12]. A central

point of CONGA is the concept of split betweenness,

which allows a node to split into multiple copies.

A community could be defined as a set of nodes

categorized by the dissemination of a similar property,

action, or data within the network. The label propagation

algorithm (LPA) deals with this definition, in which

368 S. M. M. Salehi and A. A. Pouyan/ IJE TRANSACTIONS C: Aspects Vol. 33, No. 3, (March 2020) 366-376

nodes that belong to an identical label forge a community

[13]. A node in the network decides to join a community

where the majority of its neighbors are members of that

community. With the propagation of labels, groups of

nodes with tight connections obtain an exclusive label.

This method is fast but does not support the overlapping

concept. In the community overlap propagation

algorithm (COPRA), nodes have a label and a belonging

coefficient [14]. The belonging coefficient of each node

is updated by averaging coefficients in all of its

neighbors. A node that has an equivalent maximum

number of neighbors, in at least two communities, is

considered as an overlapping node. The LPA can be

extended to an overlapping community detection by

Speaker-listener Label Propagation Algorithm (SLPA)

[15]. It gives each node a memory for the storage of the

received information and the spread of labels between

nodes in compliance with rules of pairwise interaction.

The membership strength is defined as the possibility of

complying with a label in node memory. The output of

this method is the labels’ probability distribution for each

node’s memory. Nodes with identical labels are then

assigned to a community. A node with several labels

belongs to several communities.

Another common approach to community detection

defines it as an accurate structure of edges. Therefore, an

algorithm defines some sort of structure and then

attempts to find it efficiently within the graph. For

instance, a clique is defined as a complete subgraph of a

given graph. The clique of the largest possible size is

called a maximal clique. The clique percolation method

(CPM) [16] finds all k-cliques (clique with k nodes) in a

graph and merges cliques with common k-1 nodes. A

community embodies the union of all k-cliques that can

be reached from each other. GCE (greedy clique

expansion) [17] identifies maximum cliques as seed

communities, which are then expanded through greedy

optimization of a local fitness function.

Another idea that has been explored is to partition

links (edges) rather than nodes for exploring community

structure. According to this approach, it is the relation,

not the node, which is a member of the community.

Hence, since they try to cluster the network edges, the

nodes belong to a set of communities forged by their

edges. Link community (LC) is a well-known method in

this category [18]. In LC, an original graph’s node is said

to be overlapping when its connecting links are placed in

at least two or more clusters.

In recent years, the methods that rely on the

representation of networks in vector space (mapping

graph matrices to another space) have become popular.

Graph embedding seeks to offer a representation of a

graph as low dimensional vectors but preserves the graph

structure [19]. Finding a vector representation for nodes

of a graph is challenging and poses several difficulties. A

suitable vector representation of nodes needs to retain the

network structure and the connection between single

nodes. The network structure is represented by proximity

measures such as first-order proximity (edge weights),

second-order proximity (similarity of the vertices’

neighborhood structures), and higher-order proximities

between nodes.

The embedding methods can be split into three

general categories: methods based on (1) Factorization

(2) Random Walk, and (3) Deep Learning (DL).

In the first category, connections of nodes are

represented as a matrix, which is then factorized to attain

the embedding. The matrices employed for the

representation of the connections comprise the Laplacian

matrix, Katz similarity matrix, etc. Graph Factorization

GraRep [20] is an example of this category.

Several graph properties such as node similarity and

centrality are approximated using random walks. They

are particularly useful when only partial observation of a

graph is possible. Deepwalk [21] is a method that

transforms graphs into collections of linear sequences by

a uniform sampling method known as the truncated

random walk.

Deep learning has been particularly successful in

handling images, texts, time series, and audio data in

recent years [22]. Thanks to the advances in deep neural

networks, these methods can produce representations for

various kinds of data [23]. Deep learning can be used as

a useful tool for graph analysis to produce

representations that contribute to community detection.

3. PROPOSED METHOD

We propose an algorithm to investigate the problem of

overlapping community detection. The overall scheme of

the proposed method is shown in Figure 2.

The algorithm exploits factorized matrices, generated

random walks, and deep learning architecture. It consists

of three major parts: First, we introduce a model based

on random walks to represent (embed) the nodes. This

model captures the input graph’s structural information.

It generates probabilistic co-occurrence (PCO) matrix

and positive pointwise mutual information (PPMI)

matrix. After that, a deep learning architecture is used to

learn representations of low-dimensional nodes. The

output of this part is given to an overlapping clustering

method to prodive overlapping communities. In this

section, the major components of the proposed algorithm

are discussed in detail.

3. 1. Graph Embedding As mentioned earlier, graph

(node) embedding aims to offer a representation of a

graph (node) as low dimensional vectors while retaining

the structure of the network. As the output of this process,

any node is described with a vector.

