
IJE TRANSACTIONS B: Applications Vol. 33, No. 2, (February 2020) 229-236

Please cite this article as: M. Parvane, E. Rahimi, F. Jafarinejad, Optimization of Quantum Cellular Automata Circuits by Genetic Algorithm,
International Journal of Engineering (IJE), IJE TRANSACTIONS B: Applications Vol. 33, No. 2, (February 2020) 229-236

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

Optimization of Quantum Cellular Automata Circuits by Genetic Algorithm

M. Parvanea, E. Rahimi*a, F. Jafarinejadb

a Faculty of Electrical & Robotic Engineering, Shahrood University of Technology
b Faculty of Computer Engineering, Shahrood University of Technology

P A P E R I N F O

Paper history:
Received 21 October 2019
Received in revised form 10 January 2020
Accepted 17 Januray 2020

Keywords:
Quantum Cellular Automata
Majority Logic Synthesis
Genetic Algorithm
Nanotechnology

A B S T R A C T

Quantum cellular automata (QCA) enables performing arithmetic and logic operations at the molecular

scale. This nanotechnology promises high device density, low power consumption and high
computational power. Unlike the CMOS technology where the ON and OFF states of the transistors

represent binary information, in QCA, data is represented by the charge configuration. The primary

and basic device in this paradigm is the three-input majority gate, thus in QCA, the conventional AND-
OR mapping for implementation of logic functions is not effective. We introduce four primitive

admissible geometric patterns, which aid in the identification of majority functions. For a non-

majority function, a genetic algorithm (GA) is used to map the function to at most four majority gates
in a wide range of implementations. We show that the emergence of specific genes will result in a

further reduction in the number of majority gates in the network. The GA is intrinsically parallel and

results in variety of implementations, which allows merging the layout and logic levels of the design

and provides an important approach towards designing high-performance QCA circuits.

doi: 10.5829/ije.2020.33.02b.07

1. INTRODUCTION1

The CMOS technology, in the era of silicon, is

approaching its limiting barriers of downscaling.

Further miniaturization of CMOS devices is challenging

due to quantum, short channel and several other effects

[1, 2]. The demand for tiny size electronic devices,

along with ultra-fast switching speed and ultra-low

power dissipation has induced the driving force on the

research for developing advanced nanoscale and

molecular devices, which could be synthesized by

inexpensive chemistry. The conventional CMOS

technology utilizes transistors as electronic switches,

where the ON and OFF states of the transistors

represent binary information ‘1’ and ‘0’ respectively.

The Boolean logic, functions of Boolean logic variables

and Karnaugh maps (K-maps) were developed a few

decades before the first transistor was fabricated in

CMOS technology. The research in digital logic design

and data structures fitted to CMOS technology has been

*Corresponding Author Email: erahimi@shahroodut.ac.ir
(E. Rahimi)

enriched within the past five decades. Unlike the

traditional transistors where surges of electrons produce

current, and the information is encoded in the voltage

states, modern nanoscale devices may utilize charge or

spin of an electron to represent binary information.

Furthermore, in designing nanodevices, behavioral,

logic, and layout levels of design may be correlated and

merged. Therefore, conventional logic design methods

and models may not satisfy the requirements of

nanoscale devices. Quantum cellular automata (QCA) is

a paradigm in nanotechnology that encodes binary

information in the charge configuration [3]. It promises

to perform computation at the molecular size with ultra-

low power and ultra-fast speed [4]. While in CMOS

technology, the primitive gates are AND, OR, and NOT,

in QCA, there are two basic gates; the majority (M) and

the inverter (I). Thus, traditional gate-level techniques

and data structures do not generally work for the

optimization and manipulation of logic functions

implemented in QCA. The usefulness of QCA logic

depends on the existence of effective synthesis

procedures and computer-aided design (CAD) tools.

230 M. Parvane et al. / IJE TRANSACTIONS B: Applications Vol. 33, No. 2, (February 2020) 229-236

 (a)

(b)

(c)

Figure 1. (a) Binary representation by charge configuration;

(b) QCA majority gate (M) and its symbol; (c) QCA inverter

gate (I)

The QCA logic has roots in the majority gates, majority

data structures, and majority functions. The research in

developing methods for implementation of majority

functions and CAD tools for QCA is quite immature .

