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A B S T R A C T  
 

 

A novel element with arbitrary domain shape by using decoupled scaled boundary finite element 
(DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary 

conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable 

boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are 
incorporated in analysis. The considered element stiffness and mass matrix are developed and 

extracrted. This element is able to model any curved or sharp edges without any aproximation and also 

the element is able to model any arbitrary domain shape as a single element without any meshing. The 
coefficient matrices for the element such as mass and stiffness matrices are diagonal symmetric and all 

equations are decoupled by using Gauss-Lobatto-Legendre (G.L.L) quadrature. The element is used in 

order to calculate modal parameters by Finite element method for some benchmark examples and 

comparing the answers with Helmholtz equation solution. The most important achievment of this 

element is solving matrix equations instead of differential equations where cause faster calculations 

speed. The boundaries for this element are solved with matrix calculation and the whole interior 
domain with solving governing equations numerically wich leads us to an exact answer in whole 

domain. The introduced element is applied to calculate some benchmark example which have exact 

solution. The results shows accuracy and high speed of calculation for this method in comparison with 
other common methods. 

doi: 10.5829/ije.2020.33.02b.03 
 

NOMENCLATURE   

0
D  Coefficient matrix LCO  Local Coordinate Origin 

1
D  Coefficient matrix Greek Symbols  

F  Load vector   Density (kg/m3) 

M  Mass matrix   Tangentical coordinate 

u  Displacement   Radial coordinate 

u   First derivative of displacement   Natural frequency relation function 

u  Second derivative of displacement   Natural frequency 

 
1. INTRODUCTION1 
 
In early numerical methods there were only two 

alternative solution procedures available to solve a 

problem [1]. Either internal cells had to be defined or 
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fundamental solution had to be found which took into 

account all the terms in the governing equation [1-3]. 

After improvement of the numerical methods in recent 

decades some new methods were added to this type of 

analysis, any of these methods have advantageous and 

disadvantages [4, 5]. As an engineer it is very important 

to select a method with high speed of calculation and 

high accuracy of answers. In this way mesh-less 
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methods were developed and used widely in order to 

solve problems with high speed of calculation but the 

accuracy of answer was always an important factor for 

designers and engineers [6-8]. The most widely used 

procedure in solid mechanics and many other fields of 

engineering and physics are the finite element method 

(FEM) and the boundary element method (BEM). The 

unknown continuous solution is replaced, for instance in 

statics, by algebratic equations in terms of parameter 

definig the approximate solution. Both methods exhibit 

their specific features, advantages and disadvantages. In 

the FEM the domain is spatially dicretised into non-

overlapping elements. In each such finite element, shape 

functions in the form of polynomials interpolate, for 

instance, the displacements. Standard numerical 

integration of these regular functions leads to a simple 

approximation for the behaviour of each finite element, 

for instance, consisting of the (symmetric) static 

stiffness and mass matrices [5]. In the BEM, only the 

boundary is discretised spatially into elements, leading 

to a reduction of the spatial dimension by one. This 

diminishes the effort of data prepration and leads to 

fewer unknowns. However, a so-called fundamental 

solution, satisfying the governing differential equations 

in the domain must be available in literature [9, 10]. By 

combinig the advantages of the BEM and FEM the 

scaled boundary finite element method (SBFEM) were 

created and used in order to solve many semi analytical 

problems [11]. The method is a semi-analytical 

procedure for solving linear partial differential 

equations.  

A modification of the scaled boundary finite element 

method with diagonal coefficient matrices (DSBFEM) 

has been proposed for solving potential problems and it 

is applied to solve easto-estatic and elasto-dynamic 

problems [12-14]. In this study, we used decoupled 

scaled boundary finite element method (DSBFEM) as 

an element in analysis with FEM procedure for 

eigenvalue Helmholtz problems and benchmark 

examples with availavle exact solutions. 

The Lagrange polynomials is used as mapping 

functions and also Gauss-Lobatto-Legendre quadrature 

is employed in order to calculate coefficient matrices. 

