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A B S T R A C T  
 

 

In network analysis, the community is considered as a group of nodes that is densely connected with 

respect to the rest of the network. Detecting the community structure is important in any network analysis 

task, especially for revealing patterns between specified nodes. There are various approaches in literature 
for community, overlapping or disjoint, detection in networks. In recent years, many researchers have 

concentrated on feature learning and network embedding methods for nodes clustering. These methods 

map the network into a lower-dimensional representation space. In this paper, we propose a model for 
learning graph representation using deep neural networks. In this method, a nonlinear embedding of the 

original graph is fed to stacked auto-encoders for learning the model. Then an overlapping clustering 

algorithm is employed to extract overlapping communities. The effectiveness of the proposed model is 
investigated by conducting experiments on standard benchmarks and real-world datasets of varying 

sizes. Empirical results exhibit that the presented method outperforms some popular community 

detection methods. 

doi: 10.5829/ije.2020.33.03c.01 
 

 
1. INTRODUCTION1 
 
In most complex systems, data can be represented as 

networks like transportation networks, citation networks, 

World Wide Web, co-authorship networks, and social 

networks. Analyzing these networks yields insight into 

their structures. Growing attention has been paid to this 

analysis in recent years, particularly due to the 

omnipresence of such networks in real-world [1]. 

Social network analysis (SNA) is a novel research 

topic in the field of computer science. The goal of SNA 

is to explore associations between social entities, and to 

figure out the features and properties of the entire 

network, usually by graph theory. A graph is a means of 

describing relationships among a set of specified items. 

Given a graph G = (V, E), V is a set of n nodes (vertices), 

and E is a set of m edges (links). In a social network, 

nodes represent individuals, and their social interactions 

are presented by edges. The network structure, for 

unweighted networks, can be determined by an n×n 

adjacency matrix A. Each element Aij of A is equivalent 

to 1 if there is an edge that connects nodes i and j. 

Otherwise, it is 0. 
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Community structure is a shared property in many 

social networks. Despite the lack of a unique definition 

for the community, a community is assumed to represent 

a group of nodes where the number of connections 

between these nodes is greater than connecting with other 

nodes in the network. A community is considered as a 

group of nodes similar to each other, but different from 

other nodes in the network. Individuals that are in a 

similar community have comparable properties [2] such 

as social ties, interests, occupation, location,  etc. 

Community structure often unravels precious 

information of interest. Community detection (CD) in 

networks indicates an exciting problem with several 

applications, particularly for knowledge extraction from 

social networks. Several CD algorithms have been 

presented for the division of a social network into 

communities [3]. Within the community detection 

framework, much attention is given to the identification 

of disjoint communities. In disjoint (separated or non-

overlapping) CD, a node may belong to only one 

community. However, in real-world scenario, a node 

may belong to more than one community that leads to 

overlapping communities. For instance, a person may 
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forge connections to many social groups such as friends, 

family, and co-workers [4]. 

This overlap is a remarkable feature of most real-

world networks. Naturally, nodes may be a member of 

multiple communities. Therefore, by forcing each node 

into a single community, we miss much information and 

may obtain a misleading characterization of the 

underlying community structure.  

A good comparison is shown in Figure 1 for this 

problem. Figure 1a displays an undirected social graph 

comprising of 18 individuals and Figure 1b shows the 

four isolated communities of the social network from 

Figure 1a. Here nodes 6, 13, and 14 in Figure 1c are 

overlapping nodes that can be shared by two or three 

communities. 

Over the last decade, numerous methods have been 

presented for the detection of community. In the 

following section, these methods are explained in detail. 

Some of these methods have a number of drawbacks or 

limitations including inability to support the concept of 

overlapping, or high costs of computation for large 

graphs.  

In this research, we introduce an effective algorithm 

to address the detection of overlapping communities by 

incorporating the community structure into graph 

embedding. Our formulation combines the strengths of 

random walk methods and deep learning architectures in 

a framework. The proposed algorithm maintains both the 

global and local structure of a network. Experimental 

results exhibit the efficacy of the presented method on 

some benchmarks and real-world networks. 

This paper is organized as follows. Section 2 reviews 

the literature on community detection algorithms in 

networks, with emphasis on overlapping methods. 

 

 

 
(a) input graph  

  
(b) Disjoint CD (c) overlapping CD 

Figure 1. An example of a small social network; disjoint 

(non-overlapping) vs. overlapping community structure [5] 

Section 3 explains the design of the proposed algorithm 

in detail. It presents preliminaries such as the concept of 

node representation, deep learning components, and an 

overlapping clustering algorithm used on deep learning 

output. In Section 4, we outline our experiments on some 

computer-generated and real-world networks. Section 5 

presents the results of experiments and compares our 

algorithm with a few overlapping community detection 

algorithms. Finally, conclusion is drawn in Section 6. 

 

 

2. RELATED WORKS 
 

The detection of overlapping and non-overlapping 

communities represents two distinct problems. That is, 

the algorithms used to detect non-overlapping 

communities could not be readily applied to other 

overlapping counterparts. Hence, a variety of algorithms 

have been introduced to exhibit the structures of 

overlapping communities [6, 7].  

The algorithms for detecting communities in graphs 

can be divided into several categories based on diverse 

parameters, such as the actual operational methods [3], or 

the fundamental concept of the community [8]. In this 

section, we present an abridged overview of a few 

algorithms for community detection. 

Community detection can be performed by  detecting 

the denser areas of the network. A dense community is a 

group of vertices where the number of edges is 

substantially greater than the number of edges expected 

in a random graph (without any community structure). 