The genetic algorithm (GA) approach in designing and

optimization of conventional digital and analog circuits

has been the subject of research in the last few decades

[5,6]. The advantages of GAs over traditional

algorithms are that they are intrinsically parallel, there is

a high chance of getting an optimal solution, and a wide

range of solutions is possible. In this paper, we review

previous works on representation and implementation of

majority functions and utilize a genetic algorithm to

reduce the number of majority gates in implementation

of any three-variable function. The remainder of this

article is organized as follows. Section 2 presents QCA

paradigm and corresponding logic gates in brief. We

review the methods of recognizing majority functions

and contribute a new approach based on geometric

representation. A brief review of majority logic

implementation and reduction methods based on the K-

map, three-cube, and GA is given in section 3. Our

proposed method, the two-level mapping based on GA,

is presented in section 4. We describe and discuss the

results in section 5. Finally, section 6 gives the

conclusions.

2. THEORY

2. 1. QCA Paradigm In QCA, binary data is

represented by the location of electric charges. The

primary building block of QCA is a square cell with

four quantum dots and two electrons, where each

electron is localized in only one quantum dot [3].

Electrostatic repulsion forces between electrons and

makes them be localized in antipodal quantum dots,

resulting in two configurations, which represent the

binary ‘0’ and ‘1’ (Figure 1a). By arranging the cells

near each other, QCA devices are constructed. The

electrons cannot leave the cells, and the interactions

between cells are electrostatic. The state of each cell is

determined by calculation of the ground state energy,

where the total forces are minimized. Figures 1b and 1c

illustrate QCA majority gate (M) and inverter gate (I),

respectively. The majority and the inverter gates provide

a complete set of primitive devices to implement any

Boolean function. The wire is used to transport binary

data, and the majority gate performs the following logic

operation on the three inputs x1, x2 and x3,

𝑓 = 𝑀(𝑥1, 𝑥2, 𝑥3) = 𝑥1𝑥2 + 𝑥2𝑥3 + 𝑥1𝑥3 (1)

The result of the majority function (M) is ‘1’ when at

least two of the inputs are ‘1’. Moreover, the majority

gate can perform the logic AND operation on the two of

its inputs when the third input is set to ‘0’. Also, it can

mimic the two-input OR gate when the third input is set

to ‘1’. That is M(x1,x2,0)=x1x2, and M(x1,x2,1)=x1+x2.

Conventionally, the inverter gate complements the

input. Several circuits including the full adder [7],

memory [8] and processor [9] have been implemented

in QCA. Since majority gates can mimic the AND and

OR gates, there is a possibility of using conventional

AND-OR mapping based on the K-map method for

implementation of Boolean functions in QCA; however,

this method is naive. As an example, the AND-OR

implementation of the function:

𝑓 = 𝑥1𝑥3 + 𝑥1𝑥2𝑥3 + 𝑥1𝑥2𝑥3 + 𝑥2𝑥3, (2)

requires six majority gates, which perform four AND

and two OR operations. However, as we show in section

3, four majority gates can implement this function.

2. 2. Identification of Majority Logic Functions

If a three-variable function is a majority function, it can

be implemented by a single majority gate. Thus, as a

primary step, the given function is examined to find out

whether it is a majority function or not. There are

several methods to find this out; including the algebraic,

geometric, computational, and K-maps techniques [10].

The majority function is a specific type of threshold

logic, and since every threshold logic is unate, the

majority function is unate as well. Two useful

representations of a logic function are the geometric and

K-map [10]. In the geometric representation, the

vertices of a hypercube are used. Since every three-

variable function has eight states, vertices of a three-

cube can be used to represent true or false states. By

using the K-map representation, it can be shown that

there are thirty-eight admissible patterns for the three-

variable majority functions, where ten of them are

positive [11]. Compared to K-map primitive patterns,

we show that in three-cube representation, the number

of primitive patterns is even less. There are only four

patterns, which are illustrated in Figure 2. These

state '0' state '1'

M. Parvane et al. / IJE TRANSACTIONS B: Applications Vol. 33, No. 2, (February 2020) 229-236 231

patterns are called the edge, corner, 1-face, and 2-face.