 

 

LCO

 
Figure 1. Ability of suggested technique in modelling of 

arbitrary shape domains without meshing or suset division 

The technique is used to solve 2D problems [15]. One 

of the most important achievment of this technique is 

the ability of using it to model arbitrary shape problem 

domains as a single element without any division to 

subset elements or meshing the domain (Figure 1). By 

this way the Local Coordinate Origin (LCO) which was 

at a point with direct view to whole domain, is relocated 

at center of area of problem which helps us to obtain 

many arbitrary problem shapes as a unique domain to 

solve the problem. The proposed element’s relocated 

LCO causes changes in tangential and radial equations. 

The element’s boundary nodes equations remain 

decoupled as we use GLL quadrators. Mass and 

stiffness matrices creations need to make new formulas 

and using new methods which described in following 

scopes of this paper. The formulas were developed and 

some benchmark examples are solved by these 

techniques and results are plotted and compared with 

exact solution. 
 

 

2. A REVIEW ON DSBFEM 
 
The basic concepts of DSBFEM is expressed in 

literature [14]. The novelty of this paper is considering 

whole domain as a single element in FEM analysis 

approach by relocating local-coordinate-origin (LCO) 

from a corner of the domain with direct view to whole 

boundary to center of the area of element which can 

cause to calculate huge elements with arbitrary shapes 

without meshing and subset elements. The global 

Cartesian coordinates in 2D problems are , in 

which using the Lagrange polynomials would be 

transmitted into local coordinates , where  is 

radial coordinate from the LCO  to the 

boundaries  and  is tangential coordinate which 

varies between -1 and +1 on the boundaries (Figure 2.).  

Each element on the boundaries is analogous to a line, 

the geometry of a boundary point can be transferred to 

radial tangential coordinates by using higher order of 

Chebyshev polynomials mapping function. After 

calculating stiffness and mass matrix by this method, 

modal analysis is possible and natural frequencies, 

periods and mode shapes are available by solving main 

dynamical equation of modal analysis . 

The stiffness and mass matrices for the presented 

element can be calculate by using new techniques which 

are described in this paper and are presented in the 

following scopes. 

Mass matrix in this method is similar to DSBFEM 

and fully described in literature [14], the novelty is 

calculating the stiffness matrix for the presented 

element which described in following scopes. 

 
2. 1. DSBFEM Formualation           The basic rules and 

concepts of DSBFEM is presented in literature [15]. In 

this method, the domain will consider as an element and 
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Figure 2. Radial , Tangential coordinates 

 
 
local-coordinate-origin (LCO) is selected at center of 

the area of element which can cause to calculate huge 

elements with arbitrary shapes. The general formulation 

of transfer operators and mapping functions are 

described in literature [16]. By considering transform 

equations, the Lagrange polynomials have the properties 

of the Kronecker delta at any control point 

. As it is clear to prepare  parent 

element,  nodes are required, where two end-

nodes are located at the extremity  of the element 

and other remained nodes are located at Gauss-Lobbato-

Legendre points. These points are the first roots of the 

first order derivative of order  Legendre polynomials: 

( ) 0
n

d
P

d 




=  (1) 

All formulation of DSBFEM is reliable in the element; 

so the governing equation for engineering problems is 

solved by the rules of DSBFEM for 2D problems: 

( ) ( ) ( )0 1

, ,

1
. . [ ]{ }

b

ii i ii i i
D u D u F M u

  
  


+ + =  (2) 

The coefficient matrices of Equation (2) is completely 

extracted and described in literature [16]. The 

mentioned coefficient matrices are also use in proposed 

element as well and use in order to create stiffness and 

mass matrix for the element which leads us to extract 

Stiffness and Mass matrices for whole domain. It is 

worth noting that the coefficient matrices in Equation 

(2) can be non-zero or in some circumstanses they can 

be zero which depends on the boundary shapes. 

 

2. 2. Modal Analysis with Suggested Element   In 

order to calculate modal parameters for a problem, 

general formulation of structural dynamic can be 

applied . While we have relocated the 

LCO, we have to calculate stiffness matrix by 

considering new condition. 
 

