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A B S T R A C T  
 

 

Quantum cellular automata (QCA) enables performing arithmetic and logic operations at the molecular 

scale. This nanotechnology promises high device density, low power consumption and high 
computational power. Unlike the CMOS technology where the ON and OFF states of the transistors 

represent binary information, in QCA, data is represented by the charge configuration. The primary 

and basic device in this paradigm is the three-input majority gate, thus in QCA, the conventional AND-
OR mapping for implementation of logic functions is not effective. We introduce four primitive 

admissible geometric patterns,  which aid in the identification of majority functions. For a non-

majority function, a genetic algorithm (GA) is used to map the function to at most four majority gates 
in a wide range of implementations. We show that the emergence of specific genes will result in a 

further reduction in the number of majority gates in the network. The GA is intrinsically parallel and 

results in variety of implementations, which allows  merging the layout and logic levels of the design 

and provides an important approach towards designing high-performance QCA circuits. 

doi: 10.5829/ije.2020.33.02b.07 
 

 
1. INTRODUCTION1 
 
The CMOS technology, in the era of silicon, is 

approaching its limiting barriers of downscaling. 

Further miniaturization of CMOS devices is challenging 

due to quantum, short channel and several other effects 

[1, 2]. The demand for tiny size electronic devices, 

along with ultra-fast switching speed and ultra-low 

power dissipation has induced the driving force on the 

research for developing advanced nanoscale and 

molecular devices, which could be synthesized by 

inexpensive chemistry. The conventional CMOS 

technology utilizes transistors as electronic switches, 

where the ON and OFF states of the transistors 

represent binary information ‘1’ and ‘0’ respectively. 

The Boolean logic, functions of Boolean logic variables 

and Karnaugh maps (K-maps) were developed a few 

decades before the first transistor was fabricated in 

CMOS technology. The research in digital logic design 

and data structures fitted to CMOS technology has been 
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enriched within the past five decades. Unlike the 

traditional transistors where surges of electrons produce 

current, and the information is encoded in the voltage 

states, modern nanoscale devices may utilize charge or 

spin of an electron to represent binary information. 

Furthermore, in designing nanodevices, behavioral, 

logic, and layout levels of design may be correlated and 

merged. Therefore, conventional logic design methods 

and models may not satisfy the requirements of 

nanoscale devices. Quantum cellular automata (QCA) is 

a paradigm in nanotechnology that encodes binary 

information in the charge configuration [3]. It promises 

to perform computation at the molecular size with ultra-

low power and ultra-fast speed [4]. While in CMOS 

technology, the primitive gates are AND, OR, and NOT, 

in QCA, there are two basic gates; the majority (M) and 

the inverter (I). Thus, traditional gate-level techniques 

and data structures do not generally work for the 

optimization and manipulation of logic functions 

implemented in QCA. The usefulness of QCA logic 

depends on the existence of effective synthesis 

procedures and computer-aided design (CAD) tools. 
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 (a)     

(b)   

(c)  

Figure 1. (a) Binary representation by charge configuration; 

(b) QCA majority gate (M) and its symbol; (c) QCA inverter 

gate (I) 

 

 

The QCA logic has roots in the majority gates, majority 

data structures, and majority functions. The research in 

developing methods for implementation of majority 

functions and CAD tools for QCA is quite immature . 

The genetic algorithm (GA) approach in designing and 

optimization of conventional digital and analog circuits 

has been the subject of research in the last few decades 

[5,6]. The advantages of GAs over traditional 

algorithms are that they are intrinsically parallel, there is 

a high chance of getting an optimal solution, and a wide 

range of solutions is possible. In this paper, we review 

previous works on representation and implementation of 

majority functions and utilize a genetic algorithm to 

reduce the number of majority gates in implementation 

of any three-variable function. The remainder of this 

article is organized as follows. Section 2 presents QCA 

paradigm and corresponding logic gates in brief. We 

review the methods of recognizing majority functions 

and contribute a new approach based on geometric 

representation. A brief review of majority logic 

implementation and reduction methods based on the K-

map, three-cube, and GA is given in section 3.  Our 

proposed method, the two-level mapping based on GA, 

is presented in section 4. We describe and discuss the 

results in section 5. Finally, section 6 gives the 

conclusions. 