Pioneer methods for graph embedding generalize

advancements in language-modeling (sequences of

words) to graphs (sequences of nodes) for representation.

S. M. M. Salehi and A. A. Pouyan/ IJE TRANSACTIONS C: Aspects Vol. 33, No. 3, (March 2020) 366-376 369

()1 2 1Pr | , , ... ,i iv v v v −

*

1

*

1 0

|k k

k

k

p p

p T p T

=

−= =

1 0. (1)k kp p T p −= + −

,

#(,). | |
log

#().#()
w c

w c L
PMI

w c

=

*

1

().
K

k

k

r f k p
=

=

()1 0 1, , ... ,n

nW w w w=

()0 1 1Pr | , , ... ,n nw w w w −

Figure 2. The framework of the method presented in the study

The essential inputs of any language-modeling

algorithm are vocabulary and a corpus. The language-

modeling aims to estimate the probability of a sequence

of words manifesting in a corpus [24]. Formally put, for

a sequence of words in Equation (1) which wi is an

element of vocabulary:

(1)

We would like to maximize the probability in Equation

(2) over the entire corpus.

(2)

It is similar to calculating the probability of observing

vertex vi based on all previously visited vertices in a

random walk:

(3)

Based on this analogy, Deepwalk [21] presented a

generalization of language-modeling to examine the

graph via a set of random walks. These walks could be

considered as short phrases and sentences in a certain

language. Deepwalk draws on local information attained

from curtailed random walks. The procedure involves a

slow uniform sampling process, and hyper-parameters of

the method such as “walk length” and “walks per node”

are not easy to determine.

Our algorithm directly constructs The PCO matrix

from a graph, which avoids the expensive sampling

process. A co-occurrence matrix is a giant matrix as wide

as the vocabulary (graph) size. When words (nodes)

occur together, they are marked with a positive entry.

Otherwise, they will take a 0.

Inspired by Google’s PageRank, we consider a

random walk model with a restart. First, the vertices are

randomly ordered in a graph. It is assumed that the

current vertex is the ith vertex, and there exists a transition

matrix T that takes into account the transition likelihoods

between diverse vertices. Matrix T is initialized based on

the adjacency matrix.

Each row vector of the PCO matrix is of the form pk

where the jth entry corresponds to the likelihood of

reaching the jth vertex following k steps of transition.

According to probability α, a random walk will continue

(choosing the next node), and based on probability 1 – α,

it will revert to the original vertex and the procedure will

be restarted. The probabilities for arriving at different

vertices after exactly k steps of transitions is specified by

recurrent Equation (4):

(4)

P0 is the initial one-hot vector of a node vi with the ith

entry having a value of 1, and other entries having a value

of 0. If there is no random restart in the procedure (α=1),

PCO is achieved using Equation (5):

(5)

After constructing the PCO matrix, the representation

r for the ith node is shown in Equation (6):

(6)

The f(·) is a decreasing weighting function. The

weight assigned to a context node is a function of the

distance of that node from the current node in the graph.

In our method, we use f(x) = 1/x as a common weighting

function [25].

In language-modeling, we use the current word w

(whose representation that we want to generate) to

predict its c context in a probabilistic form. The term

‘context’ refers to the words that may appear around the

current word in a sentence. With K as window size,

sentences are generated using K words before and after

the current word. Following this, the PCO matrix is used

to compute the PMI matrix. The PMI matrix can be seen

as the product of the representation matrix and the

context matrix, which could be expressed by Equation

(7):

(7)

where |L| is computed using Equation (8):

370 S. M. M. Salehi and A. A. Pouyan/ IJE TRANSACTIONS C: Aspects Vol. 33, No. 3, (March 2020) 366-376

| | #(,)
w c

L w c=

,

#(,). | |
log

#().#()

i

i v i

i

i v

v W

i v

v W L
PMI

v W

=

, ,max (, 0)
i v i vi i

v W v WPPMI PMI=

1 1 1() ()f x W x b = +

2 2 2() ()g y W y b = +

()
2 1

() (), (())i i

i

L x g f x

(8)

In the same vein, for graph embedding, vi in Equation

(9) refers to the current node and
ivW determines the

nodes that appear in a random walk rooted at vi.

(9)

To improve performance, we use a PPMI matrix

instead of a PMI matrix [26]. As shown in Equation (10),

each negative value is assigned to zero.

(10)

Each node’s global neighborhood is expressed by a

row of PPMI. For any two nodes, the PPMI values

answer the question of whether the two nodes tend to

occur more together or more independently.

Instead of factorized matrices used in our proposed

method, Deepwalk combines a random walk and skip-

gram model utilized in Word2vec [27] to learn network

representations. Skip-gram is an approach that seeks to

obtain similar vectors for similar words (based on their

context). We compare the results in Section 5.