With this approach, community detection can be 

considered as optimizing a specific density function until 

no further augmentation is possible. Modularity [9] is a 

famous density function that is used to detect disjoint 

communities. Chen et al. [10] presented an extended 

version of modularity for overlapping community 

detection.  

Communities could be assumed as parts of the graph 

obtained by removing all edges (i.e., bridges) that 

connect these parts to each other. Girvan-Newman (GN) 

algorithm is a famous method in this category [11]. It 

conducts hierarchical clustering (dividing a network into 

preferred numbers of clusters). GN relies on a centrality 

measure called betweenness. At each step, it involves 

counting the shortest paths between all pairs of vertices 

that exist in the network, sorting edges by their 

betweenness values, and removing edges with the most 

value (i.e., a bridge). Cluster Overlap Newman Girvan 

Algorithm (CONGA) extends GN for discovering 

overlapping communities in networks [12]. A central 

point of CONGA is the concept of split betweenness, 

which allows a node to split into multiple copies.  

A community could be defined as a set of nodes 

categorized by the dissemination of a similar property, 

action, or data within the network. The label propagation 

algorithm (LPA) deals with this definition, in which 
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nodes that belong to an identical label forge a community 

[13]. A node in the network decides to join a community 

where the majority of its neighbors are members of that 

community. With the propagation of labels, groups of 

nodes with tight connections obtain an exclusive label. 

This method is fast but does not support the overlapping 

concept. In the community overlap propagation 

algorithm (COPRA), nodes have a label and a belonging 

coefficient [14]. The belonging coefficient of each node 

is updated by averaging coefficients in all of its 

neighbors. A node that has an equivalent maximum 

number of neighbors, in at least two communities, is 

considered as an overlapping node. The LPA can be 

extended to an overlapping community detection by 

Speaker-listener Label Propagation Algorithm (SLPA) 

[15]. It gives each node a memory for the storage of the 

received information and the spread of labels between 

nodes in compliance with rules of pairwise interaction. 

The membership strength is defined as the possibility of 

complying with a label in node memory. The output of 

this method is the labels’ probability distribution for each 

node’s memory. Nodes with identical labels are then 

assigned to a community. A node with several labels 

belongs to several communities. 

Another common approach to community detection 

defines it as an accurate structure of edges. Therefore, an 

algorithm defines some sort of structure and then 

attempts to find it efficiently within the graph. For 

instance, a clique is defined as a complete subgraph of a 

given graph. The clique of the largest possible size is 

called a maximal clique. The clique percolation method 

(CPM) [16] finds all k-cliques (clique with k nodes) in a 

graph and merges cliques with common k-1 nodes. A 

community embodies the union of all k-cliques that can 

be reached from each other. GCE (greedy clique 

expansion) [17] identifies maximum cliques as seed 

communities, which are then expanded through greedy 

optimization of a local fitness function. 

Another idea that has been explored is to partition  

links (edges) rather than nodes for exploring community 

structure. According to this approach, it is the relation, 

not the node, which is a member of the community. 

Hence, since they try to cluster the network edges, the 

nodes belong to a set of communities forged by their 

edges. Link community (LC) is a well-known method in 

this category [18]. In LC, an original graph’s node is said 

to be overlapping when its connecting links are placed in 

at least two or more clusters. 

In recent years, the methods that rely on the 

representation of networks in vector space (mapping 

graph matrices to another space) have become popular. 

Graph embedding seeks to offer a representation of a 

graph as low dimensional vectors but preserves the graph 

structure [19]. Finding a vector representation for nodes 

of a graph is challenging and poses several difficulties. A 

suitable vector representation of nodes needs to retain the 

network structure and the connection between single 

nodes. The network structure is represented by proximity 

measures such as first-order proximity (edge weights), 

second-order proximity (similarity of the vertices’ 

neighborhood structures), and higher-order proximities 

between nodes.  

The embedding methods can be split into three 

general categories: methods based on (1) Factorization 

(2) Random Walk, and (3) Deep Learning (DL). 

In the first category, connections of nodes are 

represented as a matrix, which is then factorized to attain 

the embedding. The matrices employed for the 

representation of the connections comprise the Laplacian 

matrix, Katz similarity matrix, etc. Graph Factorization 

GraRep [20] is an example of this category.  

Several graph properties such as node similarity and 

centrality are approximated using random walks. They 

are particularly useful when only partial observation of a 

graph is possible. Deepwalk [21] is a method that 

transforms graphs into collections of linear sequences by 

a uniform sampling method known as the truncated 

random walk.  

Deep learning has been particularly successful in 

handling images, texts, time series, and audio data in 

recent years [22]. Thanks to the advances in deep neural 

networks, these methods can produce representations for 

various kinds of data [23]. Deep learning can be used as 

a useful tool for graph analysis to produce 

representations that contribute to community detection.  

 

 

3. PROPOSED METHOD 
 

We propose an algorithm to investigate the problem of 

overlapping community detection. The overall scheme of 

the proposed method is shown in Figure 2.  

The algorithm exploits factorized matrices, generated 

random walks, and deep learning architecture. It consists 

of three major parts: First, we introduce a model based 

on random walks to represent (embed) the nodes. This 

model captures the input graph’s structural information. 

It generates probabilistic co-occurrence (PCO) matrix 

and positive pointwise mutual information (PPMI) 

matrix. After that, a deep learning architecture is used to 

learn representations of low-dimensional nodes. The 

output of this part is given to an overlapping clustering 

method to prodive overlapping communities. In this 

section, the major components of the proposed algorithm 

are discussed in detail. 

