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A B S T R A C T  

 

This paper considers a scheduling problem with uncertain processing times and machine breakdowns in 

industriall/office workplaces and solves it via a novel robust optimization method. In the traditional 

robust optimization, the solution robustness is maintained only for a specific set of scenarios, which may 
worsen the situation  for new scenarios. Thus, a two-stage predictive algorithm is proposed to efficiently 

handle the uncertainties and find robust and stable solutions. The first stage creates robust solutions and 

ensures their stability in the new scenarios. The second stage proposes a novel stability measure to 
proactively offset the effects of the machine breakdowns of the former stage. Moreover, a tri-component 

measure based on efficiency, robustness, and stability is proposed which aims to create a realistic 

schedule to satisfy the customers, manufacturers, and the staff. To meet the customer’s requirements, the 
robustness measure is defined based on the tardiness and the delivery dates of jobs. Finally, the proposed 

algorithm is applied to a case study, and the findings are compared with the empirical data. The results 

emphasize the superiority of the proposed technique in satisfying the customers, staff, and increasing the 
profitability and accountability of the company. 

doi: 10.5829/ije.2020.33.02b.14 
 

 

1. INTRODUCTION1 
 
The shop scheduling literature includes a large number of 

papers dealing with the classical permutation flowshop 

scheduling (FSS) problem, in which a set of jobs must be 

processed on the series of machines in the same order. In 

the majority of these researches, no disruption is assumed 

in the production systems, and the classical performance 

measures are usually optimized under deterministic 

assumptions [1]. However, in practice, many disruptions 

may occur e.g. machine breakdowns, uncertain 

processing times, the arrival of new jobs, etc. Two 

sources of uncertainty are considered in this paper; the 

unexpected breakdowns of the first machine and the 

uncertain processing times of all the jobs. Due to the 

uncertainties, it is expected to be some deviations 

between the real schedule (i.e. the schedule that is carried 

out on the shop floor), and the initial one (i.e. the 

schedule planned at the beginning of the scheduling 

horizon). The comparison of the real schedule with the 
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initial one can be carried out via two measures; 

robustness and stability. Robustness (quality robustness) 

refers to the deviation between the performance 

criterions of the real and the initial schedules [2]. 

Stability (solution robustness) is concerned with the 

deviation between the solutions of the real and the initial 

schedules [3]. Alongside efficiency measure 

optimization, the uncertainty oriented FSS studies aimed 

at optimization of robustness, stability, or both. 

Confronting the deviations resulted from the 

uncertainties can be performed with predictive 

(proactive), reactive, or Predictive-reactive strategies [4]. 

In the predictive scheduling strategy, contrary to the 

reactive one, future uncertainties are considered upon the 

setting of the initial schedule [5]. To proactively generate 

a robust solution in counter with the uncertain processing 

times, a robust optimization method has been 

implemented in over 30 percent of the robustness 

oriented studies. According to literature [6] "adding or 

removing a scenario from the set of scenarios may lead 
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to defining very different solutions as robust". In other 

words, the schedule robustness is guaranteed only for the 

set of considered scenarios and may fail when dealing 

with a new scenario. Therefore it is crucial to identify a 

robust and stable solution in the face of new scenarios. In 

this paper, a predictive two-stage algorithm is proposed 

that in its first stage, a robust schedule is produced and 

then evaluated for its stability against a new job 

processing times' scenario. In almost all of the robustness 

oriented studies, exposure to machine failure has been 

done with the reactive approach or in the reactive phase 

of the hybrid approaches. In the reactive scheduling 

methods (e.g. rescheduling), especially in the case of big 

problems, it takes a long time to deal with the uncertain 

conditions. Predictive scheduling methods can overcome 

this problem by proactively preparing for any possible 

occurrence of such uncertain conditions [6]. Ergo, in this 

paper, exposer to machine failure has been done with the 

predictive approach. Idle time insertion has been a 

common strategy to handle the effect of breakdown 

disruptions (e.g. see [4, 5]). This method faces two 

challenges, which are finding the optimal amount and the 

appropriate position to insert the buffer times [7]. In the 

second stage of our proposed algorithm, a linear 

optimization method is employed to overcome these 

challenges. A new surrogate measure is proposed to 

enhance the solution robustness by interfering with the 

probability of machine breakdown during the job 

processing times. This linear programming model 

simultaneously optimizes the proposed surrogate 

measure of solution robustness, and quality robustness to 

determine the proper position and the amount of buffer 

times. One of the essential prerequisites of practical 

scheduling is to meet customer, manufacturer and staff 

requirements simultaneously. This is addressed in this 

paper by defining a tri-component performance measure 

of robustness, efficiency, and stability. Due to the 

important role of customer-agreed delivery deadlines in 

manufacturing systems, tardiness-based performance 

measures have been the focus of attention. However, 

tardiness is considered as the performance measure in 

only 5 percent of the related studies [8]. In this paper, the 

total real tardiness of jobs is considered a robustness 

measure. Finally, a case study is presented to compare the 

performance of the proposed method with the empirical 

method used in the company based on a tri-criteria 

objective measure of robustness, stability, and efficiency. 

Thus, the main contributions of this paper are as follows: 

- An m-machine FSS problem under two sources of 

uncertainty is considered.  

- A triple scale is proposed to simultaneously meet the 

needs of the customer, producer, and worker.  

- An appropriate predictive method to handle the 

uncertainty of the job processing times and machine 

breakdown is proposed.  

- The stability of the robust solution in the face of a new 

job processing time scenario is ensured. 

- An innovative surrogate measure is proposed to 

enhance solution robustness.  

A linear programming model is proposed to 

determine the proper position and the amount of the 

buffer times. 

This paper is organized as follows. In section 2, the 

related literature is reviewed. A brief description of the 

robust optimization approach and the proposed predictive 

algorithm are presented in section 3. The case study and 

the computational results are provided in section 4. 

Finally, the conclusion and the suggestions for future 

researches are discussed in section 5.  

 

 

2. LITERATURE REVIEW 
 

In this paper uncertainty oriented flow shop scheduling 

problem studies in 2000-2019 are reviewed focusing on 

the source of uncertainty, The purpose of scheduling, and 

the approach in counter with uncertainty and the results 

are summarized in this section. "Flow shop" is considered 

as a keyword in the title of studies, and "robustness/ 

robust", "stability/ stable", "uncertainty/ uncertain job 

processing time/ machine breakdown" are considered as 

keywords in the body of the studies.  