In some methods, Singular Value Decomposition

(SVD) is used for dimensionality reduction after

computing the PPMI matrix for a text corpus [26] or

graph embedding [20]. SVD decomposes any specified

matrix into three matrices (two orthonormal matrices and

one diagonal matrix). Although SVD is an effective tool

for dimensionality reduction, it also captures linear

relationships between the two vectors. In our model, we

replaced SVD with deep neural networks to capture a

non-linear mapping between the nodes.

Inputting the PPMI matrix guarantees that the deep

learning architecture can account for the proximity of the

input graph’s nodes.

3. 2. DL Components and Configuration Based on

unsupervised learning, deep learning employs multiple

layers of processing to learn data representations with

multiple abstraction levels.

An autoencoder (AE) is a form of neural network that

learns features to reconstruct its input at the output

layer. In [28], autoencoders are used for graph clustering

tasks with the Laplacian matrix as their input. Here, the

PPMI matrix was used as an input fed to the autoencoder.

An autoencoder comprises two parts: the encoder,

and the decoder. The former is responsible for

embedding the original input into a low-dimensional

representation. The decoding layers will learn how to

decode the representation and brings it back into its

original form in the most accurate manner [29]. Stacked

autoencoders (SAE) consist of multiple layers of such

autoencoders for learning multiple layers of

representations (Figure 3).

The embedding for a node in the PPMI matrix will be

a 1n vector. This is fed to the autoencoder to reduce the

dimensions to 1d (d<<n) during the encoding step. We

then apply function f (·) to vector x in the input space so

that it can be sent to a new feature space.

(11)

This result is called a code or latent variable. The term

θ1 = (W1, b1) defines the parameters involved in the

encoder part, where W1 is a weight matrix and b1 is a bias

vector. An activation function σ(.) is usually recruited to

offer for modeling of the non-linearities between two

vector spaces. For this purpose, we use a half-wave

rectifier f (z) = max (z,0) known as rectified linear unit

(ReLU). It typically learns very fast in networks with

many layers.

The decoding step involves using a reconstruction

function g(·) to reconstruct the original input vectors

retrieved from the latent representation space.

 (12)

In Equation (12), y is the output of the encoding step,

and θ2 defines the parameters involved in the decoder (W2

as weight matrix and b2 as a bias vector).

Equation (13) expresses the reconstruction error as a

measure of discrepancy between input x and its

reconstruction in output.

(13)

L is a loss function such as cross-entropy or mean square

error (MSE). Thus, our goal is to reduce the

reconstruction error by finding values of θ1 and θ2.

We want to estimate parameters and hyper-parameters

(number of layers, or neurons in each layer, etc.) to have

a precise reconstruction. This process requires effort and

expertise. Obviously, the output layer has n neurons such

as the input layer. The encoder and decoder parts are

symmetric to each other regarding the number of layers

and the number of neurons in each layer.

Figure 3. Structure of an SAE: an output layer, an input

layer, and three hidden layers (encoding and decoding parts)

[29]

S. M. M. Salehi and A. A. Pouyan/ IJE TRANSACTIONS C: Aspects Vol. 33, No. 3, (March 2020) 366-376 371

Instead of randomly initializing the weights, we use

the Glorot-uniform method (Xavier method), which has

much better performance. Stochastic gradient descent

(SGD), with a learning rate set to 1% at the beginning of

the training, is used for backpropagation.

As a regularization technique for reducing

overfitting, Dropout (randomly drops some neurons

together with connections formed in the neural network

during training phase) is used with 0.1 as drop rate. For

implementation, we use the Python deep learning library

Keras.

3. 3. Overlapping Clustering Algorithm K-

means is a clustering algorithm that is extensively used.

It leads to the detection of a disjoint community where a

user is only the member of a given community. We use a

version of overlapping K-means (OKM) [30] that

generalizes the k-means algorithm and applies it to the

output of the DL part. OKM defines an objective function

for multi-assignment, initializing as data image an

arbitrary cluster prototype that has a random centroid. It

uses input objects along with the prototype to estimate

the average of the two vectors that are used as a threshold

for assignment of objects to multiple clusters

(communities). The exact number of clusters must be

determined as a priori.

4. EXPERIMENTS

We conduct our experiments on two datasets of varying

sizes and characteristics: real-world datasets and

synthetic datasets (benchmarks).

First, the details of three publicly available real-world

networks and five benchmarks are given. Then, four

popular metrics (F-Score, Normalized Mutual

Information (NMI), conductance, and Omega index) are

reviewed. The performance of our proposed method can

be evaluated in comparison with some advanced

algorithms to detect overlapping communities.