 

3. 1. Graph Embedding       As mentioned earlier, graph 

(node) embedding aims to offer a representation of a 

graph (node) as low dimensional vectors while retaining 

the structure of the network. As the output of this process, 

any node is described with a vector. 

Pioneer methods for graph embedding generalize 

advancements in language-modeling (sequences of 

words) to graphs (sequences of nodes) for representation. 
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Figure 2. The framework of the method presented in the study 

 

 

The essential inputs of any language-modeling 

algorithm are vocabulary and a corpus. The language-

modeling aims to estimate the probability of a sequence 

of words manifesting in a corpus [24]. Formally put, for 

a sequence of words in Equation (1) which wi is an 

element of vocabulary: 
 

(1) 

We would like to maximize the probability in Equation 

(2) over the entire corpus.  
 

(2) 

It is similar to calculating the probability of observing 

vertex vi based on all previously visited vertices in a 

random walk: 
 

(3) 

Based on this analogy, Deepwalk [21] presented a 

generalization of language-modeling to examine the 

graph via a set of random walks. These walks could be 

considered as short phrases and sentences in a certain 

language. Deepwalk draws on local information attained 

from curtailed random walks. The procedure involves a 

slow uniform sampling process, and hyper-parameters of 

the method such as “walk length” and “walks per node” 

are not easy to determine. 

Our algorithm directly constructs The PCO matrix 

from a graph, which avoids the expensive sampling 

process. A co-occurrence matrix is a giant matrix as wide 

as the vocabulary (graph) size. When words (nodes) 

occur together, they are marked with a positive entry. 

Otherwise, they will take a 0.  

Inspired by Google’s PageRank, we consider a 

random walk model with a restart. First, the vertices are 

randomly ordered in a graph. It is assumed that the 

current vertex is the ith vertex, and there exists a transition 

matrix T that takes into account the transition likelihoods 

between diverse vertices. Matrix T is initialized based on 

the adjacency matrix.  

Each row vector of the PCO matrix is of the form pk 

where the jth entry corresponds to the likelihood of 

reaching the jth vertex following k steps of transition. 

According to probability α, a random walk will continue 

(choosing the next node), and based on probability 1 – α, 

it will revert to the original vertex and the procedure will 

be restarted. The probabilities for arriving at different 

vertices after exactly k steps of transitions is specified by 

recurrent Equation (4): 
 

(4) 

P0 is the initial one-hot vector of a node vi with the ith 

entry having a value of 1, and other entries having a value 

of 0. If there is no random restart in the procedure (α=1), 

PCO is achieved using Equation (5): 
 

(5) 

After constructing the PCO matrix, the representation 

r for the ith node is shown in Equation (6): 
 

(6) 

The f(·) is a decreasing weighting function. The 

weight assigned to a context node is a function of the 

distance of that node from the current node in the graph. 

In our method, we use f(x) = 1/x as a common weighting 

function [25].  

In language-modeling, we use the current word w 

(whose representation that we want to generate) to 

predict its c context in a probabilistic form. The term 

‘context’ refers to the words that may appear around the 

current word in a sentence. With K as window size, 

sentences are generated using K words before and after 

the current word. Following this, the PCO matrix is used 

to compute the PMI matrix. The PMI matrix can be seen 

as the product of the representation matrix and the 

context matrix, which could be expressed by Equation 

(7): 
 

(7) 

where |L| is computed using Equation (8): 
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(8) 

In the same vein, for graph embedding, vi in Equation 

(9) refers to the current node and 
ivW determines the 

nodes that appear in a random walk rooted at vi.  
 

(9) 

To improve performance, we use a PPMI  matrix 

instead of a PMI matrix [26]. As shown in Equation (10), 

each negative value is assigned to zero.  
 

(10) 

Each node’s global neighborhood is expressed by a 

row of PPMI. For any two nodes, the PPMI values 

answer the question of whether the two nodes tend to 

occur more together or more independently.    

Instead of factorized matrices used in our proposed 

method, Deepwalk combines a random walk and skip-

gram model utilized in Word2vec [27] to learn network 

representations. Skip-gram is an approach that seeks to 

obtain similar vectors for similar words (based on their 

context). We compare the results in Section 5. 

In some methods,  Singular Value Decomposition 

(SVD) is used for dimensionality reduction after 

computing the PPMI matrix for a text corpus [26] or 

graph embedding [20]. SVD decomposes any specified 

matrix into three matrices (two orthonormal matrices and 

one diagonal matrix). Although SVD is an effective tool 

for dimensionality reduction, it also captures linear 

relationships between the two vectors. In our model, we 

replaced SVD with deep neural networks to capture a 

non-linear mapping between the nodes.  

Inputting the PPMI matrix guarantees that the deep 

learning architecture can account for the proximity of the 

input graph’s nodes. 

  

3. 2. DL Components and Configuration       Based on 

unsupervised learning, deep learning employs multiple 

layers of processing to learn data representations with 

multiple abstraction levels.  

An autoencoder (AE) is a form of neural network that 

learns features to reconstruct its input at the output 

layer. In [28], autoencoders are used for graph clustering 

tasks with the Laplacian matrix as their input. Here, the 

PPMI matrix was used as an input fed to the autoencoder.  

An autoencoder comprises two parts: the encoder, 

and the decoder. The former is responsible for 

embedding the original input into a low-dimensional 

representation. The decoding layers will learn how to 

decode the representation and brings it back into its 

original form in the most accurate manner [29]. Stacked 

autoencoders (SAE) consist of multiple layers of such 

autoencoders for learning multiple layers of 

representations (Figure 3). 