 

 

2. THEORY 

 
2. 1. QCA Paradigm         In QCA, binary data is 

represented by the location of electric charges. The 

primary building block of QCA is a square cell with 

four quantum dots and two electrons, where each 

electron is localized in only one quantum dot [3]. 

Electrostatic repulsion forces between electrons and 

makes them be localized in antipodal quantum dots, 

resulting in two configurations, which represent the 

binary ‘0’ and ‘1’ (Figure 1a). By arranging the cells 

near each other, QCA devices are constructed. The 

electrons cannot leave the cells, and the interactions 

between cells are electrostatic. The state of each cell is 

determined by calculation of the ground state energy, 

where the total forces are minimized. Figures 1b and 1c 

illustrate QCA majority gate (M) and inverter gate (I), 

respectively. The majority and the inverter gates provide 

a complete set of primitive devices to implement any 

Boolean function. The wire is used to transport binary 

data, and the majority gate performs the following logic 

operation on the three inputs x1, x2 and x3, 

𝑓 = 𝑀(𝑥1, 𝑥2, 𝑥3) = 𝑥1𝑥2 + 𝑥2𝑥3 + 𝑥1𝑥3  (1) 

The result of the majority function (M) is ‘1’ when at 

least two of the inputs are ‘1’. Moreover, the majority 

gate can perform the logic AND operation on the two of 

its inputs when the third input is set to ‘0’.  Also, it can 

mimic the two-input OR gate when the third input is set 

to ‘1’. That is M(x1,x2,0)=x1x2, and M(x1,x2,1)=x1+x2. 

Conventionally, the inverter gate complements the 

input. Several circuits including the full adder [7], 

memory [8] and processor [9] have been implemented 

in QCA. Since majority gates can mimic the AND and 

OR gates, there is a possibility of using conventional 

AND-OR mapping based on the K-map method for 

implementation of Boolean functions in QCA; however, 

this method is naive. As an example, the AND-OR 

implementation of the function: 

𝑓 = 𝑥1𝑥3 + 𝑥1𝑥2𝑥3 + 𝑥1𝑥2𝑥3 + 𝑥2𝑥3,  (2) 

requires six majority gates, which perform four AND 

and two OR operations. However, as we show in section 

3, four majority gates can implement this function. 

 

2. 2. Identification of Majority Logic Functions         

If a three-variable function is a majority function, it can 

be implemented by a single majority gate. Thus, as a 

primary step, the given function is examined to find out 

whether it is a majority function or not. There are 

several methods to find this out; including the algebraic, 

geometric, computational, and K-maps techniques [10]. 

The majority function is a specific type of threshold 

logic, and since every threshold logic is unate, the 

majority function is unate as well. Two useful 

representations of a logic function are the geometric and 

K-map [10]. In the geometric representation, the 

vertices of a hypercube are used. Since every three-

variable function has eight states, vertices of a three-

cube can be used to represent true or false states. By 

using the K-map representation, it can be shown that 

there are thirty-eight admissible patterns for the three-

variable majority functions, where ten of them are 

positive [11]. Compared to K-map primitive patterns, 

we show that in three-cube representation, the number 

of primitive patterns is even less. There are only four 

patterns, which are illustrated in Figure 2. These  

state '0' state '1'
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patterns are called the edge, corner, 1-face, and 2-face. 

The edge, corner, and 1-face patterns represent the  

AND, majority (M), and OR operations, 

respectively. The 2-face pattern consists of two faces of 

the cube, which have an intersection. This pattern 

represents a wire. For example, the functions 

M(x1,0,x3)=x1x3,  M(x1,x2,x̅3), M(1,x ̅2,x3)= x ̅2+x3, and 

M(1,0,x ̅3)= x ̅3 correspond to edge, corner, 1-face and 2-

face patterns, respectively. Since every cube has eight 

corners, twelve edges, six 1-faces  and twelve 2-faces, a 

set of complete admissible majority patterns with thirty-

eight elements can be designated with the primitive 

patterns in the geometric representation. 