Job processing times are the most frequently studied 

parameter subjected to uncertainty, while the second 

most frequently studied parameter is the machine 

breakdown. In only 19 percent of related studies, two 

sources of uncertainty are considered. Meanwhile, the 

share of studies considered job processing times 

uncertainty and machine breakdowns, has been 10 

percent [8]. Interval, probabilistic, and scenario-based 

description are considered to represent the uncertainty of 

job processing times [8]. Interval description is applied 

to state the uncertainty of job processing times where 

there is insufficient information about the probability 

distribution of the data but the lower or upper bound (or 

both) is available [9]. the probabilistic description is used 

when sufficient data is already collected to estimate the 

probability (e.g. see [10, 11]. The scenario-based 

description is used when different scenarios exist for the 

data [1]. Interval description job processing times studies 

have focused on the efficiency scale (very often Cmax is 

considered as an efficiency measure (e.g. see [12–14]). 

But most recently, Cmax and total completion times are 

respectively considered as the measures of robustness 

and efficiency discussed by Liao and Fu [9]. GA is 

proposed to solve the flow shop scheduling problem with 

interval job processing times description. Job processing 

times generally follows from the normal distribution in 

the related studies with probabilistic job processing times 

description. Besides, robustness is measured with the 
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probability of not exceeding from the specified threshold 

(e.g. [10, 11]). Considering an identical threshold is one 

of the gaps in this type of researches. Approximately in 

all of the scenario-based robustness oriented flow shop 

schedule studies, dual or multiple performance measures 

of efficiency, robustness and/ or stability were used. In 

all of these studies, the basis for constructing robustness 

and stability measures has been Cmax (e. g. see [1, 9, 15, 

16]). According to the literature [17], failure is 

considered for only one machine even in recent papers. 

However, in some related studies [1], the failure is 

considered for more than one machine. Also, the repair 

time can be varied, which is not the case in most related 

articles [18]. In the face of machine breakdown 

disruption, predictive [2, 4, 6] or reactive [1] 

rescheduling methods have been addressed in the 

literature. The non-idle time insertion methods such as 

time-consuming simulation-based methods proposed in 

some studies in the face of machine breakdown 

disruption [3, 7]. Buffer time insertion method has been 

a common predictive strategy to counter the effect of 

breakdowns [4], but it faces two problems; how to find 

the optimal amount and the appropriate position to insert 

the buffer times. Briskorn et al. [18] analyzed the 

allocation of idle times in a single-machine environment. 

It can be gathered from the literature that in most of the 

related studies:  

- One source of uncertainty has been considered.  

- Efficiency, stability, and robustness were often 

considered separately except in some recent papers [1, 

15].  

- The stability of the robust solution in the face of new 

scenarios has not been investigated. 

- None of the measures of robustness and efficiency are 

defined based on the tardiness of jobs, which includes 

customer-agreed delivery deadlines. 

Following Rahmani [1], Mulvey et al. [19] method is 

applied in this paper to produce a robust schedule in 

uncertainty. But in contrast with most of the robustness 

oriented studies such as Rahmani [1], a predictive 

approach is proposed to adjust the effect of machine 

failures. Also, in our proposed algorithm the stability of 

the robust solution is maintained in the face of new 

scenarios. Also, contrary to the usual injection buffer 

time methods [4], by applying the proposed linear 

programming model the quality of the robust solution is 

maintained in addition to stability enhancement. 

 

 
3. PROBLEM DEFINITION AND SOLUTION 
METHOD 
 

In this paper, the uncertain job processing time and the 

random breakdowns of the first machine are regarded as 

systems disruption in an m-machine FSS problem. The 

time between two consecutive failures follows an 

exponential distribution with the rate of, and at most one 

failure is expected on the first machine in each interval 

(
1

𝜃
). After each random breakdown, the minimal repair is 

carried out to restore the first machine to its operating 

condition, which does not affect the age and breakdown 

parameter of the machine. Following Chaari et al. [20], 

𝑈 ∈ [𝑃𝐼 − 𝛼𝑃𝐼 , 𝑃𝐼 + 𝛼𝑃𝐼] applied to generate new 

scenarios, which 𝑃𝐼  is the initial scenario, and 𝛼 ∈ [0,1] 
is the degree of uncertainty of job processing times. 𝛼 =
±0.1 is considered as the low,  𝛼 = ±0.5  as the medium,  
and 𝛼 = ±1 as a high degree of uncertainty. 

When there is significant uncertainty in job 

processing times that cannot be approximated with a 

probability distribution, discrete scenarios offer a good 

representation of uncertainty [15, 18]. In this situation, 

the classical FSS model suffers from some weaknesses. 

The schedules which are optimal concerning the initial 

scenario might be substantially infeasible or yield poor 

performance when evaluated relative to the actual job 

processing times. That is, with each new scenario 

occurrence, a new optimal schedule is required, which 

leads to staff confusion and system instability. Many 

approaches called robust seeks for solutions that optimize 

a global performance instead of seeking for solutions that 

optimize a local performance. But the schedule 

robustness is guaranteed only for the set of considered 

scenarios and may fail when an encounter a new scenario. 

Therefore, it is crucial to identify a robust and stable 

solution in the face of new scenarios.  

To handle such a problem, a two-stage predictive 

algorithm is developed. In the first stage, the processing 

time uncertainty is regarded as the only source of 

uncertainty, and the robust partial schedule is determined 

by applying the robust optimization method. Then the 

stability of the robust solution is ensured in counter with 

the new scenarios. In the second stage, the effect of the 

breakdowns is proactively handled and the appropriate 

amounts of the buffer times are determined to compose a 

completely robust and stable schedule. The initial 

scenario, the number of iterations (I), are the inputs of the 

algorithm. 

 
3. 1. The Proposed Predictive Algorithm 

First stage. Robust & stable partial solution generation. 
Step1.1. Initialization: 

𝐼 ←1. 

𝜆𝐼 ←{initial scenario}. 

𝛺𝐼 ← 𝜆𝐼. 

Generate the robust partial solution from (1)-(11) for 𝛺𝐼 via 

the optimization software IBM CPLEX 12.6.  

Step1.2. 

𝐼 ← 𝐼 +1. 

𝛺𝐼 ← 𝛺𝐼−1 ∪ 𝜆𝐼. 

Step1.3. Generate robust partial solution from (1)-(11) for 𝛺𝐼 

via the optimization software IBM CPLEX 12.6. 

Step1.4. Evaluation of the stability of the robust solution. 
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  Step 1.4.1. Calculate Solution robustness.  

∑ 𝑇𝑗
𝜆𝑛

𝑗=1 , which is obtained from the step 1.3, is calculated for 

𝛺𝐼 , 𝛺𝐼−1.  
   Step 1.4.2. Calculate the structural robustness. 