The embedding for a node in the PPMI matrix will be 

a 1n vector. This is fed to the autoencoder to reduce the 

dimensions to 1d (d<<n) during the encoding step. We 

then apply function f (·) to vector x in the input space so 

that it can be sent to a new feature space.  
 

(11) 

This result is called a code or latent variable. The term 

θ1 = (W1, b1) defines the parameters involved in the 

encoder part, where W1 is a weight matrix and b1 is a bias 

vector. An activation function σ(.) is usually recruited to 

offer for modeling of the non-linearities between two 

vector spaces. For this purpose, we use a half-wave 

rectifier f (z) = max (z,0) known as rectified linear unit 

(ReLU). It typically learns very fast in networks with 

many layers.  

The decoding step involves using a reconstruction 

function g(·) to reconstruct the original input vectors 

retrieved from the latent representation space.  

            (12) 

In Equation (12), y is the output of the encoding step, 

and θ2 defines the parameters involved in the decoder (W2 

as weight matrix and b2 as a bias vector). 

Equation (13) expresses the reconstruction error as a 

measure of discrepancy between input x and its 

reconstruction in output. 
 

(13) 

L is a loss function such as cross-entropy or mean square 

error (MSE). Thus, our goal is to reduce the 

reconstruction error by finding values of θ1 and θ2.  

We want to estimate parameters and hyper-parameters 

(number of layers, or neurons in each layer, etc.) to have 

a precise reconstruction. This process requires effort and 

expertise. Obviously, the output layer has n neurons such 

as the input layer. The encoder and decoder parts are 

symmetric to each other regarding the number of layers 

and the number of neurons in each layer. 

 

 

 
Figure 3. Structure of an SAE: an output layer, an input 

layer, and three hidden layers (encoding and decoding parts) 

[29] 
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Instead of randomly initializing the weights, we use 

the Glorot-uniform method (Xavier method), which has 

much better performance. Stochastic gradient descent 

(SGD), with a learning rate set to 1% at the beginning of 

the training, is used for backpropagation.  

As a regularization technique for reducing 

overfitting, Dropout (randomly drops some neurons 

together with connections formed in the neural network 

during training phase) is used with 0.1 as drop rate. For 

implementation, we use the Python deep learning library 

Keras. 

 

3. 3. Overlapping Clustering Algorithm          K-

means is a clustering algorithm that is extensively used. 

It leads to the detection of a disjoint community where a 

user is only the member of a given community. We use a 

version of overlapping K-means (OKM) [30] that 

generalizes the k-means algorithm and applies it to the 

output of the DL part. OKM defines an objective function 

for multi-assignment, initializing as data image an 

arbitrary cluster prototype that has a random centroid. It 

uses input objects along with the prototype to estimate 

the average of the two vectors that are used as a threshold 

for assignment of objects to multiple clusters 

(communities). The exact number of clusters must be 

determined as a priori.  

 
 
4. EXPERIMENTS 
 

We conduct our experiments on two datasets of varying 

sizes and characteristics: real-world datasets and 

synthetic datasets (benchmarks).  

First, the details of three publicly available real-world 

networks and five benchmarks are given. Then, four 

popular metrics (F-Score, Normalized Mutual 

Information (NMI), conductance, and Omega index) are 

reviewed. The performance of our proposed method can 

be evaluated in comparison with some advanced 

algorithms to detect overlapping communities. 
 

4. 1. Datasets       Three datasets from real-world 

networks are selected from the KONECT dataset 

collection [31] with different structures. The Advogato is 

an online trust community platform designed for free 

software developers. The Hamsterster is the site of 

friendships for users of the website hamsterster.com. The 

Virgili is the email communication network utilized at 

the University of Virgili in southern Spain. Each edge 

suggests that more than one email has been sent. 
Table 1 summarizes the characteristics of these 

datasets. The size of each dataset is equal to n (number 

of nodes), m indicates the number of edges, kavg is the 

average degree, and kmax is the maximum degree of 

nodes. Obviously, kmax is much greater than kavg. This is 

a common attribute of social networks, as an instance of 

scale-free networks [32], which follows the power-law 

distribution for its node degree. This distribution is 

expressed as ρx-τ, where ρ is a constant factor, x is the 

variable of distribution, and τ is the exponent. If the 

degree distribution of a connected graph complies the 

power law, it leads to a long tail of intermittent vertices 

(many low-degree nodes vs. a few high-degree nodes). 

The parameter nGCC shows the greatest connected 

component of the graph (a maximal subset of nodes that 

are all reachable from each other). For a connected graph 

with one component, nGCC is equal to n.  

The density is a measure of how tightly 

interconnected a graph, which is calculated as the ratio of 

edges to the total number of possible edges. The diameter 

(D) is a measure of the distance between the two most 

distant nodes in the network. It is the maximum number 

of connections required to traverse the graph. 

 

 

 

TABLE 1. Characteristics and DL settings of real-world datasets 

Dataset n m kavg kmax nGCC Density D CC Layer Configuration 

Advogato 6541 51127 15.63 943 5042 0.0011 9 0.0922 6541-1024-512-256-128-64 

Hamsterster 1858 12534 13.49 272 1788 0.072 14 0.0904 1858-512-256-128-64 

Virgili 1133 5451 9.62 71 1133 0.0085 8 0.1660 1131-512-256-128-64 

 

 
TABLE 2. Characteristics and DL settings of benchmarks 

Dataset n m kavg kmax μ minC maxC Om On Layer  Configuration 

Bench1 250 731 5 50 0.1 10 25 2 0.1 250-128-64-32 

Bench2 500 1413 5 50 0.1 20 100 2 0.1 500-128-64-32 

Bench3 1000 7685 10 50 0.1 20 100 2 0.1 1000-512-256-128-64 

Bench4 2000 15488 10 100 0.1 25 250 3 0.2 2000-512-256-128-64 

Bench5 5000 37769 15 250 0.2 50 500 4 0.3 5000-1024-512-256-128-64 
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By definition, the clustering coefficient (CC) for a 

node is the number of edges that exist between neighbors 

of that node, divided by the number of possible edges that 

can exist between its neighbors. The graph’s clustering 

coefficient indicates the mean clustering coefficient of all 

its nodes. 