 

3. MATHEMATICAL DEVELOPMENT OF THE 
SUGGESTED ELEMENT 
 

As mentioned above, by relocating LCO we have to 

calculate stiffness matrix and mass matrix for suggested 

technique. In following scopes, the formulation for new 

introduced element is described and formulation is 

developed. 

 

3. 1. Stiffness Matrix Creation          To create the 

stiffness matrix for an element, consider each node on 

boundaries is connected to the LCO by a line which has 

the properties of the whole domain. This lines are 

connected together at LCO. All this lines have their own 

stiffness in their local coordinates let us call these lines 

sub-elements. Each line of stiffness matrix is made of 

applying a unit displacement at any degree of freedom 

and calculate the reaction of other degrees of freedom. 

This procedure needs to be calculated in two main steps: 
• First: Fixing all degrees of freedom except one we 

want to apply a unit displacement and calculate the 

respectively force which made by the unit 

displacement at intersection point of the sub-

elements (LCO). 

• Second: Divide the calculated force at LCO 

between all the sub-elements respecting to their 

stiffness. 

 
3. 1. 1. Applying Unit Displacement          The sub-

elements in their nature can be assumed as a bar 

element and since we are calculating at 2D space, each 

node has two degrees of freedom while we regardless 

the flexural freedoms. LCO can be considered as a 

restrain for each sub-element. It is clear that this restrain 

is not rigid and also one can find out that the rigidity of 

LCO is consist of rigidity of all incoming sub-elements. 

The produced force due to displacement of a node at 

local coordinate can be calculated as Equation (3) 

   0

i
F D u =     (3) 

when each degree of freedom is released to move freely 

in case of non-exist of external forces, the governing 

differential equation for element is linear in 

corresponding to : 

{ } ( ) { } { }
i i i

u A B = +  (4) 

where in Equation (4) the Bi term is displacement at 

LCO which is zero in this case and due to boundary 

conditions at  , and Ai term Equation (4) can be 1 

corresponding to applied displacement at node. 

If a unit displacement applied in a degree of freedom 

such as k, it is simply can be find out: 
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If direct boundaries imagine for the domain, only  

term is non-zero in equations. By considering the LCO 

as a restrain, its rigidity is made of all arrival sub-

elements to the LCO, this rigidity can be calculating by 

the following formula 

0 0

1

n

LCO
i i

D D
=

   =   
 

(6) 

where n is the amount of nodes which considered at the 

boundaries. The forces which calculated by Equation 

(8) can make   at LCO.  

   
1

0 0

LCO ii LCO i
u D D u

−

    =      
(7) 

 
3. 1. 2. Returning the LCO Force     The produced 

force at LCO due to applying a unit displacement at a 

degree of freedom, can be divide between all sub-

elements which arrived at LCO. There are two 

situations can be considered. The first is reflection and 

the second is refraction. General formula to calculate 

refracting force to each sub-element can be written as 

Equation (8) 

  ( ) 0 ( ) 0
i ii

D u F   − =   
(8) 

the term  can be calculated as follow for k-

element 

   
0

( ) ( ( ))
i iLCO k LCOi i

F D u u u    = + −
 

(9) 

solving Equation (10) leads us to calculate displacement 

in whole domain among  direction as following 

formula 

( )     

     

3

2

1
( )
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(10) 

the stiffness matrix can be created for any sub-element 

which called i due to release of k sub-element and j is a 

counter which varies between 1 to n: 

  ( ) (2 1) 0 *

(2 )

. 1
i j

i kk k i
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k
k D u
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 = = =   

   

(11) 

where  is defined as follows: 

     

   

* 21
( ) ( )

2

.
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LCO LCOi i
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  = −

 + +

 
(12) 

as mentioned above, the term  can be calculated as 

follow 

       
3 1

4 6
LCO LCOi i

u u u u
 

 = − − 
   

(13) 

by using equilibrium at LCO, the term  can be 

calculated by Equation (14): 

     
1

0 0

1

1

6

N

LCO j jLCO j
j

u D D u u
−

=

= +
  

           
  (14) 

Therefore by using achieved amounts in Equation (11), 

the stiffness matrix will be created after using the 

formulation for each degree of freedom. 

