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A B S T R A C T  
 

 

 
In this paper, an efficient technique is presented to identify a 2500 KW wind turbine operating in 

Kahak wind farm, Qazvin province, Iran. This complicated system dealing with wind behavior is 

identified by using a proposed fractional order dynamic neural network (FODNN) optimized with 
evolutionary computation. In the proposed method, some parameters of FODNN are unknown during 

the process of identification, so a particle swarm optimization (PSO) algorithm is employed to 

determine the optimal values by which a fractional order nonlinear system can be completely identified 
with a high degree of accuracy. These parameters are very effective to achieve high performance of 

FODNN identifier and they include fractional order, initial values of states and weights of FODNN, 
and numerical algorithm step size for solving FODNN equation. Simulation results confirm the 

efficiency of the proposed scheme in term of accuracy. Furthermore, comparison of the results 

achieved by the proposed method and those of the integer order dynamic neural network (IODNN) 
depicts higher accuracy of the proposed FODNN.  

doi: 10.5829/ije.2020.33.02b.12 
  

1. INTRODUCTION1 
 
The idea of fractional calculus was expressed by 

Leibniz and L’ Hopital in 1965 for the first time and its 

concepts have been theoretically developed by other 

researchers. This subject is an extension of the 

traditional calculus and it has been under extensive 

studies as a mathematical topic that deals with non-

integer order derivatives. It has been used in physics and 

engineering applications for decades. Recently 

researchers have shown that fractional order equations 

can perform better in modeling different processes with 

complicated dynamic characteristics. That is basically 

because fractional order derivatives are not local and 

they benefit from infinite memory. For example, hydro-

turbine modeling [1], modeling biological tissues [2], 

modeling of diffusion phenomena [3], Viscoelasticity 

[4], modeling of plasma behavior [5] and numerous of 

other examples in various fields are found in the 
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literature. 

Neural networks are important tools in many 

engineering applications [6]. The capability of neural 

networks to adapt different environmental conditions 

enables them to model many complex systems by 

training, without important a priori knowledge about 

their structures and parameters. Neural networks are 

divided into two types namely, static and dynamic. In 

cases where there is a high dependency between the data 

value at the present time and its past values (either input 

or output past values), a larger static neural structure 

must be used in order to map the input data to the output 

data, which is a drawback from the computational point 

of view and risk of getting trapped into the local 

minima. In these cases, dynamic neural networks 

perform more efficient than static neural networks due 

to their richer structure in modeling dynamics of 

nonlinear systems [7]. Moreover, representation 

capability is essential in every application especially 

while dealing with dynamic systems [8]. The famous 

Hopfield neural network was introduced in 1982 and 

since then it has been one of the most successful 
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dynamic neural networks. It is simple to implement 

Hopfield neural network by an electronic circuit and so 

has been studied in many research works. In literature 

[9-12], an Integer-Order Dynamic Neural Network 

(IODNN) using Hopfield structure has been proposed to 

identify and control various systems. 

On the other hand, dynamic neural networks can be 

generalized to FODNN by using fractional order 

derivative definition. The capability of neural networks 

to adapt different environmental conditions enables 

them to model many complex systems by training, 

without important a priori knowledge about their 

structures and parameters. This advantage encourages 

us to incorporate it with fractional calculus [13]. In 

FODNN, the conventional capacitor in a Hopfield 

integer order neural network was replaced by a 

generalized capacitor based on the derived differential 

equation in literature [14]. The formulation and the 

numerical simulations of FODNN have been carried out 

by many researchers [14-17]. The study of dynamic 

behaviors of FODNN such as bifurcation [18], stability 

[19], stabilization [20], synchronization [21], robust 

stability [22], etc., are important topics which have 

recently been studied and the references are cited 

therein.  