The number of neurons existing in the input layer and 

encoding part of DL (only for the first half) is specified 

in the last column of Table 1. The DL configuration can 

be obtained by adding the decoder part. For example, 

configuration for Virgili is 1131-512-256-128-64-128-

256-512-1131. 

We use another kind of dataset for our experiments. 

The LFR benchmark [33] is an algorithm that produces 

benchmark networks (realistic artificial networks that 

correspond to networks in the real world). LFR presents 

a set of parameters for controlling the network topology. 

It assumes that both the degree and size of community 

distributions in a network follow power laws displayed 

by exponents’ τ1 and τ2, respectively. We generate five 

datasets called Bench1 to Bench5 with τ1=2 and τ2=1. 

Unlike the real world datasets, all the parameters are 

adjusted by the user (except m). In Table 2, μ is defined 

as the mixing parameter. It controls the fraction of edges 

between communities. There is a common fraction (1 − 

µ of its edges) between each node and other nodes in its 

community as well as a fraction µ and other nodes in the 

network. Here, two parameters of maxc and minc are the 

maximum and minimum community size, respectively.  

Two parameters Om and On adjust the overlapping 

properties. Om is for overlapping diversity, as the number 

of community memberships in each overlapping node. 

On stands for overlapping density, as the fraction of 

overlapping nodes in the graph. For a disjoint community 

detection algorithm, Om = 1 and On = 0.  
 

4. 2. Metrics       To evaluate performance of the 

proposed method, we compare it with other community 

detection algorithms against four popular metrics such as 

F-score, NMI, modularity, and conductance. 

F-score measures the matching between communities 

obtained by a method, with communities of ground truth 

(a predefined expected categorization). It can be defined 

as the harmonic average of precision and recall. 
 

(14) 

In overlapping nodes, precision is defined as the 

proportion of accurately detected overlapping nodes to 

the entire number of detected nodes. The recall for 

overlapping nodes is defined as the proportion of 

accurately detected overlapping nodes to the entire 

number of overlapping nodes. F-score ranges from 0 to 

1, with higher values, indicate a larger degree of 

correspondence. The ground truth is accessible in 

benchmark networks, so we can apply metrics such as F-

score and NMI to them.  

The NMI, introduced in [34], is another popular metric 

to evaluate the quality of a community detection 

algorithm. It measures the similarity between a reference 

(ground truth) model of communities and the community 

detection obtained by an algorithm. 

It assessed the extent of resemblance between a cover 

(set of overlapping communities) as the output of a CD 

algorithm, with the ground truth cover. The mutual 

information I(X,Y) is defined in Equation (15). 

  
(15) 

where xi and yi denote the community labels of node i in 

covers Ẋ and Ẏ, respectively. Labels x and y indicate the 

values of two randomly selected variables X and Y. In 

addition, I(X,Y) shows how much can be learned about X 

if Y is known, and vice versa. Based on I(X,Y), and H(X) 

as the entropy of X, NMI is defined in Equation (16). The 

NMI value ranges from 0 to 1, with a higher value serving 

as a sign of better performance. 
 

(16) 

Modularity function is the most commonly used 

measure to evaluate the quality of a partition community 

structure (for non-overlapping communities). Modularity 

quantifies if a set of entities is more connected than a null 

model (randomly rewired nodes with no community 

structure) and thus can be considered as a community. 

An extended modularity function [10] for overlapping 

community detection is shown in Equation (17): 
 

(17) 

In this version, the number of communities that a node 

belongs to is used as a weight for Q. Aij is entering the 

adjacency matrix for nodes i and j, c is a community in 

cover C, ki denotes the degree of node I, and Oi indicates 

the number of communities to which node i belongs. A 

higher Q value for a partition (or cover), indicates a 

superior corresponding community structure. 

Conductance is used as a simple measure to capture the 

community goodness [35]. It corresponds most closely to 

the intuition that a community comprises a set of densely 

linked nodes that are sparsely linked to the outside. The 

conductance for community S in cover C is given in 

Equation (18): 

  (18) 

where mS shows the number of internal edges (both nodes 

of the edge belong to S) and cS indicates the number of 

boundary edges (only one node of the edge belongs to S). 

Particularly, the sets of nodes that closely resemble a 

community are characterized by a lower conductance. It 
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has many inward edges and/or few edges pointing 

outside. The conductance of a cover is the average 

conductance of all its communities. 

 

Testing an algorithm means the analysis of a network that 

has a community-like structure and the recovery of its 

communities. In this section, performance of the 

presented method is empirically tested (with two values 

for α), in comparison with several algorithms, on 

networks of LFR benchmark that are characterized with 

real world datasets and overlapping communities.  

For algorithms that have tunable parameters, we 

reported the results for the best setting. Considering the 

non-deterministic nature of COPRA and SLPA, each of 

them was repeated five times on each network 

instantiation. The maximum for the average degree in 

benchmarks is maintained at kavg = 15, which resembles 

large social networks in terms of the order.  

