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A reliable speech enhancement method is important for speech applications as a pre-processing step to
improve their overall performance. In this paper, we propose a novel frequency domain method for single
channel speech enhancement. Conventional frequency domain methods usually neglect the correlation
between neighboring time-frequency components of the signals. In the proposed method, we take this
correlation into account via: 1) considering neighboring correlation for speech signals, we break down
the clean speech into two uncorrelated components; 2) considering neighboring correlation for noise, we
approximate the noise as a rank-1 component. Then, we design a linearly constrained minimum variance
(LCMV) filter which aims at removing the dominant part of the noise, while keeping the speech signal
undistorted. Performance of the proposed method is evaluated in terms of output signal to noise ratio
(SNR) and speech distortion index under various noise environments. Evaluation results demonstrate
that our method yields higher noise reduction and lower speech distortion compared to some recent

methods.
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1. INTRODUCTION

Noise is ubiquitous and easily contaminates speech
signals, and degrades signal quality. This affects
performance of speech applications such as
teleconferencing systems, speech coding, automatic
speech recognition, and necessitates integrating speech
enhancement module as a front-end processor to improve
their overall performance. Therefore, due to the extent
and diversity of its applications, speech enhancement has
received a significant amount of research attention, and
variety of methods have been proposed in the literature
[1] Most of these methods work in the frequency domain,
where the most common approach is to filter the short-
time Fourier transform (STFT) of the noisy speech in
order to reduce the effect of noise from the speech. In
filtering techniques, since both clean speech and noise
pass through the filter, speech distortion is inevitable. In
fact, as proved in the literature, the more the noise is
reduced, the more the speech is distorted. So, it is
important to control the trade-off between noise
reduction and speech distortion for optimal quality.
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Traditional methods like classical Wiener filter [2],
spectral subtraction methods [3-5] and model based
methods [6-8] have been developed with no explicit
control on the amount of speech distortion. The
coefficients of the Wiener filter are estimated by
minimizing the mean square error between clean and
estimated speeches. In spectral subtraction methods, the
noise spectrum is obtained and updated during speech
silent periods, and the clean speech spectrum is estimated
by subtracting the noise spectrum from the spectrum of
the noisy speech. Model based methods usually assume
statistical models like Gaussian, Laplacian and Gama
distributions for clean speech and noise, and then,
recover the clean speech spectral amplitude by
minimzing the mean square error or finding the
maximum a posteriori estimate.

Recently some research efforts have been devoted to
design optimal filters by considering noise reduction and
speech distortion measures [9-13]. These filters can be
divided into two categories: filtering vectors and
rectangular filtering matrices. Using these filters, a
sample or a vector of clean speech are respectively
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estimated by passing a vector of noisy speech through a
filtering vector or a rectangular filtering matrix. Each
category has its own pros and cons, and different types of
optimal filters e.g., minimum variance distortionless
response (MVDR), maximum signal to noise ratio (SNR)
and linearly constrained minimum variance (LCMV)
filters, have been proposed in both categories [9].
MVDR filter reduces the noise as much as possible, while
guarantees that no speech distortion is occurred.
Maximum SNR filter yields the highest possible output
SNR at the expense of tremendous speech distortion. In
this paper, we focus on LCMV filter. The advantage of
this approach is that, it can handle more than one
constraint at the same time, which makes it possible to
better manage the trade-off between noise reduction and
speech distortion.

To simplify the problem of speech enhancement,
conventional frequency domain methods usually neglect
the correlation between neighboring STFT coefficients.
So, filtering operation is performed by applying a gain
function to the STFT of the noisy speech only in the
current frequency bin and frame. Recently, the methods
presented in papers [10] and [11] have respectively
considered interframe and intraframe correlations of
speech signals for speech enhancement. In this paper we
take advantage of neighboring correlations [14] (which
also contain both interframe and intraframe correlations)
of speech and noise, and design an LCMV filter for
speech enhancement. The main contributions of this
paper are summarized as follows:

- We consider neighboring correlations for both clean
speech and noise, and derive a low-rank model for
noise based on this correlation.

- We design an LCMV filter based on two different
decompositions for clean speech and noise:
orthogonal decomposition for clean speech, and low-
rank decomposition for noise.

We show effectiveness of the proposed method
through various experiments.

The remainder of this paper is as follows: in Section
2, we describe neighboring correlation and model the
signal in frequency domain. In Section 3, we derive an
LCMV filter by taking neighboring correlations into
account. We present experiments in Section 4 to show
performance of the proposed method. The paper is
concluded in Section 5.