 

 

3. IMPLEMENTATION METHODS 
 

There are generally two approaches to implement a 

three-variable function by majority gates, including the 

conventional algorithmic methods and heuristic 

methods based on the GA. These techniques are either 

based on the geometric, K-map, or algebraic 

representation. 

 

3. 1. The Geometric and Algebraic Methods        In 

order to synthesize a multi-output network with 

majority gates, the following procedure, which consists 

of some manual algebraic steps, can be applied [11]. 

First, each node Nj is decomposed into nodes, nj that 

have no more than three inputs. Node Nj is examined to 

find out whether it is a majority function. If it is a 

majority function, then the next node nj+1 is processed. 

Otherwise, nj is checked to determine whether two or 

three majority gates can implement it. If there is a 

common literal in all the product terms of nj, it is 

factored out. Then the AND-OR mapping is applied. As 

an example, in f =x1x ̅2+x ̅2x3 the term x̅2 is common and 

can be factored out as f =f1x ̅2, where f1=x1+x3. Thus, 

two majority gates are required. If there is no common 

literal, the node nj is checked to determine whether 

fewer than four AND-OR gates can implement it. 

Otherwise, finally, it is possible to implement it by four 

majority gates utilizing the K-map methods. The K-map 

methods are either manual [12] or automatic and 

algorithmic  [11]. In a method based on the three-cube 

representation of functions, thirteen standard functions 

have been recognized to form a standard table. The 

three-variable function is reduced to one of the standard 

functions utilizing a manual algebraic technique, and the 

majority logic implementation of the function can be 

found in the standard table [13] . The K-map based 

methods try to find three majority functions f1, f2 and f3 

using the K-map of f in such a way that 

𝑓 = 𝑀(𝑓1, 𝑓2, 𝑓3) = 𝑓1𝑓2 + 𝑓2𝑓3 + 𝑓1𝑓3. (4) 

In the manual method, the K-map of three majority 

functions f1, f2 and f3 are constructed by application of 

the translation, rotation and  mirror operations 

heuristically on the four primitive K-maps [12]. The 

automatic method uses an algorithm to find the K-map 

of the three majority gates f1, f2 and f3 [11].  

More recent attention has focused on algebraic 

optimization methods [14-18], where representing and 

optimizing logic are carried out by using only the 

majority and inversion operations as basic operations. In 

these methods, logic functions are mapped into the 

majority-inverter graphs (MIGs), and exclusive Boolean 

algebra is applied. The points of a graph are accessed by 

primitive axioms, and with the aid of MIG algebraic 

algorithms, MIGs are optimized.   

 

3. 2. Genetic Algorithm Methods         The GA is a 

heuristic search method in an evolutionary set of 

probable solutions, which is called population. Each 

solution is encoded in a sequence of data, which is 

called chromosome. The chromosome consists of 

smaller units, where each unit is called a gene. The 

search starts in a primary random population, and a 

fitness value is assigned to each chromosome. The next 

generation of the population is formed by selecting 

some of the chromosomes with high fitness values from 

the previous population and creating new chromosomes. 