The results of applying the methods on the datasets 

are shown in Tables 3 to 6 for F-score, NMI, modularity, 

and conductance, respectively. Numbers in bold 

demonstrate the optimum performance in each row. We 

set α to 0.95 and 0.975 in our method. With α=1, the 

contextual information of the nodes is not weighted 

based on their distance, and we obtain undesirable 

results. 

A problem is that for real world networks, the ground 

truth of overlapping communities is not accessible. Since 

the reference communities for ground truth of these 

networks need to be manually determined, they are 

subjective in nature. For this reason, only benchmark 

datasets are used for metrics such as F-score and NMI in 

Tables 3 and 4.   

Empirical results on datasets of varying structures 

and sizes exhibit that the presented model excels with 

other advanced algorithms in the overlapping community 

detection tasks. The results indicate that the performance 

of each method worsens when the graph size increases or 

the communities are more similar to each other. Also, the 

performance worsens with the increase in Om, On, or μ in 

the benchmarks. 

In Table 3, the behavior of the algorithms is studied 

in terms of F-score. The worst results go with LC and 

GCE. The clique-like assumption of GCE yields high 

precision, but this method has a very low recall. On the 

other hand, LC has a poor performance in terms of F-

score despite its extremely high recall. This is because 

the overlapping nodes claimed by LC is more than the 

exception (resulting in a very low precision). 

As Table 4 shows, the values of NMI for networks 

that have a small-sized community s = (5, 50) are usually 

greater than those for networks that have a large-sized 

community s = (15,250).  

Modularity maximization forces small communities 

into larger ones (resolution limit). Thus, it does not detect 

communities that are smaller than the resolution limit. 

As shown in Table 6, conductance is capable of 

identifying well-separated communities (low cS and/or 

high mS), but it has poor performance in identifying 

cohesive and dense sets of nodes with high clustering 

coefficients.  

The results from Tables 3 to 6 reveal the merits of our 

proposed model by using the weighting strategy in the 

random walk procedure and the effectiveness of deep 

architectures. 

 
 

TABLE 3. Results for community detection algorithms (F-score as performance measure) 

 CONGA COPRA SLPA GCE LC Deepwalk Proposed (α=0.95) Proposed (α=0.975) 

Bench1 0.3213 0.3622 0.3757 0.2841 0.3092 0.4219 0.4710 0.5118 

Bench2 0.3185 0.3370 0.3510 0.2380 0.2738 0.3772 0.4043 0.4297 

Bench3 0.2957 0.3149 0.3278 0.2147 0.2409 0.3408 0.3721 0.3818 

Bench4 0.2753 0.2792 0.2792 0.1975 0.2140 0.3087 0.3514 0.3379 

Bench5 0.2314 0.2514 0.2541 0.1712 0.1946 0.2749 0.3109 0.3049 

 

 

 
TABLE 4. Results for community detection algorithms (NMI as performance measure) 

 CONGA COPRA SLPA GCE LC Deepwalk Proposed (α=0.95) Proposed (α=0.975) 

Bench1 0.3818 0.4417 0.4713 0.3619 0.3118 0.4629 0.5012 0.5369 

Bench2 0.2823 0.3742 0.3921 0.3654 0.2673 0.3376 0.4090 0.4229 

Bench3 0.2492 0.2944 0.2783 0.2504 0.2138 0.2887 0.3239 0.3498 

Bench4 0.1793 0.2286 0.2438 0.2141 0.1782 0.2381 0.2612 0.2779 

Bench5 0.1627 0.1940 0.2073 0.1807 0.1437 0.2028 0.2340 0.2395 

 

 

5. RESULTS AND DISCUSSION 
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TABLE 5. Results for community detection algorithms (modularity as performance measure) 

 CONGA COPRA SLPA GCE LC Deepwalk Proposed (α=0.95) Proposed (α=0.975) 

Advogato 0.1302 0.1275 0.1548 0.1184 0.1033 0.1670 0.1594 0.1562 

Hamsterster 0.1608 0.1543 0.1705 0.1449 0.1501 0.1836 0.1973 0.2028 

Virgili 0.1758 0.1743 0.1810 0.1538 0.1594 0.1877 0.2190 0.2274 

Bench1 0.2789 0.2865 0.3105 0.2419 0.2377 0.3019 0.3217 0.3245 

Bench2 0.2566 0.2597 0.2873 0.2187 0.2041 0.2791 0.3025 0.3092 

Bench3 0.2271 0.2289 0.2547 0.1940 0.1897 0.2492 0.2691 0.2751 

Bench4 0.1625 0.1586 0.1749 0.1307 0.1248 0.1704 0.2036 0.2004 

Bench5 0.1294 0.1160 0.1672 0.1037 0.0973 0.1662 0.1893 0.1854 

 

 

TABLE 6. Results for community detection algorithms (conductance as performance measure) 

 CONGA COPRA SLPA GCE LC Deepwalk Proposed (α=0.95) Proposed (α=0.975) 

Advogato 0.0834 0.1408 0.0702 0.2148 0.2931 0.0997 0.0541 0.0510 

Hamsterster 0.0507 0.1003 0.0615 0.1229 0.1309 0.0626 0.0692 0.0630 

Virgili 0.0459 0.0992 0.0603 0.1107 0.1194 0.0578 0.0254 0.0237 

Bench1 0.0094 0.0251 0.0142 0.0297 0.0309 0.0114 0.0069 0.0051 

Bench2 0.0186 0.0493 0.0280 0.0587 0.0601 0.0338 0.0120 0.0093 

Bench3 0.0457 0.0784 0.0457 0.0945 0.0938 0.0502 0.0314 0.0278 

Bench4 0.0676 0.1055 0.0530 0.1395 0.1487 0.0760 0.0480 0.0489 

Bench5 0.0910 0.1602 0.0886 0.2309 0.2411 0.1033 0.0527 0.0554 

 

 

6. CONCLUSION  
 

In this study, we presented a deep graph representation 

model that deals with overlapping community detection. 