4. 1. Datasets Three datasets from real-world

networks are selected from the KONECT dataset

collection [31] with different structures. The Advogato is

an online trust community platform designed for free

software developers. The Hamsterster is the site of

friendships for users of the website hamsterster.com. The

Virgili is the email communication network utilized at

the University of Virgili in southern Spain. Each edge

suggests that more than one email has been sent.
Table 1 summarizes the characteristics of these

datasets. The size of each dataset is equal to n (number

of nodes), m indicates the number of edges, kavg is the

average degree, and kmax is the maximum degree of

nodes. Obviously, kmax is much greater than kavg. This is

a common attribute of social networks, as an instance of

scale-free networks [32], which follows the power-law

distribution for its node degree. This distribution is

expressed as ρx-τ, where ρ is a constant factor, x is the

variable of distribution, and τ is the exponent. If the

degree distribution of a connected graph complies the

power law, it leads to a long tail of intermittent vertices

(many low-degree nodes vs. a few high-degree nodes).

The parameter nGCC shows the greatest connected

component of the graph (a maximal subset of nodes that

are all reachable from each other). For a connected graph

with one component, nGCC is equal to n.

The density is a measure of how tightly

interconnected a graph, which is calculated as the ratio of

edges to the total number of possible edges. The diameter

(D) is a measure of the distance between the two most

distant nodes in the network. It is the maximum number

of connections required to traverse the graph.

TABLE 1. Characteristics and DL settings of real-world datasets

Dataset n m kavg kmax nGCC Density D CC Layer Configuration

Advogato 6541 51127 15.63 943 5042 0.0011 9 0.0922 6541-1024-512-256-128-64

Hamsterster 1858 12534 13.49 272 1788 0.072 14 0.0904 1858-512-256-128-64

Virgili 1133 5451 9.62 71 1133 0.0085 8 0.1660 1131-512-256-128-64

TABLE 2. Characteristics and DL settings of benchmarks

Dataset n m kavg kmax μ minC maxC Om On Layer Configuration

Bench1 250 731 5 50 0.1 10 25 2 0.1 250-128-64-32

Bench2 500 1413 5 50 0.1 20 100 2 0.1 500-128-64-32

Bench3 1000 7685 10 50 0.1 20 100 2 0.1 1000-512-256-128-64

Bench4 2000 15488 10 100 0.1 25 250 3 0.2 2000-512-256-128-64

Bench5 5000 37769 15 250 0.2 50 500 4 0.3 5000-1024-512-256-128-64

372 S. M. M. Salehi and A. A. Pouyan/ IJE TRANSACTIONS C: Aspects Vol. 33, No. 3, (March 2020) 366-376

(,)
(,) (,) log

() ()

() (|)

x y

P x y
I X Y P x y

P x P y

H X H X Y= −

2. .precision recall
F

precision recall
=

+

2 (,)
(,)

() ()
norm

I X Y
I X Y

H X H Y
=

−

()
2

S

S S

c
cond S

m c
=

+

,

1 1

2 2

i j

ov ij

c C i j c i j

k k
Q A

m m O O

= −

By definition, the clustering coefficient (CC) for a

node is the number of edges that exist between neighbors

of that node, divided by the number of possible edges that

can exist between its neighbors. The graph’s clustering

coefficient indicates the mean clustering coefficient of all

its nodes.

The number of neurons existing in the input layer and

encoding part of DL (only for the first half) is specified

in the last column of Table 1. The DL configuration can

be obtained by adding the decoder part. For example,

configuration for Virgili is 1131-512-256-128-64-128-

256-512-1131.

We use another kind of dataset for our experiments.

The LFR benchmark [33] is an algorithm that produces

benchmark networks (realistic artificial networks that

correspond to networks in the real world). LFR presents

a set of parameters for controlling the network topology.

It assumes that both the degree and size of community

distributions in a network follow power laws displayed

by exponents’ τ1 and τ2, respectively. We generate five

datasets called Bench1 to Bench5 with τ1=2 and τ2=1.

Unlike the real world datasets, all the parameters are

adjusted by the user (except m). In Table 2, μ is defined

as the mixing parameter. It controls the fraction of edges

between communities. There is a common fraction (1 −

µ of its edges) between each node and other nodes in its

community as well as a fraction µ and other nodes in the

network. Here, two parameters of maxc and minc are the

maximum and minimum community size, respectively.

Two parameters Om and On adjust the overlapping

properties. Om is for overlapping diversity, as the number

of community memberships in each overlapping node.

On stands for overlapping density, as the fraction of

overlapping nodes in the graph. For a disjoint community

detection algorithm, Om = 1 and On = 0.

4. 2. Metrics To evaluate performance of the

proposed method, we compare it with other community

detection algorithms against four popular metrics such as

F-score, NMI, modularity, and conductance.

F-score measures the matching between communities

obtained by a method, with communities of ground truth

(a predefined expected categorization). It can be defined

as the harmonic average of precision and recall.