The edge, corner, and 1-face patterns represent the

AND, majority (M), and OR operations,

respectively. The 2-face pattern consists of two faces of

the cube, which have an intersection. This pattern

represents a wire. For example, the functions

M(x1,0,x3)=x1x3, M(x1,x2,x̅3), M(1,x ̅2,x3)= x ̅2+x3, and

M(1,0,x ̅3)= x ̅3 correspond to edge, corner, 1-face and 2-

face patterns, respectively. Since every cube has eight

corners, twelve edges, six 1-faces and twelve 2-faces, a

set of complete admissible majority patterns with thirty-

eight elements can be designated with the primitive

patterns in the geometric representation.

3. IMPLEMENTATION METHODS

There are generally two approaches to implement a

three-variable function by majority gates, including the

conventional algorithmic methods and heuristic

methods based on the GA. These techniques are either

based on the geometric, K-map, or algebraic

representation.

3. 1. The Geometric and Algebraic Methods In

order to synthesize a multi-output network with

majority gates, the following procedure, which consists

of some manual algebraic steps, can be applied [11].

First, each node Nj is decomposed into nodes, nj that

have no more than three inputs. Node Nj is examined to

find out whether it is a majority function. If it is a

majority function, then the next node nj+1 is processed.

Otherwise, nj is checked to determine whether two or

three majority gates can implement it. If there is a

common literal in all the product terms of nj, it is

factored out. Then the AND-OR mapping is applied. As

an example, in f =x1x ̅2+x ̅2x3 the term x̅2 is common and

can be factored out as f =f1x ̅2, where f1=x1+x3. Thus,

two majority gates are required. If there is no common

literal, the node nj is checked to determine whether

fewer than four AND-OR gates can implement it.

Otherwise, finally, it is possible to implement it by four

majority gates utilizing the K-map methods. The K-map

methods are either manual [12] or automatic and

algorithmic [11]. In a method based on the three-cube

representation of functions, thirteen standard functions

have been recognized to form a standard table. The

three-variable function is reduced to one of the standard

functions utilizing a manual algebraic technique, and the

majority logic implementation of the function can be

found in the standard table [13] . The K-map based

methods try to find three majority functions f1, f2 and f3

using the K-map of f in such a way that

𝑓 = 𝑀(𝑓1, 𝑓2, 𝑓3) = 𝑓1𝑓2 + 𝑓2𝑓3 + 𝑓1𝑓3. (4)

In the manual method, the K-map of three majority

functions f1, f2 and f3 are constructed by application of

the translation, rotation and mirror operations

heuristically on the four primitive K-maps [12]. The

automatic method uses an algorithm to find the K-map

of the three majority gates f1, f2 and f3 [11].

More recent attention has focused on algebraic

optimization methods [14-18], where representing and

optimizing logic are carried out by using only the

majority and inversion operations as basic operations. In

these methods, logic functions are mapped into the

majority-inverter graphs (MIGs), and exclusive Boolean

algebra is applied. The points of a graph are accessed by

primitive axioms, and with the aid of MIG algebraic

algorithms, MIGs are optimized.

3. 2. Genetic Algorithm Methods The GA is a

heuristic search method in an evolutionary set of

probable solutions, which is called population. Each

solution is encoded in a sequence of data, which is

called chromosome. The chromosome consists of

smaller units, where each unit is called a gene. The

search starts in a primary random population, and a

fitness value is assigned to each chromosome. The next

generation of the population is formed by selecting

some of the chromosomes with high fitness values from

the previous population and creating new chromosomes.

In order to generate a new chromosome, the crossover

and mutation operators are applied to the old

chromosomes. During the crossover process, some

genes between two chromosomes are exchanged. A

mutation is a random change in a gene of a

chromosome. The GA has been used for the

optimization of the number of gates in traditional

combinational circuits in CMOS technology, where the

AND, NOT, XOR and WIRE are the primitive gates

[20]. The logic circuit is mapped to a network of gates,

where each gate has two inputs and one output. The

second input of each gate is connected to the output of a

previous-level gate. The entire network is a

chromosome, where each gene represents the gate type

and the first input connection. In the case of QCA, a

chromosome in the form of a MIG has been used to

implement a three-input logic function and to minimize

the number of majority functions [19]. The internal

nodes can be the majority (M) and inverter (I) gates,

while the external nodes (leaves) are variables or the

 (a) (b) (c) (d)

Figure 2. Four primitive admissible patterns in the geometric

representation: (a) the edge pattern, (b) the corner pattern, (c)

the 1-face pattern, (d) the 2-face pattern

x1

x2

x3

x1

x2

x3

232 M. Parvane et al. / IJE TRANSACTIONS B: Applications Vol. 33, No. 2, (February 2020) 229-236

logic ‘1’. This chromosome has been altered later

[21,22], to implement a two-output circuit. In most

cases, the aim is to reduce the number of majority gates.