The use of fractional calculus in system 

identification was initiated by Lay [23], Lin [24],  Cois 

[25] and Aoun [26] with two main methods called 

Equation-error-based-model and Output-error-based-

model. In the Equation-error-based-model, the 

fractional orders are assumed to be fixed or to be 

commensurate, and in the other one fractional orders are 

simultaneously identified with model's parameters. A 

survey of published papers about fractional system 

identification was investigated in literature [27]. In 

addition, there are different techniques that have used 

several tools to identify fractional order system: 

subspace identification methods [28, 29], evolutionary 

algorithm [30, 31], neuro-fractional order Hammerstein 

model [32, 33],  static neural network [34-36] and 

fractional order dynamic neural network (FODNN) [5, 

37, 38]. In literature [28, 29] a fractional order linear 

system is identified using a subspace-based 

identification method. The authors in literature [30] 

introduced an evolutionary algorithm called composite 

differential evolution (CoDE) for the fractional order 

chaotic systems identification, and González-Olvera et al. 

in literature [31] employed genetic algorithm to find 

parameters of the fractional order system. In literature 

[32, 33] identification of nonlinear dynamic systems 

using neuro-fractional Hammerstein model are 

presented. The authors of this paper considered a model 

that consists of the integer order static neural networks 

as the nonlinear subsystem and the fractional-order 

system as the linear subsystem. In literature [34-36] 

nonlinear fractional order system identification using 

the integer order static neural network is studied. In 

literature [5] a nonlinear system is identified by 

FODNN. The authors in literature [37, 38] investigated 

linear and nonlinear fractional order system 

identification by a FODNN model. All the parameters 

of FODNN model are assumed known except its 

weights that is updated during the learning phase. 

Today, wind energy as a pollution-free renewable 

source has attracted a lot of attention. The nonlinear and 

stochastic behavior of wind causes to be great 

challenges for the accuracy of power system. On the 

other hand, with considering simplified assumptions in 

the mathematical modeling of a wind turbine, the 

derived model has many uncertainties that cannot be  

ignored. Achieving an accurate model of a wind turbine 

in a wind farm is important for predicting power 

injected into electrical grid. A suitable model can help 

the grid operator that predicts the required power 

output. This advantage is helpful in system planning, 

economic scheduling and storage capacity optimization. 

The neural networks as a flexible and powerful tool 

allow us to model complicated systems without prior 

knowledge of the system. A review of published papers 

about neural network applications in wind energy is 

given in literature [39]. 

Motivated by the above literature, in this paper, we 

aimed to benefit all advantages of several concepts: 

fractional calculus, the neural network, and optimization 

approach. Therefore, we propose a scheme using 

FODNN and the particle swarm optimization (PSO) 

algorithm by which a fractional order nonlinear system 

can be completely identified with a high degree of 

accuracy. PSO from the family of the evolutionary 

algorithm is a biologically-inspired technique proposed 

in literature [40]. The PSO algorithm will optimize the 

FODNN model based on a defined fitness function. It is 

worth nothing that the proposed structure of FODNN is 

different from other introduced structures in the 

literature. We select a wind turbine system for 

employing the proposed method because this plant has a 

dynamic complicated nature, and it demonstrates the 

effectiveness of our method. Identified wind turbine in 

this paper is 2500 kW operating in Kahak wind farm, 

Qazvin province, Iran that is equipped with a doubly-

fed induction generator (DFIG). The wind turbine 

system is made from different parts including wind, 

aerodynamic, tower, generator, converter, gearbox, 

pitch actuator and converters [41]. 

Organization of the paper is as follows: In Section 2, 

the basic definitions of fractional calculus, the detail of 

FODNN identifier, the methodology used for learning 

the weights of FODNN and the PSO algorithm are 

introduced. In Section 3, fitness function and the 

formulation of the proposed scheme are described. In 

Section 4, identification of the wind turbine using the 

proposed method is provided. 
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2. PRELIMINARIES and MODEL DESCRIPTION 
 
There are several commonly definitions for fractional 

order derivatives of functions. We use the  Caputo 

definitions for fractional derivatives in this paper 

because in the fractional order differential equations 

with Caputo derivatives, the initial conditions appear the 

same forms as those for integer order differentiation, 

which are more understandable in terms of physical 

expressions. Therefore, the fractional order Caputo 

derivative is often more relevant in engineering 

applications [42]. 

 

2. 1. Fractional Calculus     In this subsection, the 

main definitions of fractional calculus are briefly 

described along with the formulation used to FODNN 

model.  
Definition 1: The gamma function is defined as [42]: 

  1
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Definition 2: Riemann-Liouville integral [42]: 
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Definition 3: Caputo derivative [42]: 
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where 1 ,n q n N     and Γ (.) are the fractional 

order and gamma function, respectively. 