(14)

In overlapping nodes, precision is defined as the

proportion of accurately detected overlapping nodes to

the entire number of detected nodes. The recall for

overlapping nodes is defined as the proportion of

accurately detected overlapping nodes to the entire

number of overlapping nodes. F-score ranges from 0 to

1, with higher values, indicate a larger degree of

correspondence. The ground truth is accessible in

benchmark networks, so we can apply metrics such as F-

score and NMI to them.

The NMI, introduced in [34], is another popular metric

to evaluate the quality of a community detection

algorithm. It measures the similarity between a reference

(ground truth) model of communities and the community

detection obtained by an algorithm.

It assessed the extent of resemblance between a cover

(set of overlapping communities) as the output of a CD

algorithm, with the ground truth cover. The mutual

information I(X,Y) is defined in Equation (15).

(15)

where xi and yi denote the community labels of node i in

covers Ẋ and Ẏ, respectively. Labels x and y indicate the

values of two randomly selected variables X and Y. In

addition, I(X,Y) shows how much can be learned about X

if Y is known, and vice versa. Based on I(X,Y), and H(X)

as the entropy of X, NMI is defined in Equation (16). The

NMI value ranges from 0 to 1, with a higher value serving

as a sign of better performance.

(16)

Modularity function is the most commonly used

measure to evaluate the quality of a partition community

structure (for non-overlapping communities). Modularity

quantifies if a set of entities is more connected than a null

model (randomly rewired nodes with no community

structure) and thus can be considered as a community.

An extended modularity function [10] for overlapping

community detection is shown in Equation (17):

(17)

In this version, the number of communities that a node

belongs to is used as a weight for Q. Aij is entering the

adjacency matrix for nodes i and j, c is a community in

cover C, ki denotes the degree of node I, and Oi indicates

the number of communities to which node i belongs. A

higher Q value for a partition (or cover), indicates a

superior corresponding community structure.

Conductance is used as a simple measure to capture the

community goodness [35]. It corresponds most closely to

the intuition that a community comprises a set of densely

linked nodes that are sparsely linked to the outside. The

conductance for community S in cover C is given in

Equation (18):

 (18)

where mS shows the number of internal edges (both nodes

of the edge belong to S) and cS indicates the number of

boundary edges (only one node of the edge belongs to S).

Particularly, the sets of nodes that closely resemble a

community are characterized by a lower conductance. It

S. M. M. Salehi and A. A. Pouyan/ IJE TRANSACTIONS C: Aspects Vol. 33, No. 3, (March 2020) 366-376 373

has many inward edges and/or few edges pointing

outside. The conductance of a cover is the average

conductance of all its communities.

Testing an algorithm means the analysis of a network that

has a community-like structure and the recovery of its

communities. In this section, performance of the

presented method is empirically tested (with two values

for α), in comparison with several algorithms, on

networks of LFR benchmark that are characterized with

real world datasets and overlapping communities.

For algorithms that have tunable parameters, we

reported the results for the best setting. Considering the

non-deterministic nature of COPRA and SLPA, each of

them was repeated five times on each network

instantiation. The maximum for the average degree in

benchmarks is maintained at kavg = 15, which resembles

large social networks in terms of the order.

The results of applying the methods on the datasets

are shown in Tables 3 to 6 for F-score, NMI, modularity,

and conductance, respectively. Numbers in bold

demonstrate the optimum performance in each row. We

set α to 0.95 and 0.975 in our method. With α=1, the

contextual information of the nodes is not weighted

based on their distance, and we obtain undesirable

results.

A problem is that for real world networks, the ground

truth of overlapping communities is not accessible. Since

the reference communities for ground truth of these

networks need to be manually determined, they are

subjective in nature. For this reason, only benchmark

datasets are used for metrics such as F-score and NMI in

Tables 3 and 4.

Empirical results on datasets of varying structures

and sizes exhibit that the presented model excels with

other advanced algorithms in the overlapping community

detection tasks. The results indicate that the performance

of each method worsens when the graph size increases or

the communities are more similar to each other. Also, the

performance worsens with the increase in Om, On, or μ in

the benchmarks.

In Table 3, the behavior of the algorithms is studied

in terms of F-score. The worst results go with LC and

GCE. The clique-like assumption of GCE yields high

precision, but this method has a very low recall. On the

other hand, LC has a poor performance in terms of F-

score despite its extremely high recall. This is because

the overlapping nodes claimed by LC is more than the

exception (resulting in a very low precision).

As Table 4 shows, the values of NMI for networks

that have a small-sized community s = (5, 50) are usually

greater than those for networks that have a large-sized

community s = (15,250).

Modularity maximization forces small communities

into larger ones (resolution limit). Thus, it does not detect

communities that are smaller than the resolution limit.