Our model combined the advantages of factorized 

matrices, random walks, and stacked autoencoders in 

extracting information and generating informative 

representations. We investigated on real world datasets 

and benchmarks in different tasks and showed that the 

proposed model outperforms several advanced 

algorithms. We conclude that exploring the underlying 

structure of data via deep learning can lead to improved 

representations for graphs. 

 

 
7. REFERENCES 
 

1. Huang, F., Li, X., Zhang, S., Zhang, J., Chen, J. and Zhai, Z., 
"Overlapping community detection for multimedia social 

networks", IEEE Transactions on Multimedia,  Vol. 1, No. 99, 

(2017), 1-3. 

2. Mortazavi, R. and Erfani, S., "An effective method for utility 

preserving social network graph anonymization based on 

mathematical modeling", International Journal of Engineering, 

Transactions A: Basics,  Vol. 31, No. 10, (2018), 1624-1632. 

3. Fortunato, S. and Hric, D., "Community detection in networks: A 

user guide", Physics Reports,  Vol. 659, (2016), 1-44. 

4. Chintalapudi, S.R. and Prasad, M.K., "Mining overlapping 

communities in real-world networks based on extended 
modularity gain", International Journal of Engineering-

Transactions A: Basics,  Vol. 30, No. 4, (2017), 486-492. 

5. Yang, S., Yang, X., Zhang, C. and Spyrou, E., "Using social 
network theory for modeling human mobility", IEEE Network,  

Vol. 24, No. 5, (2010), 6-13. 

6. Harenberg, S., Bello, G., Gjeltema, L., Ranshous, S., Harlalka, J., 
Seay, R., Padmanabhan, K. and Samatova, N., "Community 

detection in large‐scale networks: A survey and empirical 

evaluation", Wiley Interdisciplinary Reviews: Computational 

Statistics,  Vol. 6, No. 6, (2014), 426-439. 

7. Xie, J., Kelley, S. and Szymanski, B.K., "Overlapping community 

detection in networks: The state-of-the-art and comparative 
study", ACM Computing Surveys (csur),  Vol. 45, No. 4, (2013), 

43. 

8. Coscia, M., Giannotti, F. and Pedreschi, D., "A classification for 
community discovery methods in complex networks", Statistical 

Analysis and Data Mining,  Vol. 4, No. 5, (2011), 512-546. 

9. Clauset, A., Newman, M.E. and Moore, C., "Finding community 
structure in very large networks", Physical review E,  Vol. 70, 

No. 6, (2004), 066111. 

10. Chen, M., Kuzmin, K. and Szymanski, B.K., "Extension of 
modularity density for overlapping community structure", in 

IEEE/ACM International Conference on Advances in Social 

Networks Analysis and Mining (ASONAM)., (2014), 856-863. 

11. Girvan, M. and Newman, M.E., "Community structure in social 

and biological networks", Proceedings of the National Academy 

of Sciences,  Vol. 99, No. 12, (2002), 7821-7826. 

12. Gregory, S., "An algorithm to find overlapping community 

structure in networks", in European Conference on Principles of 



S. M. M. Salehi and A. A. Pouyan/ IJE TRANSACTIONS C: Aspects  Vol. 33, No. 3, (March 2020)   366-376                                375 

 

Data Mining and Knowledge Discovery, Springer., (2007), 91-

102. 

13. Raghavan, U.N., Albert, R. and Kumara, S., "Near linear time 

algorithm to detect community structures in large-scale 

networks", Physical Review E,  Vol. 76, No. 3, (2007), 036106. 

14. Gregory, S., "Finding overlapping communities in networks by 

label propagation", New Journal of Physics,  Vol. 12, No. 10, 

(2010), 103018. 

15. Xie, J. and Szymanski, B.K., "Towards linear time overlapping 

community detection in social networks", in Pacific-Asia 
Conference on Knowledge Discovery and Data Mining, 

Springer., (2012), 25-36. 

16. Palla, G., Derényi, I., Farkas, I. and Vicsek, T., "Uncovering the 

overlapping community structure of complex networks in nature 

and society", Nature,  Vol. 435, No. 7043, (2005), 814-818. 

17. Lee, C., Reid, F., McDaid, A. and Hurley, N., "Detecting highly 

overlapping community structure by greedy clique expansion", 

the 4th Workshop on Social Network Mining and Analysis (2010), 

33-42. . 

18. Evans, T. and Lambiotte, R., "Line graphs, link partitions, and 

overlapping communities", Physical Review E,  Vol. 80, No. 1, 

(2009), 016105. 

19. Goyal, P. and Ferrara, E., "Graph embedding techniques, 

applications, and performance: A survey", Knowledge-Based 

Systems,  Vol. 151, (2018), 78-94. 

20. Cao, S., Lu, W. and Xu, Q., "Grarep: Learning graph 

representations with global structural information", in 
Proceedings of the 24th ACM International on Conference on 

Information and Knowledge Management, ACM., (2015), 891-

900. 

21. Perozzi, B., Al-Rfou, R. and Skiena, S., "Deepwalk: Online 

learning of social representations", in Proceedings of the 20th 

ACM SIGKDD international conference on Knowledge 

discovery and data mining, ACM., (2014), 701-710. 