 The completion time of each job in the robust solution is 

calculated for 𝛺𝐼 , 𝛺𝐼−1. 

Step 1.5. The stop criteria checking.  

If the difference between solution robustness or structural 

robustness be less than the predefined threshold, or the number 

of iteration exceeds the predefined number of iteration, go to 

the second stage, else go to step1.2. 

Second stage. Robust & stable solution generation. 
Main Loop: for 𝑠 = 1. . . 𝑁𝑠 

Step 2.1. The predictive schedule generation.  

Linear programming model (Equations (15)-(27)) is solved via 

CPLEX 12.6 to obtain the adequate idle times for every job on 

the first machine per scenario. Then the partial schedule of step 

1 is modified to include the adequate idle times.  

Step 2.2. Random breakdown generation. 

It is assumed that 𝜆″ ∈ 𝛺  is a real scenario. Random 

breakdowns are generated according to 𝜆″. 
Step 2.3. Robustness, stability, and efficiency calculation. 

To obtain the actual schedule, the partial robust schedule (from 

step1) is shifted to the right once a breakdown occurs. The 

robustness and stability measures are calculated via Equations 

(28) and (29), respectively. 

 
3. 2. Partial Solution Generation              This stage 

deals with job processing time uncertainty via a robust 

partial solution generation model. Indices, parameters, 

variables, and the robust optimization model of the 

m-machine FSS problem are as follows. 

Indices 

𝑗  index for jobs {1,2, . . . , 𝑛} 

𝑘  index for position {1,2, . . . , 𝑛} 

𝑖  index for machine {1,2, . . . , 𝑚} 

𝜆  indices for scenarios 𝛺 = {1,2, . . . , 𝜆, . . . , 𝑁} 

𝜆′  indices for scenarios 𝛺 = {1,2, . . . , 𝜆′, . . . , 𝑁} 

Parameters 

𝑡𝑖𝑗
𝜆   

the processing time of job 𝑗 on machine 𝑖 under 

scenario 𝜆 

𝑃𝜆  the occurrence probability of scenario 𝜆 

Variables 

𝐶𝑖𝑘
𝜆   

the completion time of the job in the 𝑘𝑡ℎ position on 

machine 𝑖under scenario 𝜆 

𝑇𝑘  the tardiness of the job in the 𝑘𝑡ℎ  position 

𝑥𝑗𝑘   
1 if job 𝐽𝑗 is in the 𝑘𝑡ℎ position in the sequence; 0 

otherwise 

𝜃𝜆  
the non-negative, linearizing variable of the objective 

function. 
 

𝑚𝑖𝑛 ∑ 𝑃𝜆
𝜆∈𝛺 ∑ 𝑇𝑘

𝜆𝑛
𝑘=1 + ∑ 𝑃𝜆

𝜆∈𝛺 |∑ 𝑇𝑘
𝜆 −𝑛

𝑘=1

∑ 𝑃𝜆′

𝜆′∈𝛺 ∑ 𝑇𝑘
𝜆′𝑛

𝑘=1 |  
(1) 

. .s t ∑ 𝑥𝑗𝑘 = 1,        ∀𝑗 ∈ {1,2, . . . , 𝑛}𝑛
𝑘=1     (2) 

∑ 𝑥𝑗𝑘 = 1,        ∀𝑘 ∈ {1,2, . . . , 𝑛}𝑛
𝑗=1   (3) 

𝐶11
𝜆 = ∑ 𝑡1𝑗

𝜆 𝑥𝑗1
𝑛
𝑗=1        (4) 

𝐶1𝑘
𝜆 = 𝐶1𝑘−1

𝜆 + ∑ 𝑡1𝑗
𝜆 𝑥𝑗𝑘

𝑛
𝑗=1 , ∀𝑘 ∈ {2, . . . , 𝑛}   (5) 

𝐶𝑖1
𝜆 = 𝐶𝑖−11

𝜆 + ∑ 𝑡𝑖𝑗
𝜆 𝑥𝑗1

𝑛
𝑗=1 , ∀𝑖 ∈ {2, . . . , 𝑚}  (6) 

𝐶𝑖𝑘
𝜆 ≥ 𝐶𝑖−1𝑘

𝜆 + ∑ 𝑡𝑖𝑗
𝜆 𝑥𝑗𝑘

𝑛
𝑗=1 , ∀𝑖 ∈ {2, . . . , 𝑚},  

∀𝑘 ∈ {2, . . . , 𝑛} 
(7) 

𝐶𝑖𝑘
𝜆 ≥ 𝐶𝑖𝑘−1

𝜆 + ∑ 𝑡𝑖𝑗
𝜆 𝑥𝑗𝑘

𝑛
𝑗=1 , ∀𝑖 ∈ {2, . . . , 𝑚},  

∀𝑘 ∈ {2, . . . , 𝑛} 
(8) 

𝑇𝑘
𝜆 ≥ 𝐶𝑚𝑘

𝜆 − ∑ 𝑑𝑗
𝜆𝑥𝑗𝑘

𝑛
𝑗=1 , ∀𝑘 ∈ {1, . . . , 𝑛}  (9) 

Constraints (2) to (9) guarantee the feasibility of the 

partial robust schedule. These scenario-based constraints 

are necessary to calculate the total tardiness in an m-

machine FSS problem. Constraints (2) and (3) 

respectively ensure that each particular job is exactly 

assigned to one position and that each position is exactly 

assigned to one job. Constraint (4) calculates the 

completion time of the job in the first position on the first 

machine. Constraint (5) calculates the completion time of 

the job in the 𝑘𝑡ℎ position on the first machine. Constraint 

(6) computes the completion time of the job in the first 

position on all the machines except the first one. 

Constraints (7) and (8) calculate the departure time of the 

job in the 𝑘𝑡ℎ position on all machines other than the first 

machine. Constraint (9) calculates the tardiness of all 

jobs. Following Yu and Li [21] 𝜃𝜆 is defined to linearize 

the objective function. Ergo, the objective Function (1) is 

replaced with Equation (10). Moreover, Constraint (11) 

is added. 
 