As shown in Table 6, conductance is capable of

identifying well-separated communities (low cS and/or

high mS), but it has poor performance in identifying

cohesive and dense sets of nodes with high clustering

coefficients.

The results from Tables 3 to 6 reveal the merits of our

proposed model by using the weighting strategy in the

random walk procedure and the effectiveness of deep

architectures.

TABLE 3. Results for community detection algorithms (F-score as performance measure)

 CONGA COPRA SLPA GCE LC Deepwalk Proposed (α=0.95) Proposed (α=0.975)

Bench1 0.3213 0.3622 0.3757 0.2841 0.3092 0.4219 0.4710 0.5118

Bench2 0.3185 0.3370 0.3510 0.2380 0.2738 0.3772 0.4043 0.4297

Bench3 0.2957 0.3149 0.3278 0.2147 0.2409 0.3408 0.3721 0.3818

Bench4 0.2753 0.2792 0.2792 0.1975 0.2140 0.3087 0.3514 0.3379

Bench5 0.2314 0.2514 0.2541 0.1712 0.1946 0.2749 0.3109 0.3049

TABLE 4. Results for community detection algorithms (NMI as performance measure)

 CONGA COPRA SLPA GCE LC Deepwalk Proposed (α=0.95) Proposed (α=0.975)

Bench1 0.3818 0.4417 0.4713 0.3619 0.3118 0.4629 0.5012 0.5369

Bench2 0.2823 0.3742 0.3921 0.3654 0.2673 0.3376 0.4090 0.4229

Bench3 0.2492 0.2944 0.2783 0.2504 0.2138 0.2887 0.3239 0.3498

Bench4 0.1793 0.2286 0.2438 0.2141 0.1782 0.2381 0.2612 0.2779

Bench5 0.1627 0.1940 0.2073 0.1807 0.1437 0.2028 0.2340 0.2395

5. RESULTS AND DISCUSSION

374 S. M. M. Salehi and A. A. Pouyan/ IJE TRANSACTIONS C: Aspects Vol. 33, No. 3, (March 2020) 366-376

TABLE 5. Results for community detection algorithms (modularity as performance measure)

 CONGA COPRA SLPA GCE LC Deepwalk Proposed (α=0.95) Proposed (α=0.975)

Advogato 0.1302 0.1275 0.1548 0.1184 0.1033 0.1670 0.1594 0.1562

Hamsterster 0.1608 0.1543 0.1705 0.1449 0.1501 0.1836 0.1973 0.2028

Virgili 0.1758 0.1743 0.1810 0.1538 0.1594 0.1877 0.2190 0.2274

Bench1 0.2789 0.2865 0.3105 0.2419 0.2377 0.3019 0.3217 0.3245

Bench2 0.2566 0.2597 0.2873 0.2187 0.2041 0.2791 0.3025 0.3092

Bench3 0.2271 0.2289 0.2547 0.1940 0.1897 0.2492 0.2691 0.2751

Bench4 0.1625 0.1586 0.1749 0.1307 0.1248 0.1704 0.2036 0.2004

Bench5 0.1294 0.1160 0.1672 0.1037 0.0973 0.1662 0.1893 0.1854

TABLE 6. Results for community detection algorithms (conductance as performance measure)

 CONGA COPRA SLPA GCE LC Deepwalk Proposed (α=0.95) Proposed (α=0.975)

Advogato 0.0834 0.1408 0.0702 0.2148 0.2931 0.0997 0.0541 0.0510

Hamsterster 0.0507 0.1003 0.0615 0.1229 0.1309 0.0626 0.0692 0.0630

Virgili 0.0459 0.0992 0.0603 0.1107 0.1194 0.0578 0.0254 0.0237

Bench1 0.0094 0.0251 0.0142 0.0297 0.0309 0.0114 0.0069 0.0051

Bench2 0.0186 0.0493 0.0280 0.0587 0.0601 0.0338 0.0120 0.0093

Bench3 0.0457 0.0784 0.0457 0.0945 0.0938 0.0502 0.0314 0.0278

Bench4 0.0676 0.1055 0.0530 0.1395 0.1487 0.0760 0.0480 0.0489

Bench5 0.0910 0.1602 0.0886 0.2309 0.2411 0.1033 0.0527 0.0554

6. CONCLUSION

In this study, we presented a deep graph representation

model that deals with overlapping community detection.

Our model combined the advantages of factorized

matrices, random walks, and stacked autoencoders in

extracting information and generating informative

representations. We investigated on real world datasets

and benchmarks in different tasks and showed that the

proposed model outperforms several advanced

algorithms. We conclude that exploring the underlying

structure of data via deep learning can lead to improved

representations for graphs.

7. REFERENCES

1. Huang, F., Li, X., Zhang, S., Zhang, J., Chen, J. and Zhai, Z.,
"Overlapping community detection for multimedia social

networks", IEEE Transactions on Multimedia, Vol. 1, No. 99,

(2017), 1-3.