 

3. 2. Mass Matrix Creation     Calculating the mass 

matrix in this method is similar to DSBFEM and clearly 

described in literature [16]. 
 

 

4. THE HELMHOLTZ EQUATION 
 
The solution of the Helmholtz equation provides the 

natural or fundamental frequencies and vibration modes 

for a system [1, 16-18]. The Equation in its usual form 

is given by following equation: 

2 2 0u u + =  (15) 

where the coefficient  is related to the natural 

frequency and u represents the displacements. Consider 

the vibrating rod shown in Figure 3. In this case 

 where  and  are material 

properties and  is natural frequencies. For illustrating 

the accuracy of suggested method and comparing with 

exact solution, some benchmark examples are solved by 

and compared with the exact solution by Helmholtz 

equation. 

 

 

5. NUMERICAL EXAMPLES 
 

This section describes the detailed numerical solution of 

representative numerical examples in order to illustrate 

the use of proposed method. Considering the vibrating 

rod and different boundary conditions leads to calculate 

modal parameters. Consider the free vibration of the 

rods shown in Figure 3. The exact solution, natural 

frequencies and normal mode shapes are given in Table 

1. Where  and  is an integer which takes 

values up to the order desired. 

 
5. 1. Fixed-free Rod        As an example consider the 

rod shown in Figure 3. Whole domain is divided to 32 

boundary nodes with 13 nodes in each long side and 

modal analysis is done to calculate the modal 

frequencies and the first four mode shapes (Figure 4). 
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Figure 3. Vibrating fixed-free rod 

 

 

TABLE 1. Exact solution of vibrating rods [1] 

Type Equation Displacement Con. 
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0
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Exact solution for the mentioned rod is shown and 

compared in Table 2. For clarifying the method’s 

accuracy, different geometries are considered for the 

domain with constant and equal to 0.9 in all the 

examples but width is considered to be 0.2 and 0.4. 
 

5. 2. Free-free Rod         As an another example the 

geometry shown in Figure 3 is considered to be free-

free. The results are shown in Table 3. Results is 

compared with exact solution. It is clear that by 

increasing boundary nodes the results will be more 

accurate. 
 

5. 2. Fixed-fixed Rod           As an another example the 

rod geometry which shown in Figure 3 assumed to be 

both end fixed. The whole domain divided to 32 nodes 

and results are shown in Table 4. The whole domain is 

calculated by only 32 boundary nodes and results is 

compared with exact solution (Figure 5).  
 

 
TABLE 2. Comparing exact natural frequencies with 

presented method solution fixed-fixed and 32 nodes element 

Mode 

No. 

B=0.2  B=0.4  

Exact 

[1] 

Presented 

method 
Err. 

Exact 

[1] 

Presented 

method 
Err. 

1 8.75 8.55 0.02 8.75 8.66 0.01 

2 26.25 27.28 0.03 26.25 27.45 0.04 

3 43.75 43.3 0.01 43.75 43.89 0.003 

4 61.25 60.82 0.007 61.25 75.2 0.22 

TABLE 3. Comparing exact natural frequencies with 

presented method solution free-free and 32nodes element 

Mode 

No. 

B=0.2  B=0.4  

Exact 

[1] 

Presented 

method 
Err. 

Exact 

[1] 

Presented 

method 
Err. 

1 17.854 18.84 0.05 17.584 18.92 0.07 

2 35.179 42.62 0.21 35.179 42.71 0.21 

3 52.76 52.71 9e-4 52.76 53.24 9e-3 

4 67.032 70.12 0.04 67.032 70.53 0.05 

 

 

TABLE 4. Comparing exact natural frequencies with 

presented method solution fixed-free rod and 32nodes element 

Mode 

No. 

B=0.2  B=0.4  

Exact 

[1] 

Presented 

method 
Err. 

Exact 

[1] 

Presented 

method 
Err. 