4. TWO-LEVEL MAPPING BASED ON GA

Any three-variable function f(x1,x2,x3) can be mapped to

a two-level network of up to four majority gates. We

use GA to find a number of chromosomes in the form of

sets as Cm={gi,gj,gk} with three genes gi,gj, and gk, where

f=M(gi,gj,gk), and the order of genes is not important.

Each gene encodes the K-map of an admissible majority

function. We represent any three-variable K-map by a

hexadecimal number, where the most and least

significant nibble designates the first and second row of

the K-map, respectively. As an example, the K-map of

the majority function M(x1,x2,x3) and M(x1,x2,x ̅3) is

encoded as 27 and F6, respectively. The procedure of

the GA is as follows. The initial population is formed by

a random selection of n (the population size) genes from

the set of forty patterns, which consists of thirty-eight

admissible majority functions, the true gene (FF), and

the false gene (00). The latter two genes aid in the

reduction of the number of majority gates and possible

implementation of f by two or three majority gates. The

shapes of the thirty-eight admissible majority functions

are the edge, corner, 1-face, and 2-face in the geometric

representation. The majority operation is applied to the

K-maps of the three genes gi,gj, and gk, in a cell-wise

manner, and the result is stored in the form of a new K-

map, r. If the K-map of r is the same as K-map of f, the

correct chromosome has been found. The fitness

function for the mth chromosome Fit(Cm) uses the

distance difference Dist(f,r) between the K-map of f and

K-map of r, such that

𝐹𝑖𝑡(𝐶𝑚) = {
2, if 𝐷𝑖𝑠𝑡(𝑓, 𝑟) = 0

1/𝐷𝑖𝑠𝑡(𝑓, 𝑟), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (5)

where, Dist(f,r) is defined as,

𝐷𝑖𝑠𝑡(𝑓, 𝑟) = ∑ |𝑖=7
𝑖=0 𝑓𝑖 − 𝑟𝑖|, (6)

and, ith element in the K-map of f and r is denoted by fi

and ri, respectively. The fitness function gets values in

the range [0.125,2], where 2 signifies the correct

chromosome. The selection method is based on the

roulette wheel algorithm, where the probability of

selecting each chromosome is proportional to its fitness

value and is given by

𝑃(𝐶𝑚) =
𝐹𝑖𝑡(𝐶𝑚)

∑ 𝐹𝑖𝑡(𝐶𝑚)
𝑛

𝑚=1

 (7)

The recombination process consists of single-point

crossover, and the mutation is carried out in such a way

that a selected gene is replaced with one of the thirty-

eight admissible genes at random.

5. RESULTS AND DISCUSSIONS

Five three-variable functions have been mapped to the

two-level network of at most four majority gates

utilizing the genetic algorithm described in the previous

section. The GA results in a wide range of solutions for

the problem. Only six correct chromosomes that

implement each function are listed in Table 1. The

genetic codes identify the chromosomes. The shape of

each gene, which distinguishes its general function, is

also listed in the table. The last column of the table

shows the Boolean function of each gene. f1 can only be

implemented by four majority gates. Two of the genes

have 2-face and edge shapes, which mimic the OR and

AND operation, respectively. Figure 3a shows the two-

level implementation of f1 by four majority gates, where

the three genes 8D, 3F, and 60 are used. The second

function, f2, can be implemented in two ways: three

corner genes or two corner genes and one 1-face gene

that mimics a WIRE. The emergence of 1-face genes

reduces the number of majority gates. Therefore, f2 can

be implemented by three majority gates. Figure 3b

illustrates implementation of f2 by the genes 8D, 3F, and

60. f3 can be implemented by four or three majority

gates. The emergence of the true or 1-face gene in the

case of f3 also reduces the number of majority gates to

three gates (Figure 3c). Similarly, the false and 1-face

genes reduce the number of gates to two gates in the

implementation of f4. The last function, f5 is a majority

function as the three 1-face genes identify it. Figure 4

depicts the layouts of the four functions f1, f2, f3, and f4,

which were implemented by 195, 179, 114, and 41

quantum cells in QCA designer [8], respectively. In

QCA, the layout is significantly correlated to timing

[23] and power dissipation. We highlight that the

reduction in the number of majority gates does not

necessarily leads to optimization at the layout level and

performance. Consequently, the procedure of circuit

optimization should merge and correlate the layout and

logic levels of the design. Essential considerations in

floor-planning the QCA cells to increase the

performance may include the number of complemented

inputs, common inputs of the gates, wire lengths, wire

crossings, cells that lie in the same clock zone, fixed or

variable inputs, and spacing between wires.