𝑚𝑖𝑛 ∑ 𝑃𝜆
𝜆∈𝛺 ∑ 𝑇𝑘

𝜆𝑛
𝑘=1 + ∑ 𝑃𝜆

𝜆∈𝛺 [(∑ 𝑇𝑘
𝜆 −𝑛

𝑘=1

∑ 𝑃𝜆′

𝜆′∈𝛺 ∑ 𝑇𝑘
𝜆′𝑛

𝑘=1 ) + 2𝜃𝜆]   
(10) 

−𝜃𝜆 − (∑ 𝑇𝑘
𝜆 − ∑ 𝑃𝜆′

𝜆′∈𝛺 ∑ 𝑇𝑘
𝜆′𝑛

𝑘=1
𝑛
𝑘=1 ) ≤ 0, ∀𝜆   (11) 

 

Objective (10) and Constraint (11) ensure the conformity 

of the optimal schedule to the definition of the robust 

linear model-based schedule. 

 

3. 3. Second Stage: Dealing with Machine 
Breakdown Disruption via Linear Programming 
Model            Increasing the amount of idle times 

enhances the schedule stability but degrades the schedule 

robustness [4]. Here, a linear optimization method is 

proposed to promote stability without robustness 

degradation. The idle times (EBD) of the 𝑗𝑡ℎ job is 

obtained from Equation (12) [22], where 𝑡𝑟, 𝑡[𝑗] are the 

expected repair and processing time of the job, 

respectively. 
 

𝐸𝐵𝐷[𝑗] =
 𝑡𝑟.𝑡[𝑗]

𝜃
   (12) 

thj
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In the original insertion method [4], idle times were 

inserted before each job, but in the proposed linear 

programming model, the proper positions and amounts of 

the idle times are determined. Stability is interpreted as 

the degree of reordering of the job sequence, the 

completion, or the start-times after any disruption [23]. 

To control the expected degradation of quality 

robustness, the proposed surrogate stability measure is 

defined based on the rationale of minimizing the 

instability of every job. 

 

3. 3. 1. Surrogate Measure of Stability                   First, 

let 𝑝𝑟[𝑗]
𝜆  as the machine breakdown probability during the 

processing of the job in position 𝑗under the scenario 𝜆 as 

follows (Equation 13). 
 

𝑝𝑟[𝑗]
𝜆 = 1 − 𝑒𝑥𝑝( 

𝑡1[𝑗]
𝜆

𝜃𝜆 )  (13) 

Let 𝐸𝐵𝑇[𝑗]
𝜆  be the expected breakdown duration of the job 

in position  under scenario 𝜆. Suppose that two 

consecutive breakdowns have respectively occurred 

during the processing of the jobs in positions [𝑘 − 1] and 

[𝑗]. The amount of adjusted (expected) idle time from [𝑘] 

to [𝑗] i.e. 𝐴𝑇[𝑘][𝑗]
𝜆  is determined in such a way to be as 

close as possible to the 𝐸𝐵𝑇[𝑗]
𝜆 . Ergo, the stability 

measure (𝑆𝑀) can be defined via Equation (14). 
 

𝑆𝑀 = ∑ ∑ 𝑝𝑟[𝑗]
𝜆 𝑚𝑎𝑥{𝐸𝐵𝐷[𝑗]

𝜆 − 𝐴𝑇[𝑘][𝑗]
𝜆 , 0}𝑖−1

𝑘=2
𝑛
𝑗=1    (14) 

   

The machine breakdown probability during each job 

(𝑝𝑟[𝑗]
𝜆 ) affects the proposed stability measure. In this way, 

once the breakdown during a job processing time is more 

probable, the difference between 𝐸𝐵𝐷[𝑗]
𝜆  and the total 

inserted idle times  of job  is minimized. 

 

3. 3. 2. Surrogate Measure of Robustness                  
Quality robustness is interpreted as the scheduling 

performance insensitivity against the disruptions [1]. 

Following Goren and Sabuncuoglu [2], 𝑅𝑀 = ∑ 𝑇[𝑗]
𝜆𝑛

𝑗=1  

is adopted as a robustness measure. The following 

notations are used in the linear programming model. 

Indices  

[𝑗], [𝑘]  indices for position 𝑗 ∈ {1,2, … , 𝑛}  

𝑖  index for machine 𝑖 ∈ {1,2, … , 𝑚}   

𝜆  index for scenario 𝜆 ∈ 𝛺 

Parameters  

𝑡𝑖[𝑗]
𝜆   

the processing time of job in position 𝑗on 

machine 𝑖under scenario 𝜆. 

Parameters  

𝑝𝑟[𝑗]
𝜆   

the breakdown probability of machine one 

during the process of job 𝑗under scenario 𝜆 

𝐸𝐵𝐷[𝑗]
𝜆   

the expected breakdown duration if it happens 

during the process of job 𝑗 on machine one 

under scenario 𝜆 

Variables  

𝑆𝑖[𝑗]
𝜆   

the planned completion time of the job in the 

𝑗𝑡ℎ position on machine 𝑖under scenario 𝜆 

𝐶[𝑖][𝑗]
𝜆   

the planned completion time of the job in the 

𝑗𝑡ℎ position on machine 𝑖under scenario 𝜆 

𝑇[𝑗]
𝜆   

the planned tardiness of the job in the 𝑗𝑡ℎ 

position under scenario 𝜆 

𝐴𝑇[𝑗]
𝜆   

the adequate idle time of job 𝑗 on machine one 

under scenario 𝜆 

𝐴𝑇[𝑘][𝑗]
𝜆   

the sum of adequate idle times between the 

jobs 𝑘 and 𝑗 on machine one in scenario 𝜆 
 

The linear programming model is formulated as 

follows. 
 

𝑚𝑖𝑛 𝑧 = 𝛼 ∑ ∑ 𝑝𝑟[𝑗]
𝜆 𝑚𝑎𝑥{𝐸𝐵𝐷[𝑗]

𝜆 −𝑖−1
𝑘=2

𝑛
𝑗=1

𝐴𝑇[𝑘][𝑗]
𝜆 , 0} + (1 − 𝛼) ∑ 𝑇[𝑘]

𝜆𝑛
𝑘=1 𝑠. 𝑡. 