A Predictor-Corrector (PC) approach as a useful 

approximate numerical technique is introduced to solve 

the FODNN equation under Caputo definition [43]. The 

step size in this numerical approach is h .  

 

2. 2. Fractional Order Dynamic Neural Network 
(FODNN)             To use FODNN for modeling and 

identification problems, it would be more effective to 

select a FODNN structure that belongs to a wide enough 

class of nonlinear dynamic systems [12]. Therefore, in 

this paper, an effective structure for the FODNN 

identifier (4) is proposed that is different from other 

structures introduced in the literature because of the 

nonlinearity  tu .  

The mathematical equations of the introduced 

FODNN are derived as follows: 

     1 2 ,ˆ ˆ ˆ ˆq

t t t t t t tD x Ax W x W x u      (4) 

where qD  is the Caputo derivative operator with 

 0,1q  , ˆ n

tx R  corresponds to the state vector at time 

t ; m

tu R  is external input and 

     1 1    0 0 n

t t m mtu u u R        . The matrix 

 1 2, , , n n

nA diag a a a R     is a Hurwitz matrix. 

1

n n

tW R    and 
2

n n

tW R   are the weights of the 

fractional order dynamic neural network. The vector 

function  ˆ n

tx R   contains the elements that increase 

monotonically and the matrix function  ˆ n n

tx R   is 

diagonal which is presented in Equation (5).  

      1 , , .ˆ ˆ ˆ
t t ntx diag x x     (5) 

It is worth mentioning that the IODNN structure is the 

same as FODNN when 1q  . 

Considering the  Assumptions 1 and 2 as follows: 

Assumption 1: The nonlinear function γ (.) is selected as 

 
2

γ tu u . 

Assumption 2: The activation functions   and    are 

Lipschitz continuous, that is to say, there exist positive 

constants jL and jQ  for 1,2,...,j n   such that: 
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The elements  .i  and (.)i are chosen as sigmoid 

functions, the Assumption 2 is fulfilled. 
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Here FODNN weights are updated using learning rule 

and some of the effective parameters are optimized by 

PSO. 

 

2. 3. Particle Swarm Optimization         PSO is one 

of the most popular algorithms of the Swarm 

intelligence proposed by Kennedy and Eberhart [40]. 

This algorithm is inspired by the natural process of 

group communication that it was used to model and 

control many physical and engineering applications [44, 

45]. 

The swarm in PSO made up of an initial population 

of random solutions including N particle. The particles 

move around in a d-dimensional search space to find an 

optimum solution. Each particle is initialized with a 

random position and a velocity within pre-defined 

ranges. The position in d-dimensional search space 

represents an optimization problem solution, and the 

velocity of an individual particle determines the 

direction and step of search. Every particle adjusts its 

treatment by its own moving and companions 

experience at every iteration. In this algorithm, equation 

velocity guarantees that the particle arrives at the best 

position in the search space. 

The 
thi  particle is represented as: 
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 1 2, , , .i i i idX x x x   (8) 

Previous best solution ( bestp ) for each individual is 

described as: 

 1 2, , , .i i i idP p p p 
 

(9) 

Current velocity of each individual is denoted by: 

 1 2, , , .i i i idV v v v 
 

(10) 

Finally, the best solution of the whole swarm ( bestg ) is 

represented as: 

 1 2, , , .g g i gdP p p p 
 

(11) 

At each time step, any particle goes towards bestp and 

bestg locations. A suitable fitness function evaluates the 

performance of particles to conclude if the best fitting 

solution is achieved. At each iteration, the velocity and 

position of particles are updated as: 
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(12) 

where 1c and 2c are two positive constants, called 

cognitive and social learning rate respectively, 1r  and 

2r are two random functions in the range of [0, 1]. w  is 

the time decreasing inertia weight. This factor 

determines the effect of the previous velocity in the 

current velocity.  

bestp and bestg  values are updated based on the 

defined fitness function to be minimized. Finally, a pre-

defined certain condition causes the algorithm to be 

stopped.  
 