Since GA gives a wide range of logic solutions, the

layout rules can be incorporated into the GA to filter the

solutions and achieve an optimization at the layout level

as well. Table 2 compares the GA methods which were

used in previous studies. Bonyadi et al. [19] have

optimized an MIG by the GA method. They have

presented how to optimize a single node which is

described by a three-variable logic function to reduce

the number of inverter (INV) and majority (MAJ) gates.

Houshmand et al. have combined and optimized two

MIGs by the GA to implement a two-output three-

M. Parvane et al. / IJE TRANSACTIONS B: Applications Vol. 33, No. 2, (February 2020) 229-236 233

TABLE 1. The GA implementation results

Function Genetic Codes Genetic Shapes Genetic Functions

f1=x̅1x3+x̅1x ̅2x3+x1x2x̅3+x̅2x3

K-map code: 2D

8D,3F,60 corner,2-face,edge M(x ̅1,x̅2,x3),M(x1,1,x3),M(0,x2,x̅3)

8D,6F,30 corner,2-face,edge M(x ̅1,x̅2,x3),M(1,x2,x3),M(x1,0,x̅3)

27,FC,09 corner,2-face,edge M(x1,x2,x3),M(x̅1,1,x̅3),M(0,x̅2,x3)

27,F9,0C corner,2-face,edge M(x1,x2,x3),M(1,x̅2,x̅3),M(x̅1,0,x3)

B1,6F,0C corner,2-face,edge M(x1,x̅2,x̅3),M(1,x2,x3),M(x̅1,0,x3)

E4,3F,09 corner,2-face,edge M(x ̅1,x2,x3),M(x1,1,x3),M(0,x̅2,x3)

f2=x̅1x2x3+x̅1x̅2x̅3+x1x2x̅3+x1x̅2x3

K-map code: A6

8D,27,B1 corner,corner,corner M(x ̅1,x̅2,x3),M(x1,x2,x3),M(x1,x̅2,x̅3)

8D,27,F0 corner,corner,1-face M(x ̅1,x̅2,x3),M(x1,x2,x3),M(0,1,x̅3)

8D,B1,66 corner,corner,1-face M(x ̅1,x̅2,x3),M(x1,x̅2,x̅3),M(0,x2,1)

27,B1,E4 corner,corner,corner M(x1,x2,x3),M(x1,x̅2,x̅3),M(x ̅1,x2,x̅3)

27,B1,CC corner,corner,1-face M(x1,x2,x3),M(x1,x̅2,x̅3),M(x ̅1,0,1)

27,E4,99 corner,corner,1-face M(x1,x2,x3),M(x̅1,x2,x̅3),M(0,x̅2,1)

f3=x1x2+x̅2x̅3

K-map code: B2

B1,F6,22 corner,2-face,edge M(x1,x̅2,x̅3),M(1,x2,x̅3),M(x1,x2,0)

EE,33,90 2-face,1-face,edge M(x ̅1,x2,1),M(x1,0,1),M(0,x̅2,x̅3)

BB,F6,90 2-face,2-face,edge M(x ̅1,x̅2,1),M(1,x2,x̅3),M(0,x̅2,x̅3)

BB,66,90 2-face,1-face,edge M(x ̅1,x̅2,1),M(0,x2,1),M(0,x̅2,x̅3)

F6,99,22 2-face,1-face,edge M(1,x2,x̅3),M(0,x̅2,1),M(x1,x2,0)

22,90,FF edge,edge,true M(x1,x2,0),M(0,x̅2,x̅3),1

f4= x1x̅2+x ̅2x3

K-map code: 19

D8,33,09 corner,1-face,edge M(x ̅1,x̅2,x̅3),M(x1,0,1),M(0,x̅2,x3)