(15) 

𝑆1[𝑘]
𝜆 = 𝑆1[𝑘−1]

𝜆 + 𝑡1[𝑘−1]
𝜆 + 𝐴𝑇[𝑘]

𝜆    ∀𝑘 ≥ 2  (16) 

𝐶1[𝑘]
𝜆 = 𝑆1[𝑘]

𝜆 + 𝑡1[𝑘]
𝜆   (17) 

𝐶𝑖[𝑘]
𝜆 ≥ 𝐶𝑖[𝑘−1]

𝜆 + 𝑡𝑖[𝑘]
𝜆     ∀𝑖 ≥ 2, ∀𝑘 ≥ 2  (18) 

𝐶𝑖[𝑘]
𝜆 ≥ 𝐶𝑖−1[𝑘]

𝜆 + 𝑡𝑖[𝑘]
𝜆     ∀𝑖 ≥ 2, ∀𝑘  (19) 

𝑇[𝑘]
𝜆 = 𝑚𝑎𝑥{ 𝐶𝑚[𝑘]

𝜆 − 𝑑[𝑘]
𝜆 ,  0}  (20) 

𝐴𝑇[𝑘][𝑗]
𝜆 = ∑ 𝐴𝑇[𝑙]

𝜆𝑗
𝑙=𝑘+1    ∀𝑗 ≥ 2, ∀𝑘 < 𝑗  (21) 

𝑆1[1]
𝜆 = 0  (22) 

𝐴𝑇[1]
𝜆 = 0  (23) 

𝑆𝑖[𝑘]
𝜆 ≥ 0  (24) 

𝐶𝑖[𝑘]
𝜆 ≥ 0  (25) 

𝐴𝑇[𝑘]
𝜆 ≥ 0  (26) 

𝐴𝑇[𝑘][𝑗]
𝜆 ≥ 0   ∀𝑗, 𝑘 < 𝑗  (27) 

Constraint (16) indicates that under scenario 𝜆, the 

planned start time of the job in position 𝑘 on the first 

machine equals to the sum of the planned start time of the 

[𝑘 − 1]𝑡ℎ job on the first machine, plus its processing 

time and its additional time. Scenario-based Constraints 

(17) to (20) are required in an m-machine FSSP to 

calculate the total tardiness. Constraint (17) gives the 

completion time of the job in the 𝑘𝑡ℎ position on the first 

machine. Constraints (18) and (19) calculate the 

completion time of the job in the 𝑘𝑡ℎ position on the other 

machines other than the first one. Constraint (20) 

calculates the tardiness of all jobs. Constraint (21) 

j

[ ]j
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calculates the sum of idle times between job [𝑘], [𝑗]. 
Constraint (22) ensures that under scenario 𝜆, the start 

time of the job in the first position on the first machine is 

zero and no additional time exists before the job in the 

first position on the first machine. Constraint (23) 

indicates that there is no additional time before the job in 

the first position. Constraints (24)-(26) respectively 

emphasize the positivity of the start time, the completion 

time, and the additional time of the job in the 𝑘𝑡ℎ position 

under scenario 𝜆. Also, Constraint (27) indicates the 

positivity of the additional times between the jobs in 

positions [𝑘] and [𝑗]. This model should be solved for all 

the possible scenarios to determine the adequate 

additional times of each job on each machine per 

scenario. 

 

 

4. DISCUSSION AND RESULTS 
 
Here to provide the managerial results, the performance 

of the most widely used strategies in the literature namely 

reactive and hybrid are compared with the proposed 

(predictive) algorithm. In the reactive strategy, the 

optimal schedule is acquired according to the classical 

FSS model by ignoring uncertainties. In the hybrid 

strategy, the robust schedule is acquired from the robust 

optimization model (section 3.1) and RSH is 

implemented upon machine breakdown. In Figures 1 and 

2, the results are reported for different problems' sizes 

and parameters.  In these figures, AOFOPT, AOFRM, and 

AOFPRM respectively represent the average objective 

function of the classical, robust, and proposed prediction 

methods. It can be concluded from Figures 1 and 2 that 

PRM outperforms the other two methods, no matter the 

problem size and parameters. According to Figures 1 and 

2, there is a high difference between O.F. of the classical 

and robust schedules, also the classical schedule suffers 

from extreme fluctuations in O.F. versus uncertainties, so 

the scheduling should not be performed regardless of job 

processing time uncertainty even in a low degree of 

uncertainty. Also, it can be deduced from Figure 2 that 

job processing time uncertainty has a more decisive 

effect on O.F. than the machine failure rate. Since the 

O.F. of PRM and RM are close to each other, given the 

cost of implementing the second step of the proposed 

algorithm, a manager can use a hybrid or the proposed 

predictive approach. 

A case study. To indicate the applicability of the model 

it has been implemented on a real case in Petro Tajhiz 

Sepahan Company in Iran that specializes in designing 

and manufacturing various types of valves for the 

petrochemical industry. In summary, the functions of the 

valves are stopping/starting the fluid flow, varying its 

amount and controlling the direction of it. They are also 

used in regulation downstream systems, process pressure, 

relieving component and piping overpressure.  

 
Figure 1. The comparison of the O.F. of OPT, RM and PRM 

methods for the 2-machine 15 jobs problem, with a low 

degree of uncertainty, low failure rate, low MTTR, and 

coefficients (0.2, 0.3, 0.5) for efficiency, stability, and 

robustness 
 

 

 
Figure 2. Comparison of the O.F. of OPT, RM and PRM 

methods for the 2-machine 20 jobs problem, with a moderate 

degree of uncertainty, high failure rate, high MTTR, and 

coefficients (0.2, 0.3, 0.5) for efficiency, stability, and 

robustness 

 

 

According to construction standards, valves are 

divided into five categories [24]. The case studied in this 

paper focuses on the production of two types of Forged 

Steel Valves. The production of the Forged Steel valves 

is carried out via a flow shop system in six stages; 

Turning- Drilling- Grinding- Milling- Welding and 

Polishing. The production volume, the predetermined 

due dates and the processing times per stage are given in 

Table 1.  

The first type of valves in this category are Needle 

Valves that can be used as a component for other valves. 

They are also used in fluid transmission lines, which 

include pharmaceuticals, foodstuffs, and chemicals. The 

second type of valves in this category is the Globe valve. 

In this type of valves, a disk moves perpen. The company 

receives orders from various oil/gas companies. 

At the beginning of 2016, the company was 

contracted to construct and deliver eight orders. Due to 

the uncertain nature of the production, the processing 

times are defined via pessimistic, probable, and 

optimistic scenarios.  
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TABLE 1. The processing time of Forged Steel Valves under 

different scenarios* 

*𝜆: Scenario, 𝑃𝜆: The probability of scenario 𝜆. 