 

3. IDENTIFICATION using FODNN BASED on PSO  
 
3. 1. Problem Formulation              This paper 

discussed on the identification problem of complicated 

nonlinear systems with unknown order and parameters, 

as well as with unknown initial values of weights and 

states, and th step size of the numerical approach to 

solve the FODNN equation. Consider the n-dimensional 

nonlinear system to be identified as: 

 , , ,t t tx f x u t  (13) 

where 
n

tx R  and 
m

tu R are state vector and input 

vector, respectively. The identified model can be 

described as (4). The block diagram of the identification 

process is shown in Figure 1. 

 
Figure 1. The block diagram of the identification process 

 

 

The ssed fitness function in this paper is defined as: 

 
2

1

ˆ ,
1 N

k k

k

F x x
N 
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where 
kx  and ˆ

kx  are the real and estimated states of 

the system at each moment respectively; N is the 

number of data used for the identification. The PSO 

algorithm tries to minimize  F . 

 

3. 2. Identification Process            The learning rule 

to update weights of the FODNN is given as [5]: 

 

   

1 1

2 2

ˆ ,
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t t t

T T

t t t t

W K Px x
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 
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where tx  is the identification error and P  is a 

symmetric positive definite matrix. 

Generally, the identification process can also be 

formulated as an optimization problem. The main step 

of the optimization process is to encode the proposed 

method into individuals or a population of certain 

solutions. In this research, a solution is feasible if it can 

determine the order, the step size of the PC approach, 

and the parameters including FODNN weights and 

initial values; therefore, each individual is divided into 

four parts. Figure 2 shows the encoding of the 

individual. Part A indicates the unknown fractional 

order of the FODNN model and the length of Part A 

equals 1, assuming that the model is commensurate. Part 

B denotes the unknown step size of the PC algorithm; 

the length of Part B is 1. Part C represents the initial 

values of the states, and the length of Part C is to equal 

n , same as the dimension size of the system. Part D 

shows the initial values of the weights of the FODNN 

model, which is 22n based on the defined dimension; 

that is , 2n for 10W and 2n  for 20W  . Therefore, the 

dimension size of the individual 22 2n n  and the 

solution space is 22 2n n   dimensional. 

Since every part of defined individual indicates the 

order, parameters, and initial values of the systems, 

every bit of them is initialized with a random real 

number within a pre-defined range. 
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Figure 2. Encoding of the individual in the PSO algorithm 

 
 
4. EXPERIMENTS and ANALYSIS of RESULTS  
 
In this section, we perform the experiments for 

identification of 2500 kW wind turbine operating in 

Kahak wind farm, Qazvin province, Iran.  

 

4. 1. Wind Turbine             The wind turbine generator 

used in this paper is a 2500 kW complex  wind turbine. 

It includes many mechanical and electrical components 

like aero dynamic turbine, a complicated gear box, a 

DFIG type generator, electronic interfaces, and on top 

of all the wind dynamic. The wind speed is random and 

changes very quickly over the time. The complicated 

behavior of the whole wind turbine and the inaccuracy 

of the simple methods motivated us to employ a 

FODNN for identification of this plant. Its schematic is 

shown in Figure 3.   
 

4. 2. Setting Known Parameters of FODNN and 
PSO          To investigate the proposed scheme 

performance about the wind turbine identification, first, 

we should select some of the known parameters of 

FODNN. Clearly, these parameters must satisfy some of 

the assumptions in Section 2-2  to guarantee that the 

identification error remains bounded. Therefore, the 

activation functions are selected as sigmoid functions 

and the diagonal matrix A is selected in such a way that 

is Hurwitz. Also  
1K  and 

2K can be any positive 

matrix.  
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(16) 

The fractional order, the PC algorithm step size, and 

initial values are assumed to be unknown during the 

identification, and their optimal values are achieved by 

the PSO algorithm. 

We consider the value of fractional order within 

[0,1]   according to (4), and the step size value of the PC 

algorithm is within 6 4[10 ,10 ]  . The weights initial 

values and states initial values are within [0,1]  as all of  

 
Figure 3. The wind turbine with DFIG 

 

 

 

the data are normalized during the identification 

process. The PSO parameters are: the inertia weight 

which decreases from 1 to 0.4, the cognitive and social 

learning rate 
1 2c   and 

2 2c  [46]. The 

initialpopulation is considered 40 and the PSO 

algorithm is stopped after 100 iterations. 