1 17.854 18.84 0.05 17.584 18.92 0.07 

2 35.179 42.62 0.21 35.179 42.71 0.21 

3 52.76 52.71 9e-4 52.76 53.24 9e-3 

4 67.032 70.12 0.04 67.032 70.53 0.05 

 

 

TABLE 5. Effects of increasing boundary nodes to fist natural 

frequency of a fixed-fixed bar 

Boundary 

nodes 

First natural 

frequency 

Quantative 

Error 

Exact Natural 

Frequency 

8 22.99 0.3 

17.584 

16 18.84 0.07 

24 17.95 0.02 

32 17.65 0.003 

48 17.61 0.001 
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Figure 4. The first four mode shapes of a fixed-free rod 

 

 

As mentioned above, the element can have different 

boundary nodes, so an eight nodes element stiffness and 

mass matrix are smaller than fourty eight nodes element 

and also this cause lower calculation cost, the error 

reduces from 0.3 to 0.001 by using higher nodes  
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Figure 5. The first four mode shapes of a vibrating fixed-fixed 

(free-free) rod  

 

 

elements. Also the main reason of errors can be defined 

by this approach, when the element is bounded with low 

amount of boundary nodes some parts are missed in 

modelling and these parts shows their missing in 

stiffness matrix where causes error in calculating modal 

parameters. 

 

 

5. CONCLUSIONS 
 

In this paper, a new element is introduced and applied to 

calculate modal parameters of some benchmark 

examples which have exact solution by FEM approach. 

The results show the accuracy and reliability of 

answers, one of the most important achievement of the 

suggested element is ability of modelling any arbitrary 

domain shapes as a single element and extracting 

stiffness and mass matrices for the whole domain. One 

of the most important achievement of suggested method 

is solving matrix equations instead of coupled 

differential equations and green functions where are 

common in boundary methods and also no needs to 

approximation in domain where is possible to occur in 

FE methods. The main advantegous of DSBFEM is the 

ability of the method to calculate the domain stress and 

strains by solving differential equations without any 

interpollations or aproximation where the presented 

element has this benefit too. Boundaries strains and 

stresses of the element are calculated by matrix 

calculations and interior domain strains and stresses 

calculate by solving decoupled numerical differential 

equations where causes accuracy simultaneous low 

calculation cost. 
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 چکیده 

 

 

کل دلخواه با استفاده از روش اجزای محدود غیر مزدوج مقیاس شده در این مقاله برای آنالیز مقادیر یک المان جدید با ش

ویژه مسائل ارتعاش دو بعدی میله با شرایط مرزی مختلف ارائه شده است. با استفاده از المان ارائه شده در این مقاله، 

سازی گشته و نتایج ترسیم گشته است. تمام حالات شکل مودهای مختتلف ارتعاشی میله با شرایط مختلف مرزی مدل

های جرم و سختی  مختلف برای شرایط گیرداری در این مقاله گنجانیده شده است. برای المان در نظر گرفته شده ماتریس

های تیزگوشه و منحنی شکل  توان به قابلیت آن برای مدلسازی کنجهای این المان میاستخراج گردیده است. از ویژگی

های مختلف با تنها یک المان بدون نیاز به مش بندی را اشاره کرد. سازی هندسهبدون تقریب و توانایی آن در مدل

باشند و تمامی معادلات به علت  های مشارکت مانند جرم و سختی برای این المان به صورت قطری و متقارن میماتریس

باشند. این المان برای محاسبه پارامترهای ر به صورت غیر مزدوج میلوژاند –لوباتو  –های گاوس ایاستفاده از چندجمله

های مشخصه به کار گرفته شده است و دقت آن با حل از طریق معادله مودال با استفاده از روش اجزای محدود در مثال

Helmholtz ی معادلات مورد مفایسه قرار گرفته است. مهمترین دستاورد این المان حل معادلات ماتریسی به جا

تواند سرعت حل مسائل را بسیار افزایش دهد. تقاط مرزی در این روش با جبر ماتریسی به  باشد که میدیفرانسیلی می

ها درون  گردد که موجب افزایش دقت در پاسخآید و دامنه مسئله با حل معادلات دقیق دیفرانسیلی محاسبه میدست می

ها نشانگر دقت  چند مثال مشخصه بال پاسخ تحلیلی به کار گرفته شده است و پاسخ گردد. این المان برای محاسبهدامنه می

 . های متداول داردو سرعت بالای این روش در دستیابی به جواب در قیاس با روش
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