 

 

4. 1. Data Generation                In this section, the 

obtained schedule from the proposed predictive 

algorithm and the empirical schedule in the company are 

compared with each other in terms of robustness, 

stability, and efficieny.  
The processing times in the proposed method are 

uncertain, and they are estimated via a finite number of 

scenarios (Table 1). The processing times in the 

empirical method are the expected value of the 

processing time of all scenarios, i.e. 𝑡𝑖𝑗 = ∑ 𝑡𝑖𝑗
𝜆 𝑃𝜆 where 

𝑡𝑖𝑗
𝜆  is the processing time of 𝑗𝑡ℎjob on machine 𝑀𝑖 under 

scenario 𝜆  and 𝑃𝜆  is the occurrence probability of 

scenario 𝜆. In the proposed method, the time between 

consecutive breakdowns on the first machine is assumed 

to respectively follow an exponential distribution with 

the rates of 0.02, 0.0166 and 0.0125 for the optimistic, 

probable and pessimistic scenarios. Similar to Nouiri et 

al., [7], the duration of the repair times follows an 

exponential distribution based on the meantime to repair 

value (MTTR) at two-level. The repair time duration is 

calculated via 𝑡𝑟 = 𝑒𝑥𝑝 𝑟 𝑛𝑑(𝑀𝑇𝑇𝑅) . The MTTR is 

calculated based on the machine busy time (MB); low 

level 𝑀𝑇𝑇𝑅𝑙 ∈ [0.01𝑀𝐵, 0.05𝑀𝐵]  and high level 

𝑀𝑇𝑇𝑅ℎ ∈ [0.05𝑀𝐵, 0.1𝑀𝐵].  In the empirical method, 

the reaction to breakdown is done by implementing the 

right shift rescheduling (RSH) policy to the affected jobs. 

 
4. 2. The Empirical Schedule Procedure           The 

company uses the following procedure to achieve an 

empirical schedule:  

Step 1. The initial schedule generation. 

The initial sequence of the jobs is determined according to the 

earliest due date rule (EDD) to minimize the total tardiness as 

an efficiency measure.  

Step 2. Main Loop: for 𝑠 = 1. . . 𝑁𝑠 

   Step 2.1. Random breakdown generation. 

 It is assumed that 𝜆″ ∈ 𝛺 is a real scenario. The random 

breakdowns are generated according to the rate of 

breakdown in 𝜆″. 
   Step 2.2. Robustness, stability and efficiency. 

The RSH is implemented upon a breakdown occurrence to 

obtain the actual (real) schedule. The robustness and 

stability measures are calculated with Equations (28) and 

(29), respectively. 

 
4. 3. Robustness, Stability, Efficiency, and the 
Objective Function              Suppose that 𝜆″ ∈ 𝛺 is the 

scenario that has actually happened. The robustness 

measure (𝑅𝑀) is defined as an absolute deviation of an 

efficiency measure (total tardiness) of the actual schedule 

from the initial one. It can be calculated via Equation 

(28), where ∑ 𝑇𝜆″
is the total tardiness of the actual 

schedule under scenario 𝜆″ ∈ 𝛺 , and ∑ 𝑇𝜆 is the total 

tardiness of the predictive schedule under scenario𝜆 ∈ 𝛺.  

𝑅𝑀 = |∑ 𝑇𝜆″
− ∑ 𝑇𝜆

𝑗𝑗 |  (28) 

Moreover, stability measure (𝑆𝑀) is defined as an 

absolute deviation in job completion times (Equation 29), 

where 𝐶𝑚[𝑘]
𝜆″

 is the completion time of the job in position 

[𝑘] in the actual schedule under scenario 𝜆″ ∈ 𝛺, and 

𝐶𝑚[𝑘]
𝜆  is the completion time of the job in position [𝑘] in 

the predictive schedule under scenario 𝜆 ∈ 𝛺. 

𝑆𝑀 = ∑ |𝐶𝑚[𝑘]
𝜆″

− 𝐶𝑚[𝑘]
𝜆 |𝑛

𝑘=1    (29) 

Efficiency (Eff) is the measure of the optimality of the 

schedule. Here, the total completion time of the actual 

schedule is considered as an Efficiency measure. 

𝐸𝑓𝑓 = ∑ 𝐶𝜆″

𝑗   (30) 

The objective function  is a multi-component measure 

based on the predefined measures of robustness, stability, 

and efficiency as follows (Equation 31). 

 Job  Processing time per stage (min) 

𝝀 𝑷𝝀 Valve 1 2 3 4 5 6 

1 0.2 Needle 100 85 30 230 40 50 

2 0.6 Needle 105 90 33 240 45 55 

3 0.3 Needle 115 100 40 270 50 60 

1 0.2 Gate 120 95 25 260 50 65 

2 0.6 Gate 125 100 25 275 55 70 

3 0.3 Gate 140 110 30 305 60 80 

1 0.2 Check 55 45 25 125 25 35 

2 0.6 Check 55 50 25 130 27 35 

3 0.3 Check 60 55 30 145 30 40 

1 0.2 Check 60 50 25 135 35 40 

2 0.6 Check 65 54 25 145 35 40 

3 0.3 Check 75 60 30 160 40 45 

1 0.2 Check 65 75 25 155 35 35 

2 0.6 Check 70 80 30 165 40 37 

3 0.3 Check 80 90 35 185 45 40 

1 0.2 Ball 155 125 35 400 50 10 

2 0.6 Ball 167 135 40 417 55 10 

3 0.3 Ball 183.7 148.5 44 458.7 60.5 11 

1 0.2 Ball 190 175 55 455 60 20 

2 0.6 Ball 200 185 58 480 65 20 

3 0.3 Ball 220 203.5 63.8 528 71.5 22 

1 0.2 Ball 250 260 60 550 70 25 

2 0.6 Ball 265 273 65 580 75 30 

3 0.3 Ball 291.5 300.3 71.5 638 82.5 33 
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𝑂. 𝐹. = 𝛼(𝑅𝑀) + 𝛽(𝑆𝑀) + 𝛾(𝐸𝑓𝑓)  (31) 

where 𝛼 + 𝛽 + 𝛾 = 1  and 𝛼, 𝛽, 𝛾  respectively indicate 

the degrees of importance of their corresponding 

objective. These parameters can be determined using 

methods such as sensitivity analysis, eigenvector, 

entropy, or the least-square method [1]. The proposed 

method (PM) and the empirical method (EM) can be 

compared concerning the value of O.F (Table 2). The 

calculations are made for different values of the 

coefficients at two levels of MTTR. 

 

4. 4. Sensivity Analysis              This section provides 

additional tests on the parameters of the model to gauge 

their effects on the value of the O.F. 

 

4. 2. 1. Testing on the Time Interval Between 
Concequtive Breakdowns               Figure 3 depicts the 

effect of different 
1

𝜃
on the value of the 𝑂. 𝐹. in the 

proposed method (PM). The dataset in the Figure 3 is 

derived from Table 2. From the problems with the low 

level of MTTR, instances 1 to 10, 21 to 30 and 41 to 50 

are chosen that respectively correspond to values of 80, 

60 and 50 for the interval between two consecutive 

failures. 