In order to generate a new chromosome, the crossover 

and mutation operators are applied to the old 

chromosomes. During the crossover process, some 

genes between two chromosomes are exchanged. A 

mutation is a random change in a gene of a 

chromosome. The GA has been used for the 

optimization of the number of gates in traditional 

combinational circuits in CMOS technology, where the 

AND, NOT, XOR and WIRE are the primitive gates 

[20]. The logic circuit is mapped to a network of gates, 

where each gate has two inputs and one output. The 

second input of each gate is connected to the output of a 

previous-level gate. The entire network is a 

chromosome, where each gene represents the gate type 

and the first input connection. In the case of QCA, a 

chromosome in the form of a MIG has been used to 

implement a three-input logic function and to minimize 

the number of majority functions [19]. The internal 

nodes can be the majority (M) and inverter (I) gates, 

while the external nodes (leaves) are variables or the 

                 
       (a)                    (b)                     (c)                       (d) 

Figure 2. Four primitive admissible patterns in the geometric 

representation: (a) the edge pattern, (b) the corner pattern, (c) 

the 1-face pattern, (d) the 2-face pattern 

x1

x2

x3

x1

x2

x3
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logic ‘1’. This chromosome has been altered later 

[21,22], to implement a two-output circuit. In most 

cases, the aim is to reduce the number of majority gates. 

 

 

4. TWO-LEVEL MAPPING BASED ON GA 
 
Any three-variable function f(x1,x2,x3) can be mapped to 

a two-level network of up to four majority gates. We 

use GA to find a number of chromosomes in the form of 

sets as Cm={gi,gj,gk} with three genes gi,gj, and gk, where 

f=M(gi,gj,gk), and the order of genes is not important. 

Each gene encodes the K-map of an admissible majority 

function. We represent any three-variable K-map by a 

hexadecimal number, where the most and least 

significant nibble designates the first and second row of 

the K-map, respectively. As an example, the K-map of 

the majority function M(x1,x2,x3) and  M(x1,x2,x ̅3) is 

encoded as 27 and F6, respectively. The procedure of 

the GA is as follows. The initial population is formed by 

a random selection of n (the population size) genes from 

the set of forty patterns, which consists of thirty-eight 

admissible majority functions, the true gene (FF), and 

the false gene (00). The latter two genes aid in the 

reduction of the number of majority gates and possible 

implementation of f by two or three majority gates.  The 

shapes of the thirty-eight admissible majority functions 

are the edge, corner, 1-face, and 2-face in the geometric 

representation. The majority operation is applied to the 

K-maps of the three genes gi,gj, and gk, in a cell-wise 

manner, and the result is stored in the form of a new K-

map, r.  If the K-map of r is the same as K-map of f, the 

correct chromosome has been found. The fitness 

function for the mth chromosome Fit(Cm) uses the 

distance difference Dist(f,r) between the K-map of f and 

K-map of r,  such that 

𝐹𝑖𝑡(𝐶𝑚) = {
2, if 𝐷𝑖𝑠𝑡(𝑓, 𝑟) = 0

1/𝐷𝑖𝑠𝑡(𝑓, 𝑟), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,  (5) 

where, Dist(f,r) is defined as, 

𝐷𝑖𝑠𝑡(𝑓, 𝑟) = ∑ |𝑖=7
𝑖=0 𝑓𝑖 − 𝑟𝑖|,  (6) 

and, ith element in the K-map of f and r is denoted by fi 

and  ri, respectively. The fitness function gets values in 

the range [0.125,2], where 2 signifies the correct 

chromosome. The selection method is based on the 

roulette wheel algorithm, where the probability of 

selecting each chromosome is proportional to its fitness 

value and is given by 

𝑃(𝐶𝑚) =
𝐹𝑖𝑡(𝐶𝑚)

∑ 𝐹𝑖𝑡(𝐶𝑚)
𝑛

𝑚=1

  (7) 

The recombination process consists of single-point 

crossover, and the mutation is carried out in such a way 

that a selected gene is replaced with one of the thirty-

eight admissible genes at random. 