2. Mortazavi, R. and Erfani, S., "An effective method for utility

preserving social network graph anonymization based on

mathematical modeling", International Journal of Engineering,

Transactions A: Basics, Vol. 31, No. 10, (2018), 1624-1632.

3. Fortunato, S. and Hric, D., "Community detection in networks: A

user guide", Physics Reports, Vol. 659, (2016), 1-44.

4. Chintalapudi, S.R. and Prasad, M.K., "Mining overlapping

communities in real-world networks based on extended
modularity gain", International Journal of Engineering-

Transactions A: Basics, Vol. 30, No. 4, (2017), 486-492.

5. Yang, S., Yang, X., Zhang, C. and Spyrou, E., "Using social
network theory for modeling human mobility", IEEE Network,

Vol. 24, No. 5, (2010), 6-13.

6. Harenberg, S., Bello, G., Gjeltema, L., Ranshous, S., Harlalka, J.,
Seay, R., Padmanabhan, K. and Samatova, N., "Community

detection in large‐scale networks: A survey and empirical

evaluation", Wiley Interdisciplinary Reviews: Computational

Statistics, Vol. 6, No. 6, (2014), 426-439.

7. Xie, J., Kelley, S. and Szymanski, B.K., "Overlapping community

detection in networks: The state-of-the-art and comparative
study", ACM Computing Surveys (csur), Vol. 45, No. 4, (2013),

43.

8. Coscia, M., Giannotti, F. and Pedreschi, D., "A classification for
community discovery methods in complex networks", Statistical

Analysis and Data Mining, Vol. 4, No. 5, (2011), 512-546.

9. Clauset, A., Newman, M.E. and Moore, C., "Finding community
structure in very large networks", Physical review E, Vol. 70,

No. 6, (2004), 066111.

10. Chen, M., Kuzmin, K. and Szymanski, B.K., "Extension of
modularity density for overlapping community structure", in

IEEE/ACM International Conference on Advances in Social

Networks Analysis and Mining (ASONAM)., (2014), 856-863.

11. Girvan, M. and Newman, M.E., "Community structure in social

and biological networks", Proceedings of the National Academy

of Sciences, Vol. 99, No. 12, (2002), 7821-7826.

12. Gregory, S., "An algorithm to find overlapping community

structure in networks", in European Conference on Principles of

S. M. M. Salehi and A. A. Pouyan/ IJE TRANSACTIONS C: Aspects Vol. 33, No. 3, (March 2020) 366-376 375

Data Mining and Knowledge Discovery, Springer., (2007), 91-

102.

13. Raghavan, U.N., Albert, R. and Kumara, S., "Near linear time

algorithm to detect community structures in large-scale

networks", Physical Review E, Vol. 76, No. 3, (2007), 036106.

14. Gregory, S., "Finding overlapping communities in networks by

label propagation", New Journal of Physics, Vol. 12, No. 10,

(2010), 103018.

15. Xie, J. and Szymanski, B.K., "Towards linear time overlapping

community detection in social networks", in Pacific-Asia
Conference on Knowledge Discovery and Data Mining,

Springer., (2012), 25-36.

16. Palla, G., Derényi, I., Farkas, I. and Vicsek, T., "Uncovering the

overlapping community structure of complex networks in nature

and society", Nature, Vol. 435, No. 7043, (2005), 814-818.

17. Lee, C., Reid, F., McDaid, A. and Hurley, N., "Detecting highly

overlapping community structure by greedy clique expansion",

the 4th Workshop on Social Network Mining and Analysis (2010),

33-42. .

18. Evans, T. and Lambiotte, R., "Line graphs, link partitions, and

overlapping communities", Physical Review E, Vol. 80, No. 1,

(2009), 016105.

19. Goyal, P. and Ferrara, E., "Graph embedding techniques,

applications, and performance: A survey", Knowledge-Based

Systems, Vol. 151, (2018), 78-94.

20. Cao, S., Lu, W. and Xu, Q., "Grarep: Learning graph

representations with global structural information", in
Proceedings of the 24th ACM International on Conference on

Information and Knowledge Management, ACM., (2015), 891-

900.

21. Perozzi, B., Al-Rfou, R. and Skiena, S., "Deepwalk: Online

learning of social representations", in Proceedings of the 20th

ACM SIGKDD international conference on Knowledge

discovery and data mining, ACM., (2014), 701-710.

22. Khatami, A., Babaie, M., Tizhoosh, H., Nazari, A., Khosravi, A.

and Nahavandi, S., "A radon-based convolutional neural network
for medical image retrieval", International Journal of

Engineering-Transactions C: Aspects, Vol. 31, No. 6, (2018),

910-915.