1B,CC,11 corner,1-face,edge M(x1,x̅2,x3),M(x̅1,0,1),M(x1,x̅2,0)

D8,1B,11 corner,corner,edge M(x ̅1,x̅2,x̅3),M(x1,x̅2,x3),M(x1,x̅2,0)

1B,F9,11 corner,2-face,edge M(x1,x̅2,x3),M(1,x̅2,x̅3),M(x1,x̅2,0)

1B,99,00 corner,1-face,false M(x1,x̅2,x3),M(0,x̅2,1),0

3F,99,00 2-face,1-face,false M(x1,1,x3),M(0,x̅2,1),0

f5=x̅1x2+x2x3+x̅1x3

K-map code: 4E

0F,CC,66 1-face,1-face,1-face M(0,1,x3),M(x̅1,0,1),M(0,x2,1)

6F,CC,06 2-face,1-face,edge M(1,x2,x3),M(x̅1,0,1), M(0,x2,x3)

72,0F,CC corner,1-face,1-face M(x1,x2,x̅3),M(0,1,x3),M(x̅1,0,1)

4E,CC,22 corner,1-face,edge M(x ̅1,x2,x3),M(x̅1,0,1),M(x1,x2,0)

4E,F6,0C corner,2-face,edge M(x ̅1,x2,x3),M(1,x2,x̅3),M(x ̅1,0,x3)

D8,4E,4E corner,corner,corner M(x ̅1,x̅2,x̅3),M(x̅1,x2,x3),M(x̅1,x2,x3)

 (a) (b) (c) (d)
Figure 3. Logic level implementation of the four functions: (a) f1 with the genes 8D, 3F, and 60, (b) f2 with the genes 27, B1, and

CC, (c) f3 with the genes 22, 90, and FF, (d) f4 with the genes 3F, 99, and 00

234 M. Parvane et al. / IJE TRANSACTIONS B: Applications Vol. 33, No. 2, (February 2020) 229-236

 (a) (b) (c) (d)

Figure 4. Layout level implementation of the four functions: (a) f1 with the genes 8D, 60, and 3F, (b) f2 with the genes B1, 27, and

CC, (c) f3 with the genes 90, 22, and FF, (d) f4 with the genes 99, 00, and 3F

TABLE 2. Comparison of methods

Method Algorithm Input Optimization Mode Logic Optimization Multiple Input Output Multiple Implementation

Ref [19] MIG Single Node 3MAJ,INV Yes No

Ref [21,22] MIG Double Node 3MAJ,INV Yes No

Ref [25] MIG Double Node 3MAJ,5MAJ,INV Yes No

This work K-map Single Node 3MAJ Yes Yes

variable logic function [24]. They have focused on

minimizing the number of inverter (INV) and majority

(MAJ) gates as well. Roohi et al. [25] have used the

same mehode on the MIGs consist of three-input and

five-input MAJ gates. The input to their GA algorithms

are MIGs and the optimization level is at two nodes.

Logic functions should be mapped to MIGs before they

can be processed. Mapping of functions to MIGs

requires algorithms which were introduced a few years

later by Ameru et al. [11,17]. Ameru et al. have also

presented an algebraic optimization algorithm which

maps Boolean functions to cost-effective pure MIGs. In

our approach, any n-variable function is first

decomposed into a network of nodes, where each node

presents either a three-variable, two-variable, or one-

variable function using the decomposition technique

which was described in Section 3.1. Then each three

variable-function node is optimized by the GA

described in Section 3.2. We used the K-map of the

logic function as the input to GA. Since the introduction

of CMOS technology and the AND/OR operations,

mapping of a logic function to a K-map is easily

achieved. Our method optimizes only the number of

MAJ gates, and the optimization is done at a single

node. The GA optimization of a three-variable function

based on only majority logic is significantly efficient

and provides variety of implementations which allow us

to merge them with the layout rules. Also, compared to

the previous work [11], which uses a manual method to

implement functions by two or three majority gates, the

addition of the two genes, the true and false together

with the 1-face gene enables automatic implementation

of functions by three or two majority gates through the

GA.

5. CONCLUSIONS

We introduced four admissible majority patterns in the

geometric representation to aid in categorizing and

designating majority functions. These patterns are the

edge, corner, 1-face, and 2-face, which categorize the

thirty-eight admissible majority functions into four

groups. Functions with the edge, 2-face, and corner

patterns perform AND, OR, and majority logic

operations, respectively, while functions with the 1-face

pattern represent wires. We added two other patterns,

the true and the false, to make a complete set of forty

patterns. We used a genetic algorithm to implement any

three-variable function by at most four majority gates.