5. RESULTS AND DISCUSSIONS 
 

Five three-variable functions have been mapped to the 

two-level network of at most four majority gates 

utilizing the genetic algorithm described in the previous 

section. The GA results in a wide range of solutions for 

the problem. Only six correct chromosomes that 

implement each function are listed in Table 1. The 

genetic codes identify the chromosomes. The shape of 

each gene, which distinguishes its general function, is 

also listed in the table. The last column of the table 

shows the Boolean function of each gene. f1 can only be 

implemented by four majority gates. Two of the genes 

have 2-face and edge shapes, which mimic the OR and 

AND operation, respectively.  Figure 3a shows the two-

level implementation of f1 by four majority gates, where 

the three genes 8D, 3F, and 60 are used. The second 

function, f2, can be implemented in two ways: three 

corner genes or two corner genes and one 1-face gene 

that mimics a WIRE. The emergence of 1-face genes 

reduces the number of majority gates. Therefore, f2 can 

be implemented by three majority gates. Figure 3b 

illustrates implementation of f2 by the genes 8D, 3F, and 

60. f3 can be implemented by four or three majority 

gates. The emergence of the true or 1-face gene in the 

case of f3 also reduces the number of majority gates to 

three gates (Figure 3c). Similarly, the false and 1-face 

genes reduce the number of gates to two gates in the 

implementation of f4. The last function, f5 is a majority 

function as the three 1-face genes identify it. Figure 4 

depicts the layouts of the four functions f1, f2, f3, and f4, 

which were implemented by 195, 179, 114, and 41 

quantum cells in QCA designer [8], respectively. In 

QCA, the layout is significantly correlated to timing 

[23] and power dissipation. We highlight that the 

reduction in the number of majority gates does not 

necessarily leads to optimization at the layout level and 

performance. Consequently, the procedure of circuit 

optimization should merge and correlate the layout and 

logic levels of the design. Essential considerations in 

floor-planning the QCA cells to increase the 

performance may include the number of complemented 

inputs, common inputs of the gates, wire lengths, wire 

crossings, cells that lie in the same clock zone, fixed or 

variable inputs, and spacing between wires. 

Since GA gives a wide range of logic solutions, the 

layout rules can be incorporated into the GA to filter the 

solutions and achieve an optimization at the layout level 

as well. Table 2 compares the GA methods which were 

used in previous studies. Bonyadi et al. [19] have 

optimized an MIG by the GA method. They have 

presented how to optimize a single node which is 

described by a three-variable logic function to reduce 

the number of inverter (INV) and majority (MAJ) gates. 

Houshmand et al. have combined and optimized two 

MIGs by the GA to implement a two-output three- 
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TABLE 1. The GA implementation results 

Function Genetic Codes Genetic Shapes Genetic Functions 

f1=x̅1x3+x̅1x ̅2x3+x1x2x̅3+x̅2x3 

K-map code: 2D 

8D,3F,60 corner,2-face,edge M(x ̅1,x̅2,x3),M(x1,1,x3),M(0,x2,x̅3) 

8D,6F,30 corner,2-face,edge M(x ̅1,x̅2,x3),M(1,x2,x3),M(x1,0,x̅3) 

27,FC,09 corner,2-face,edge M(x1,x2,x3),M(x̅1,1,x̅3),M(0,x̅2,x3) 

27,F9,0C corner,2-face,edge M(x1,x2,x3),M(1,x̅2,x̅3),M(x̅1,0,x3) 

B1,6F,0C corner,2-face,edge M(x1,x̅2,x̅3),M(1,x2,x3),M(x̅1,0,x3) 

E4,3F,09 corner,2-face,edge M(x ̅1,x2,x3),M(x1,1,x3),M(0,x̅2,x3) 

f2=x̅1x2x3+x̅1x̅2x̅3+x1x2x̅3+x1x̅2x3 

K-map code: A6 

8D,27,B1 corner,corner,corner M(x ̅1,x̅2,x3),M(x1,x2,x3),M(x1,x̅2,x̅3) 

8D,27,F0 corner,corner,1-face M(x ̅1,x̅2,x3),M(x1,x2,x3),M(0,1,x̅3) 

8D,B1,66 corner,corner,1-face M(x ̅1,x̅2,x3),M(x1,x̅2,x̅3),M(0,x2,1) 

27,B1,E4 corner,corner,corner M(x1,x2,x3),M(x1,x̅2,x̅3),M(x ̅1,x2,x̅3) 