 

4. 3. Simulation Results         The Kahak wind turbine 

identification via the proposed structure has been 

performed using Matlab/Simulink and Python.  The 

wind speed and pitch angle were used as FODNN input 

data. The generator speed and wind turbine power were 

used as the target for identification. The experimental 

data gathered with a sampling rate of one second. The 

proposed procedure of identification is summarized as 

follows: 

Step 1: the individual’s bits are initialized based on pre-

defined intervals.   

Step 2: the FODNN is trained with experimental data 

using (11), then the fitness function is calculated. 

Step 3: the velocity and position particles, and the PSO 

algorithm memory are updated.  

Step 4: if the termination conditions are fulfilled then 

the most suitable fitness function will be selected as the 

optimal solution. Otherwise, back to Step 2. 

The convergence graph of the fitness function (14) 

of the proposed FODNN along with the PSO algorithm 

are shown in Figure 4.The results of the identification 

process are presented in Figure 5. In this figure, the 

speed of generator and the power, following the 

FODNN and the IODNN model, are zoomed for a time 

interval. Then the value of the fitness function is 

calculated for the IODNN and the proposed FODNN.  

The value of fitness function (14) is calculated for all of 

the methods in the time literature. The results are given 

in Table 1.  

Based on these results, it is found that the two 

identified state variables in the proposed model are 

more accurate due to its rich structure, and it has a better 

performance in the identification of the wind turbine. 
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Figure 4. Convergence process of the proposed method using 

PSO algorithm with the experimental data 

 

 

 
Figure 5. Simulation results of the wind turbine by the 

proposed model and the IODNN model 
 

 
TABLE 1. Fitness function for identification methods of wind 

turbine. 

Identification 

Method 

Proposed 

identifier 

FODNN in 

literature[14] 

IODNN in 

literature[12]  

Fitness Function 0.005 0.012 0.2 

 

 

5. CONCLUSION 
 

In this paper, the FODNN optimized with the PSO 

algorithm has been presented. The proposed structure 

can be used to accurately model systems with 

complicated nature, that’s why a wind turbine has been 

selected as a case study. Then some of the parameters of 

FODNN and PSO algorithm are initialized and the 

optimal value of other parameters are found in the next 

steps. As a database, data of 2500 kW wind turbine 

operating in KAHAK wind farm with a sampling rate of 

one second are collected and an accurate fractional 

order nonlinear model is identified for it without prior 

knowledge of system parameters. The inputs are 

considered wind speed and pitch angle. The generator 

speed and power are used as target outputs. By 

comparing simulation results with real data and the 

IODNN model, we show the proposed scheme is very 

effective in process modeling. It has been demonstrated 

that a FODNN model optimized via the PSO approach 

is a valuable tool that produces best results compared to 

an integer order model. 
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 چکیده

 

 

کیلووات واقع در مزرعه بادی کهک در استان قزوین  2500یک ابزار کارآمد برای شناسایی توربین بادی در این مقاله، 

معرفی شده است. این سیستم پیچیده که مرتبط با رفتار باد است، با استفاده از شبکه عصبی دینامیکی مرتبه کسری 

(FODNN که )گردد. در روش پیشنهادی، مقادیر بهینه برخی از شود، شناسایی میهای محاسباتی بهینه میبا الگوریتم

گردد و به این شکل، سیستم باشند به وسیله الگوریتم ازدحام ذرات تعیین میکه مجهول می FODNNپارامترهای 

ین پارامترها برای دستیابی به عملکرد بالا در ا گردد.غیرخطی مرتبه کسری به صورت کامل و با دقت بالا شناسایی می

و گام زمانی  FODNNهای ها و حالتباشند و شامل مرتبه کسری، مقادیر اولیه وزنبسیار مؤثر می FODNNشناساگر 

ی سازی کارایی الگوریتم پیشنهادشده برای حل معادله دیفرانسیل مرتبه کسری است. نتایج شبیهکارگرفتهالگوریتم عددی به

 دهد.را بر حسب شاخص دقت در مقایسه با  شبکه عصبی دینامیکی مرتبه صحیح نشان می

doi: 10.5829/ije.2020.33.02b.12 

 

 
 

 