The advantages of GA over conventional algorithms are

that GAs are intrinsically parallel, so they are fast and

give a wide range of solutions, which can be merged

with layout rules to achieve a high-performance circuit

since, in QCA, timing depends on the layout.

6. REFERENCES

1. H. Sasaki, M. Ono, T. Yoshitomi, T. Ohguro, S.-I. Nakamura,

M. Saito, and H. Iwai, “1.5 nm direct-tunneling gate oxide si

mosfet’s,” IEEE Transactions on Electron Devices , Vol. 43,

No. 8, (1996), 1233-1242.

2. T. Nguyen and J. Plummer, “Physical mechanisms responsible

for short channel effects in mos devices,” IEEE International

Electron Devices Meeting, Vol. 1, (1981), 596-599.

3. C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein,

“Quantum cellular automata,” Nanotechnology, Vol. 4, (1993),

49–57.

4. C. S. Lent, “Bypassing the transistor paradigm,” Science, Vol.

288, No. 5471, (2000), 1597-1599.

M. Parvane et al. / IJE TRANSACTIONS B: Applications Vol. 33, No. 2, (February 2020) 229-236 235

5. R. S. Zebulum, M. A. Pacheco, and M. M. B. Vellasco,
Evolutionary electronics: automatic design of electronic circuits

and systems by genetic algorithms. CRC press, 2001.

6. J. F. Miller, D. Job, and V. K. Vassilev, “Principles in the
evolutionary design of digital circuits—part i,” Genetic

Programming and Evolvable Machines, Vol. 1, (2000), 7-35.

7. W. Wang, K. Walus, and G. A. Jullien, “Quantum-dot cellular
automata adders,” 3rd IEEE Conference on Nanotechnology,

Vol. 2, (2003), 461-464.

8. K.Walus,T.J.Dysart,G.A.Jullien,andR.A.Budiman,“Qcadesigner:
a rapid design and simulation tool for quantum-dot cellular

automata,” IEEE Trans. Nanotechnol., Vol. 3, (2004), 26-31.

9. K. Walus, M. Mazur, G. Schulhof, and G. A. Jullein, “Simple 4-

bit processor based on quantum-dot cellular automata (qca),”

IEEE International Conference on Application-Specific Systems,

Architecture Processors, Vol. 1, (2005), 288-293.

10. Z. Kohavi and N. K. Jha, Switching and finite automata theory.

Cam- bridge University Press, 2009.

11. R. Zhang, P. Gupta, and N. K. Jha, “Majority and minority

network synthesis with application to qca-, set-, and tpl-based

nanotechnologies,” IEEE Computer-Aided Design of

Integrated Circuits and Systems, Vol. 26, No. 7, (2007), 1233-

1245.

12. K. Walus, G. Schulhof, G. Jullien, R. Zhang, and W. Wang,
“Circuit de- sign based on majority gates for applications with

quantum-dot cellular automata,” Asilomar Conference on

Signals, Systems and Computers, Vol. 2, (2004), 1354-1357.

13. R. Zhang, K. Walus, W. Wang, and G. A. Jullien, “A method of

majority logic reduction for quantum cellular automata,” IEEE

Transaction Nanotechnol., Vol. 3, No. 4, (2004), 443-450.

14. L.Amaru,P.-E.Gaillardon,andG.DeMicheli,“Majority-

invertergraph: A new paradigm for logic optimization,” IEEE

Computer-Aided Design of Integrated Circuits and Systems,

Vol. 35, No. 5, (2015), 806-819.

15. M. Soeken, L. G. Amaru`, P.-E. Gaillardon, and G. De Micheli,

“Exact synthesis of majority-inverter graphs and its
applications,” IEEE Computer-Aided Design of Integrated

Circuits and Systems, Vol. 36, No. 11, (2017), 1842-1855.

16. L. Amaru, P.-E. Gaillardon, A. Chattopadhyay, and G. De
Micheli, “A sound and complete axiomatization of majority-n

logic,” IEEE Transactions Nanotechnology, Vol. 65, No. 9,

(2015), 2889-2895.