In Figure 4, the notation OF-PM-80-L corresponds to 

the objective values found for the proposed method when 
1

𝜃
= 80 and the MTTR is set to the low level. As expected, 

in all the 10 instances of different categories, an increase 

in the average time between two failures improves the 

objective function, since the minimum values of the 

objective are achieved for 
1

𝜃
= 80. 

 

4. 2. 2. Testing the Effect of MTTR Level             In this 

section, the MTTR is first set to the low level (for the 

instances 1-10 in Table 2) and then set to the high level 

(instances 11- 20) to see the effect of its increment on the 

O.F. The results are demonstrated in Figure 4. It can be 

seen in Figure 4 that an increase in MTTR, in turn, 

worsens the O.F. of the proposed method; ergo lower 

MTTR levels are preferred. 

 

 

 
Figure 3. The effect of different breakdown intervals on 
the objective value 

TABLE 2. The comparison between the O.F. of PM & EM 

NO 𝛼 𝛽 𝛾 
1

𝜃
 

PM EM 

O.F. CPU(s) O.F. CPU(s) 

1 0.2 0.4 0.4 80 871.21 1.81 1242.0 0.6 

2 0.2 0.3 0.5 80 837.74 1.66 1000.5 0.54 

3 0.2 0.5 0.3 80 890.76 1.54 1472.4 0.48 

4 0.3 0.3 0.4 80 830.56 1.89 970.54 0.68 

5 0.3 0.4 0.3 80 858.49 1.65 1209.4 0.51 

6 0.4 0.3 0.3 80 835.98 1.65 938.77 0.48 

7 0.4 0.1 0.5 80 792.5 1.79 468.50 0.39 

8 0.4 0.5 0.1 80 890.44 1.66 1410.5 0.52 

9 0.5 0.3 0.2 80 839.13 1.7 910.0 0.57 

10 0.5 0.2 0.3 80 815.25 1.38 674.73 0.6 

11 0.2 0.4 0.4 80 902.96 1.86 1240.7 0.67 

12 0.2 0.3 0.5 80 870.96 1.81 1006.5 0.64 

13 0.2 0.5 0.3 80 931.06 1.78 1481.3 0.61 

14 0.3 0.3 0.4 80 872.25 1.79 976.46 0.66 

15 0.3 0.4 0.3 80 902.41 1.72 1212.4 0.64 

16 0.4 0.3 0.3 80 868.91 1.83 942.36 0.68 

17 0.4 0.1 0.5 80 790.00 1.6 468.75 0.5 

18 0.4 0.5 0.1 80 897.85 1.79 1419.0 0.65 

19 0.5 0.3 0.2 80 871.29 1.78 912.86 0.58 

20 0.5 0.2 0.3 80 838.83 1.72 675.96 0.61 

40 0.5 0.2 0.3 60 841.24 1.79 675.77 0.68 

41 0.2 0.4 0.4 50 877.44 1.75 1234.8 0.68 

42 0.2 0.3 0.5 50 848.05 1.34 1003.9 0.61 

43 0.2 0.5 0.3 50 903.34 1.35 1478.0 0.66 

44 0.3 0.3 0.4 50 847.85 1.45 972.16 0.63 

45 0.3 0.4 0.3 50 878.26 1.7 1211.8 0.65 

46 0.4 0.3 0.3 50 849.74 1.73 942.3 0.66 

47 0.4 0.1 0.5 50 790.81 1.29 468.00 0.51 

48 0.4 0.5 0.1 50 899.34 1.29 1416.7 0.69 

49 0.5 0.3 0.2 50 849.64 1.39 913.01 0.67 

50 0.5 0.2 0.3 50 818.73 1.35 673.46 0.52 

51 0.2 0.4 0.4 50 914.74 1.59 1242.9 0.62 

52 0.2 0.3 0.5 50 878.25 1.74 1002.1 0.69 

53 0.2 0.5 0.3 50 950.15 2.02 1475.8 0.89 

54 0.3 0.3 0.4 50 877.23 1.74 973.45 0.65 

55 0.3 0.4 0.3 50 917.48 1.9 1212.4 0.68 

56 0.4 0.3 0.3 50 878.95 1.83 940.44 0.67 

57 0.4 0.1 0.5 50 807.19 1.94 468.49 0.68 

58 0.4 0.5 0.1 50 944.40 1.82 1418.4 0.65 

59 0.5 0.3 0.2 50 879.71 1.88 913.33 0.64 

60 0.5 0.2 0.3 50 841.87 1.86 675.35 0.66 
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Figure 4. The effect of the MTTR level on the O.F. 

 
 

4. 2. 3. Testing on the Stability and Robustness 
Coefficients                In this section, different values of 

the robustness and the stability coefficients (respectively 

𝛼, 𝛽) are used to achieve the objective values of both PM 

and EM. The results for the low level of MTTR, 𝜃 = 50 

and 𝛾 = 0 are summarized in Table 3. 

The effects of the varying coefficients on O.F. are 

also depicted in Figure 5. According to Table 3 and 

Figure 5, the two methods perform similarly once 𝛼 =
0.7 and 𝛽 = 0.3. Before these values, PM is superior to 

the EM. Any more increase in the value of 𝛼and any 

more decrease in the value of 𝛽 worsen the O.F. of PM. 
Ergo, if the emphasis is on the robustness of the 

schedule (𝛼 = 0, 𝛽 = 1), the proposed method is better. 

On the other hand, if a schedule with maximum stability 

is desired (𝛼 = 1, 𝛽 = 0), the empirical method is 

preferred. If a robust and stable schedule is required, then 

the proposed method should be picked since its range of 

superior performance is larger (𝛼 ≤ 0.7,  𝛽 ≥ 0.3). This 

shows the major impact of the coefficient on the 

performance, ergo the setting of these parameters should 

be carried out with care. There is a logical contradiction 

between stability and robustness since to enhance the 

schedule robustness, sequence manipulation may be 

necessary, which leads to stability degradation. To 

illustrate this conflict, the normalized data from Table 3 

is used to plot Figure 6 to compare the stability and the 

robustness values of the proposed method. 
 