22. Khatami, A., Babaie, M., Tizhoosh, H., Nazari, A., Khosravi, A. 

and Nahavandi, S., "A radon-based convolutional neural network 
for medical image retrieval", International Journal of 

Engineering-Transactions C: Aspects,  Vol. 31, No. 6, (2018), 

910-915. 

23. LeCun, Y., Bengio, Y. and Hinton, G., "Deep learning", Nature,  

Vol. 521, No. 7553, (2015), 436-444. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24. Mikolov, T., Chen, K., Corrado, G. and Dean, J., "Efficient 
estimation of word representations in vector space", arXiv 

preprint arXiv:1301.3781,  (2013). 

25. Pennington, J., Socher, R. and Manning, C., "Glove: Global 
vectors for word representation", in Proceedings of the 2014 

conference on empirical methods in natural language processing 

(EMNLP)., (2014), 1532-1543. 

26. Levy, O. and Goldberg, Y., "Neural word embedding as implicit 

matrix factorization", in Advances in neural information 

processing systems., (2014), 2177-2185. 

27. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S. and Dean, J., 

"Distributed representations of words and phrases and their 
compositionality", in Advances in Neural Information Processing 

Systems, (2013), 3111-3119. 

28. Tian, F., Gao, B., Cui, Q., Chen, E. and Liu, T.-Y., "Learning 
deep representations for graph clustering", in AAAI., (2014), 

1293-1299. 

29. Baldi, P., "Autoencoders, unsupervised learning, and deep 
architectures", in Proceedings of ICML Workshop on 

Unsupervised and Transfer Learning., (2012), 37-49. 

30. Cleuziou, G., "An extended version of the k-means method for 
overlapping clustering", in Pattern Recognition, 2008. ICPR 

2008. 19th International Conference on, IEEE,(2008), 1-4. 

31. Kunegis, J., "Konect: The koblenz network collection", in 
Proceedings of the 22nd International Conference on World Wide 

Web, ACMe, (2013), 1343-1350. 

32. Barabási, A.-L., "Scale-free networks: A decade and beyond", 

Science,  Vol. 325, No. 5939, (2009), 412-413. 

33. Lancichinetti, A. and Fortunato, S., "Benchmarks for testing 

community detection algorithms on directed and weighted graphs 
with overlapping communities", Physical Review E,  Vol. 80, No. 

1, (2009), 016118. 

34. Danon, L., Diaz-Guilera, A., Duch, J. and Arenas, A., 

"Comparing community structure identification", Journal of 

Statistical Mechanics: Theory and Experiment, No. 09, (2005), 

P09008. 

35. Leskovec, J., Lang, K.J. and Mahoney, M., "Empirical 

comparison of algorithms for network community detection", in 

Proceedings of the 19th international conference on World wide 

web, ACM,(2010), 631-640. 

 

 

 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 
 



376                             S. M. M. Salehi and A. A. Pouyan/ IJE TRANSACTIONS C: Aspects  Vol. 33, No. 3, (March 2020)   366-376 

 

 

Detecting Overlapping Communities in Social Networks using Deep Learning  
 

S. M. M. Salehi, A. A. Pouyan 
 
Department of Computer Engineering, Shahrood University of Technology, Shahrood, Iran 

 
 

P A P E R  I N F O   

 
 

Paper history: 
Received 14 December 2019 
Received in revised form 14 January 2020 
Accepted 17 January 2020     

 
 

Keywords:  
Community Detection 
Overlapping Communities 

Deep Learning 
Social Networks 
Graph Embedding 
 
 
 
 
 
 
 
 
 
 

 

 چکیده 

 

های مابین آنها زیاد بوده اما شود که چگالی یالاطلاق می های گراف ها، مفهوم انجمن به تعدادی از گره در تحلیل شبکه 

یافتن ساختار انجمنی در گراف، اهمیت زیادی در هر مسئله   .استهای شبکه کم  های ارتباطی آنها با دیگر قسمتچگالی یال

ی فراوانی با  هاروشبه همین دلیل،  های خاصی از شبکه دارد.تحلیل شبکه خصوصاً یافتن الگوهای موجود مابین گره 

های اخیر، محققین  البته در سال  اند.ها پیشنهاد شدهیابی همپوشان و ناهمپوشان در شبکههای مختلف برای انجمنرهیافت

ها شبکه را اند. این روشهای یادگیری ویژگی و توکاری شبکه استفاده کردههای گراف از روشبندی گرهبسیاری برای دسته

های ما در این مقاله، با الهام از توانمندی شبکه  دهند.بازنمایی با ابعاد کمتر اما با همان خواص، نگاشت می به یک فضای 

در روش  دهیم.پیشنهاد میهای آن یابی گرهو نهایتا انجمن عصبی عمیق در بازنمایی، مدلی را برای یادگیری بازنمایی گراف 

و به یک الگوریتم   شودمیشده آموزش داده کدکننده خودکار پشته پیشنهادی، یک توکاری غیرخطی از گراف توسط 

های استاندارد های نهایی حاصل شوند. برای نمایش قدرت مدل، آن را به محکد تا انجمنگردبندی همپوشان اعمال میخوشه

ست که روش پیشنهادی این  کنیم. نتایج تجربی حاکی از آن اهای مختلف از دنیای واقعی اعمال میو چند دادگان با اندازه

 یابی داشته است. متداول انجمن مقاله، عملکرد بهتری از چند روش 
doi: 10.5829/ije.2020.33.03c.01 

 

 

 