17. E. Testa, M. Soeken, L. G. Amaru`, W. Haaswijk, and G. De

Micheli, “Mapping monotone boolean functions into majority,”

IEEE Transactions Computers, Vol. 68, No. 5, (2018), 791-

797.

18. H. Riener, E. Testa, L. Amaru, M. Soeken, and G. De Micheli,

“Size optimization of migs with an application to qca and stmg
technologies,” in Proceedings of the 14th IEEE/ACM

International Symposium on Nanoscale Architectures. ACM,

(2018), 157-162.

19. M. Bonyadi, S. Azghadi, N. Rad, K. Navi, and E. Afjei, “Logic

opti- mization for majority gate-based nanoelectronic circuits
based on genetic algorithm,” International Conference on

Electrical Engineering, (2007), 1-5.

20. C. C. Coello, A. D. Christiansen, and A. H. Aguirre, “Automated
design of combinational logic circuits by genetic algorithm,”

Artificial Neural Nets and Genetic Algorithms, (1998), 333-

336.

21. M. Houshmand, S. H. Khayat, and R. Rezaei, “Genetic

algorithm based logic optimization for multi-output majority

gate-based nano-electronic circuits,” IEEE International
Conference on Intelligent Computing and Intelligent Systems,

Vol. 1, (2009), 584-588.

22. R. Rezaee, M. Houshmand, and M. Houshmand, “Multi-
objective opti- mization of qca circuits with multiple outputs

using genetic program- ming,” Genetic Programming and

Evolvable Machines, Vol. 14, No. 1, (2013), 95-118,.

23. M. T. Niemier and P. M. Kogge, “Problems in designing with

qcas: Layout= timing,” International Journal of Circuit Theory

and Applications, Vol. 29, No. 1, (2001), 49-62.

24. K. Das and D. De, “A novel approach of and-or-inverter (AOI)

gate design for QCA,” 4th International Conference on

Computers and Devices for Communication, Vol. 1, (2009), 1-4.

25. A. Roohi, B. Menbari, E. Shahbazi, and M. Kamrani, “A genetic

algorithm based logic optimization for majority gate-based qca

circuits in nanoelectronics,” Quantum Matter, Vol. 2, No. 3,

(2013), 219-224.

236 M. Parvane et al. / IJE TRANSACTIONS B: Applications Vol. 33, No. 2, (February 2020) 229-236

Optimization of Quantum Cellular Automata Circuits by Genetic Algorithm

M. Parvanea, E. Rahimia, F. Jafarinejadb

a Faculty of Electrical & Robotic Engineering, Shahrood University of Technology
b Faculty of Computer Engineering, Shahrood University of Technology

P A P E R I N F O

Paper history:
Received 21 October 2019
Received in revised form 10 January 2020
Accepted 17 Januray 2020

Keywords:
Quantum Cellular Automata
Majority Logic Synthesis
Genetic Algorithm
Nanotechnology

 چکیده

آورد. این عملیات محاسباتی و منطقی را در سطح مولکولی فراهم میامکان انجام آوری اتوماتای سلولی کوانتومی فن

ماس که از روشن آوری بر خلاف سیآوری مصرف توان کم و تراکم تراشه زیاد و قدرت بالای محاسباتی دارد. این فنفن

برد. دروازه منطقی سه شود، از آرایش بار الکتریکی برای نمایش اطلاعات بهره میو خاموش بودن ترانزیستور استفاده می

سازی مدارهای منظقی بر اساس روش متداول پیادهآوری است. بنابرین ترین دروازه منطقی این فن اصلیورودی اکثریت

AND-OR کنیم. برای پیاده میموثر نیست. در این مقاله چهار الگوی هندسی جدید برای تشخیص توابع اکثریت معرفی

ایم به طوری که هر تابع دلخواه را توسط توابع های اکثریت از الگوریتم ژنتیک استفاده کردهدروازهسازی سایر توابع با

سازی بیشتر مدار های خاص باعث سادهدهیم ظهور ژننشان می کند. سازی میاکثریت سه ورودی در دو سطح پیاده

های زیاد امکان م ژنتیک سرعت بالای آن به دلیل موازی بودن آن است که همراه با تعداد جواب الگوریتمزیت شود. می

 .دهدطراحی بهینه جانمایی مدار را می

doi: 10.5829/ije.2020.33.02b.07