27,B1,CC corner,corner,1-face M(x1,x2,x3),M(x1,x̅2,x̅3),M(x ̅1,0,1) 

27,E4,99 corner,corner,1-face M(x1,x2,x3),M(x̅1,x2,x̅3),M(0,x̅2,1) 

f3=x1x2+x̅2x̅3 

K-map code: B2 

B1,F6,22 corner,2-face,edge M(x1,x̅2,x̅3),M(1,x2,x̅3),M(x1,x2,0) 

EE,33,90 2-face,1-face,edge M(x ̅1,x2,1),M(x1,0,1),M(0,x̅2,x̅3) 

BB,F6,90 2-face,2-face,edge M(x ̅1,x̅2,1),M(1,x2,x̅3),M(0,x̅2,x̅3) 

BB,66,90 2-face,1-face,edge M(x ̅1,x̅2,1),M(0,x2,1),M(0,x̅2,x̅3) 

F6,99,22 2-face,1-face,edge M(1,x2,x̅3),M(0,x̅2,1),M(x1,x2,0) 

22,90,FF edge,edge,true M(x1,x2,0),M(0,x̅2,x̅3),1 

f4= x1x̅2+x ̅2x3 

K-map code: 19 

D8,33,09 corner,1-face,edge M(x ̅1,x̅2,x̅3),M(x1,0,1),M(0,x̅2,x3) 

1B,CC,11 corner,1-face,edge M(x1,x̅2,x3),M(x̅1,0,1),M(x1,x̅2,0) 

D8,1B,11 corner,corner,edge M(x ̅1,x̅2,x̅3),M(x1,x̅2,x3),M(x1,x̅2,0) 

1B,F9,11 corner,2-face,edge M(x1,x̅2,x3),M(1,x̅2,x̅3),M(x1,x̅2,0) 

1B,99,00 corner,1-face,false M(x1,x̅2,x3),M(0,x̅2,1),0 

3F,99,00 2-face,1-face,false M(x1,1,x3),M(0,x̅2,1),0 

f5=x̅1x2+x2x3+x̅1x3 

K-map code: 4E 

0F,CC,66 1-face,1-face,1-face M(0,1,x3),M(x̅1,0,1),M(0,x2,1) 

6F,CC,06 2-face,1-face,edge M(1,x2,x3),M(x̅1,0,1), M(0,x2,x3) 

72,0F,CC corner,1-face,1-face M(x1,x2,x̅3),M(0,1,x3),M(x̅1,0,1) 

4E,CC,22 corner,1-face,edge M(x ̅1,x2,x3),M(x̅1,0,1),M(x1,x2,0) 

4E,F6,0C corner,2-face,edge M(x ̅1,x2,x3),M(1,x2,x̅3),M(x ̅1,0,x3) 

D8,4E,4E corner,corner,corner M(x ̅1,x̅2,x̅3),M(x̅1,x2,x3),M(x̅1,x2,x3) 

 

 

 

 
                   (a)                                      (b)                                            (c)                                          (d) 
Figure 3.  Logic level implementation of the four functions: (a) f1 with the genes 8D, 3F, and 60, (b) f2 with the genes 27, B1, and 

CC, (c) f3 with the genes 22, 90, and  FF, (d) f4 with the genes 3F, 99, and 00 
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             (a)                                                        (b)                                                                 (c)                                                             (d) 

Figure 4. Layout level implementation of the four functions: (a) f1 with the genes 8D, 60, and 3F, (b) f2 with the genes B1, 27, and 

CC, (c) f3 with the genes 90, 22, and  FF, (d) f4 with the genes 99, 00, and 3F 

 

 
TABLE 2. Comparison of methods 

Method Algorithm Input Optimization Mode Logic Optimization Multiple Input Output Multiple Implementation 

Ref [19] MIG Single Node 3MAJ,INV Yes No 

Ref [21,22] MIG Double Node 3MAJ,INV Yes No 

Ref [25] MIG Double Node 3MAJ,5MAJ,INV Yes No 

This work K-map Single Node 3MAJ Yes Yes 

 

 

variable logic function [24]. They have focused on 

minimizing the number of inverter (INV) and majority 

(MAJ) gates as well. Roohi et al. [25] have used the 

same mehode on the MIGs consist of three-input and 

five-input MAJ gates. The input to their GA algorithms 

are MIGs and the optimization level is at two nodes. 