4. 2. 4. Comparing the Effectiveness of the 
Proposed and the Empirical Method                 

According to the results of Table 2 and Figure 6, for both 

levels of MTTR, and all values of 
1

𝜃
, the proposed method 

is more effective than the empirical one except in 

(𝛼, 𝛽, 𝛾) = (0.4,0.1,0.5), and(𝛼, 𝛽, 𝛾) = (0.5,0.2,0.3). 
hese results are confirmation of the major impact of the 

coefficient on the performance. As concluded from 

Figure 5, whenever a robust and stable schedule is 

required, then the proposed method should be selected 

since its range of superior performance is larger 
(𝛼 ≤ 0.7, 𝛽 ≥ 0.3). Here, this conclusion becomes 

more complete. That is, by choosing values more than 2 

for the ratio of robustness to stability (
𝛼

𝛽
> 2), EM is the 

preferred method and vice versa. Moreover, the trend of 

the objective values in the proposed method is smoother 

than its empirical counterpart. This difference is due to 

the robust optimization method used in the generation of 

the partial robust schedule. 

 

 
TABLE 3. Comparison of the objective measures of the 

proposed and empirical methods 

 PROPOSED METHOD 

(𝛼, 𝛽)  𝑅𝑀 𝑆𝑀 𝐸𝑓𝑓 𝑂. 𝐹. 

(0, 1) 768.78 1040.88 755.97 1040.88 

(0.1,0.9) 768.11 1043.79 754.63 1015.6 

(0.2,0.8) 770.5 1045.05 756.16 990.14 

(0.3,0.7) 770.97 1057.35 755.91 971.44 

(0.4,0.6) 769.24 1041.86 756.76 932.82 

(0.5,0.5) 766.83 1030.49 755.26 898.48 

(0.6,0.4) 769.87 1058.75 753.1 885.42 

(0.7,0.3) 770.72 1045.62 754.3 854.67 

(0.8,0.2) 773.44 1053.56 756.39 829.41 

(0.9,0.1) 772.74 1041.51 755.99 799.61 

(1, 0) 772.66 1054.2 756.3 772.66 

 EMPIRICAL METHOD 

(𝛼, 𝛽)  𝑅𝑀 𝑆𝑀 𝐸𝑓𝑓 𝑂. 𝐹. 

(0, 1) 49.32 2716.89 352.8 2716.89 

(0.1,0.9) 49.53 2715.22 352.8 2448.65 

(0.2,0.8) 48.69 2721.85 352.8 2187.22 

(0.3,0.7) 48.64 2722.27 352.8 1920.18 

(0.4,0.6) 49.08 2718.64 352.8 1650.82 

(0.5,0.5) 50 2713.5 352.8 1381.75 

(0.6,0.4) 49.13 2719.8 352.8 1117.4 

(0.7,0.3) 48.65 2722 352.8 852.36 

(0.8,0.2) 47.52 2728.85 352.8 583.79 

(0.9,0.1) 47.64 2726.98 352.8 315.58 

(1, 0) 48.027 2727.4 352.8 48.027 

 

 

 
Figure 5. Effect of different stability and robustness 
coefficients on the objectives 
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Figure 6. The conflict between robustness and stability 

 

 

5. CONCLUSION 
 
In this paper, a robust and stable approach for scheduling 

the manufacturing lines in the valve production industry 

are presented. The problem is modeled as an uncertain 

m-machine FSS system with machine breakdowns to 

optimize three performance measures; stability, 

robustness and efficiency, simultaneously. In the 

proposed approach, the problem is solved in two-stages. 

The first stage uses robust optimization to create a partial 

schedule by taking into account the uncertain processing 

times. Then the stability of the robust schedule is 

guaranteed faced with the new scenarios of job 

processing time. In the second stage, the appropriate 

buffer times were calculated via a linear programming 

model based on the defined performance measures in 

case of breakdowns of the first machine. The proposed 

predictive method is compared with reactive and hybrid 

approaches. In addition, the proposed predictive 

algorithm is applied to a real case from a valve company 

in Iran to investigate the superiority of this method over 

the empirical method currently used. The results showed 

that the proposed method is more adaptable to the 

occurrence of random events so that the variances in the 

objective values due to this change are much smoother 

than the empirical method. Ergo, this stable and robust 

schedule can increase the company's accountability to 

customers. The proposed model is formulated as an FSS 

system in the valve-production industry.  

In future researches, this model can be applied to 

other systems such as flexible flow shop or job shop 

systems, across similar industries. Moreover, our model 

is limited to the breakdown of the first machine. 

Depending on the corresponding industry, this model can 

be generalized to include the breakdowns of other 

machines as well. Another possibility for extending this 

work is to consider different probability distributions for 

the breakdown intervals or variable repair time. 
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 چکیده

 

 

  در  اداری یا صنعتی هایمحیط  در ماشین  خرابی  و غیرقطعی  پردازش  زمان  با بندیی زمان مسئله  یک مقاله این در  خلاصه

 مقاومت مقاوم، سازی بهینه روشهای در .شده است حل مقاوم سازی بهینه جدید روش یک از استفاده با و شده گرفته نظر

. شود بدتر  جدید سناریوهای برابر است در  ممکن  که شودمی   حفظ  شده گرفته نظر  در سناریوهای مجموعه برای فقط  حل

  حل   تولید  و  ها  قطعیت  عدم  به  موثر  واکنش  به   قادر  که  است  شده  ارائه   ای  مرحله  ی دوبینانه پیش  الگوریتم  یک  ،  مقاله  این  در

 تضمین جدید سناریوهای برابر در پایداری آن بندی مقاوم تولید وزمان اول الگوریتم، مرحله در. است پایدار و مقاوم های

ی بندی مقاوم مرحلهاست که اثر خرابی ماشین بر زمان  شده ارائه پایداری مقیاس جدید برای یک دوم، مرحله در. شود می

  تولیدکننده   مشتری،  نیازهای  زمانهم  کردن   برآورده  بینانه،  واقع  بندی  شرط کافی یک زمان   این،  بر  کند. علاوهقبل را تعدیل می 

. شودمهم پرداخته می این به پایداری و مقاومت، کارآیی، گانه ازسه مقیاس یک تعریف مقاله، با در این .  است کارکنان و

برای برآورده کردن الزامات مشتری، مقیاس مقاومت بر اساس مجموع زمان واقعی تاخیر کارها و موعدهای تحویل تعریف  

  مقایسه   شرکت  تجربی  روش   با  آن  عملکرد   و  کار گرفته شدهبه  موردی  مطالعه  یک  در   پیشنهادی  الگوریتم  پایان،  شده است. در

  و  کارکنان ،مشتریان رضایت  بهبود سطح در پیشنهادی به روش تجربی روش برتری از حاکی محاسباتی  نتایج. شود می

  .باشد می کارخانه پاسخگویی و افزایش سودآوری

doi: 10.5829/ije.2020.33.02b.14 
 

 

 