23. LeCun, Y., Bengio, Y. and Hinton, G., "Deep learning", Nature,

Vol. 521, No. 7553, (2015), 436-444.

24. Mikolov, T., Chen, K., Corrado, G. and Dean, J., "Efficient
estimation of word representations in vector space", arXiv

preprint arXiv:1301.3781, (2013).

25. Pennington, J., Socher, R. and Manning, C., "Glove: Global
vectors for word representation", in Proceedings of the 2014

conference on empirical methods in natural language processing

(EMNLP)., (2014), 1532-1543.

26. Levy, O. and Goldberg, Y., "Neural word embedding as implicit

matrix factorization", in Advances in neural information

processing systems., (2014), 2177-2185.

27. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S. and Dean, J.,

"Distributed representations of words and phrases and their
compositionality", in Advances in Neural Information Processing

Systems, (2013), 3111-3119.

28. Tian, F., Gao, B., Cui, Q., Chen, E. and Liu, T.-Y., "Learning
deep representations for graph clustering", in AAAI., (2014),

1293-1299.

29. Baldi, P., "Autoencoders, unsupervised learning, and deep
architectures", in Proceedings of ICML Workshop on

Unsupervised and Transfer Learning., (2012), 37-49.

30. Cleuziou, G., "An extended version of the k-means method for
overlapping clustering", in Pattern Recognition, 2008. ICPR

2008. 19th International Conference on, IEEE,(2008), 1-4.

31. Kunegis, J., "Konect: The koblenz network collection", in
Proceedings of the 22nd International Conference on World Wide

Web, ACMe, (2013), 1343-1350.

32. Barabási, A.-L., "Scale-free networks: A decade and beyond",

Science, Vol. 325, No. 5939, (2009), 412-413.

33. Lancichinetti, A. and Fortunato, S., "Benchmarks for testing

community detection algorithms on directed and weighted graphs
with overlapping communities", Physical Review E, Vol. 80, No.

1, (2009), 016118.

34. Danon, L., Diaz-Guilera, A., Duch, J. and Arenas, A.,

"Comparing community structure identification", Journal of

Statistical Mechanics: Theory and Experiment, No. 09, (2005),

P09008.

35. Leskovec, J., Lang, K.J. and Mahoney, M., "Empirical

comparison of algorithms for network community detection", in

Proceedings of the 19th international conference on World wide

web, ACM,(2010), 631-640.

376 S. M. M. Salehi and A. A. Pouyan/ IJE TRANSACTIONS C: Aspects Vol. 33, No. 3, (March 2020) 366-376

Detecting Overlapping Communities in Social Networks using Deep Learning

S. M. M. Salehi, A. A. Pouyan

Department of Computer Engineering, Shahrood University of Technology, Shahrood, Iran

P A P E R I N F O

Paper history:
Received 14 December 2019
Received in revised form 14 January 2020
Accepted 17 January 2020

Keywords:
Community Detection
Overlapping Communities

Deep Learning
Social Networks
Graph Embedding

 چکیده

های مابین آنها زیاد بوده اما شود که چگالی یالاطلاق می های گراف ها، مفهوم انجمن به تعدادی از گره در تحلیل شبکه

یافتن ساختار انجمنی در گراف، اهمیت زیادی در هر مسئله .استهای شبکه کم های ارتباطی آنها با دیگر قسمتچگالی یال

ی فراوانی با هاروشبه همین دلیل، های خاصی از شبکه دارد.تحلیل شبکه خصوصاً یافتن الگوهای موجود مابین گره

های اخیر، محققین البته در سال اند.ها پیشنهاد شدهیابی همپوشان و ناهمپوشان در شبکههای مختلف برای انجمنرهیافت

ها شبکه را اند. این روشهای یادگیری ویژگی و توکاری شبکه استفاده کردههای گراف از روشبندی گرهبسیاری برای دسته

های ما در این مقاله، با الهام از توانمندی شبکه دهند.بازنمایی با ابعاد کمتر اما با همان خواص، نگاشت می به یک فضای

در روش دهیم.پیشنهاد میهای آن یابی گرهو نهایتا انجمن عصبی عمیق در بازنمایی، مدلی را برای یادگیری بازنمایی گراف

و به یک الگوریتم شودمیشده آموزش داده کدکننده خودکار پشته پیشنهادی، یک توکاری غیرخطی از گراف توسط

های استاندارد های نهایی حاصل شوند. برای نمایش قدرت مدل، آن را به محکد تا انجمنگردبندی همپوشان اعمال میخوشه

ست که روش پیشنهادی این کنیم. نتایج تجربی حاکی از آن اهای مختلف از دنیای واقعی اعمال میو چند دادگان با اندازه

 یابی داشته است. متداول انجمن مقاله، عملکرد بهتری از چند روش
doi: 10.5829/ije.2020.33.03c.01