Logic functions should be mapped to MIGs before they 

can be processed. Mapping of functions to MIGs 

requires algorithms which were introduced a few years 

later by Ameru et al. [11,17]. Ameru et al. have also 

presented an algebraic optimization algorithm which 

maps Boolean functions to cost-effective pure MIGs. In 

our approach, any n-variable function is first 

decomposed into a network of nodes, where each node 

presents either a three-variable, two-variable, or one-

variable function using the decomposition technique 

which was described in Section 3.1. Then each three 

variable-function node is optimized by the GA 

described in Section 3.2. We used the K-map of the 

logic function as the input to GA. Since the introduction 

of CMOS technology and the AND/OR operations, 

mapping of a logic function to a K-map is easily 

achieved. Our method optimizes only the number of 

MAJ gates, and the optimization is done at a single 

node. The GA optimization of a three-variable function 

based on only majority logic is significantly efficient 

and provides variety of implementations which allow us 

to merge them with the layout rules. Also, compared to 

the previous work [11], which uses a manual method to 

implement functions by two or three majority gates, the 

addition of the two genes, the true and false together 

with the 1-face gene enables automatic implementation 

of functions by three or two majority gates through the 

GA. 

 

5. CONCLUSIONS 
 

We introduced four admissible majority patterns in the 

geometric representation to aid in categorizing and 

designating majority functions. These patterns are the 

edge, corner, 1-face, and 2-face, which categorize the 

thirty-eight admissible majority functions into four 

groups. Functions with the edge, 2-face, and corner 

patterns perform AND, OR, and majority logic 

operations, respectively, while functions with the 1-face 

pattern represent wires. We added two other patterns, 

the true and the false, to make a complete set of forty 

patterns. We used a  genetic algorithm to implement any 

three-variable function by at most four majority gates. 

The advantages of GA over conventional algorithms are 

that GAs are intrinsically parallel, so they are fast and 

give a wide range of solutions, which can be merged 

with layout rules to achieve a high-performance circuit 

since, in QCA, timing depends on the layout. 
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 چکیده 

 

 

آورد. این عملیات محاسباتی و منطقی را در سطح مولکولی فراهم میامکان انجام آوری اتوماتای سلولی کوانتومی فن

ماس که از روشن آوری بر خلاف سیآوری مصرف توان کم و تراکم تراشه زیاد و قدرت بالای محاسباتی دارد. این فنفن

برد. دروازه منطقی سه  شود، از آرایش بار الکتریکی برای نمایش اطلاعات بهره میو خاموش بودن ترانزیستور استفاده می

سازی مدارهای منظقی بر اساس روش متداول  پیادهآوری است. بنابرین ترین دروازه منطقی این فن اصلیورودی اکثریت 

AND-OR  کنیم. برای پیاده  میموثر نیست. در این مقاله چهار الگوی هندسی جدید برای تشخیص توابع اکثریت معرفی

ایم به طوری که هر تابع دلخواه را توسط توابع  های اکثریت از الگوریتم ژنتیک استفاده کردهدروازهسازی سایر توابع با 

سازی بیشتر مدار  های خاص باعث سادهدهیم ظهور ژننشان می کند. سازی میاکثریت سه ورودی در دو سطح پیاده

های زیاد امکان م ژنتیک سرعت بالای آن به دلیل موازی بودن آن است که همراه با تعداد جواب الگوریتمزیت شود. می

 .دهدطراحی بهینه جانمایی مدار را می 

doi: 10.5829/ije.2020.33.02b.07 

 

 