2. SIGNAL MODEL

The aim of speech enhancement is to recover the clean
speech x(t) from the noisy speech y(t), which is
mathematically defined as:

y(@) = x(t) + v(t) )

where t indicates the discrete time index and v(t) is the
additive noise, which is assumed to be uncorrelated with

x(t). Applying the STFT to the noisy speech y(t) is done
as follows:

Y(f. k) = X(f, k) + V(f, k) @

where f = 1,2, ..., F denotes the frequency bin index and
k =1,2,..,K denotes the time frame index. To take
neighboring correlations into account, we stack
neighboring STFT components of the noisy speech into
a vector. This yields the following vector signal model:

y(f. k) =x(f, k) + v(f, k) (3)
with

YO =Y —Fk—K)Y(f—F+1k—-K)..
Y(f+E,k—K.)..Y(f—E,k+K.) 4

Y(f-E+1L,k+K).Y(F+F, k+K)|"

which is a vector of size L = (2F, + 1) x (2K, + 1), the
superscript T indicates the transpose operator, F, and K,
respectively indicate the numbers of frequency bins and
frames before and after frequency bin f and frame k, and
x(f, k) and v(f, k) are defined similar to y(f, k). Based
on the fact that clean speech and additive noise are
assumed to be uncorrelated, the correlation matrix of
noisy speech vector y(f, k) can be written as follows:

@y(f, k) = Ely(f, )y(f, I)"] = ©x(f, k) +
@y (f, k)

where E[-] denotes mathematical expectation, the
superscript H denotes complex transpose-conjugation,
and  ®,(f, k) = E[x(f, I)x(f,k)"] and ®,(f, k) =
E[v(f, k)v(f, k)H] are respectively correlation matrices
of x(f, k) and v(f, k).

®)

3. PROPOSED LCMV FILTER

Our purpose in the proposed method is to estimate
X(f, k) fromy(f, k). To do so, we use the linear filtering
approach as follows:

X(f. k) =
S S g Mo (FIOY(F+ k4K (6)

=h(f, k)y(f, k),

where X(f, k) is the estimate of X(f, k), the superscript
“x” denotes complex conjugation, and

h(f, k) =
[H_p,-k,(f k) H_pe1,-k (f K)o He, g (f K)o (7)
H_p ki (f k) H_p 41,6, (f ) - H i (f, )T

is a complex-valued filtering vector of size L =
(2E. + 1) x (2K, + 1).

Orthogonal decomposition has recently been used in
the literature to express the noisy speech vector as an
explicit function of the signal of interest [9-11]. Using
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this approach, we decompose x(f, k) into two orthogonal
components:

X(f'k) = pX(flk)X(frk) +X,(fl k)

®)
=xq(f, k) +x'(f, k),

where

px(f ) = FELEE ©
is the normalized neighboring correlation vector,
xq(f, k) = px(f, k)X(f, k) is the desired signal vector,
and  x'(f, k) =x(f, k) — px(f,K)X(f, k) is the
interference signal vector, which is uncorrelated with
X(f, k). Using (3) and (8), we have

y(f, k) = x4(f, k) + w(f, k), (10)

where w(f, k) =x'(f, k) + v(f, k) is the combined
noise.

We also use the reduced rank technique, which is
widely used in subspace based speech enhancement
methods, to model the noise vector [15]. In subspace
based methods, speech enhancement is performed in time
domain and because of the high self-correlation of speech
signal, it is assumed to have a low-rank linear model. So,
the dimension of speech subspace is considered to be
much smaller than that of the noisy speech space, and the
bases of this subspace are obtained through eigenvalue
decomposition of the correlation matrix or singular value
decomposition of the data matrix. This technique has
been used to model speech and noise in time domain [12,
13]. In STFT domain, noise matrix is assumed to lie near
a rank-1 subspace because of the correlation within noise
time frames [16]. We use the same assumption in the
proposed method to model the noise vector because of
the strong correlation between neighboring components
of the noise in STFT domain. Using eigenvalue
decomposition, we get,

Oy (f, k) = Qu(f, DA, QW (f, k) (11)

Wwhere Qu(f k) = [qw,l(f'k) (Iw,z(f,k) qw,L(f/k)] is
an orthogonal matrix holding eigenvectors and
Aw(f, k) = diag (g1 (f, 1), Mg 2 (£, ), o, 2 (1)) S @
diagonal matrix holding eigenvalues of the noise
correlation matrix. Rank-1 approximation for noise
subspace yields to the assumption: Aiy,(f k) >
vz (f k) = -+ = Ay L(f, k). Based on this assumption, we
model the noise vector as follows:

w(f, k) = Qw1 (f, K)aw . (f, OW(F, k) + w' (£, k)
=wa(f, k) + w'(f, k)

where q,,(f, k) is the eigenvector corresponding to the
largest eigenvalue i, (f, k), quw:(f,k)gl ,(f k) is the
orthogonal projection matrix which projects the noise
vector to a rank-1 subspace that is assumed to concentrate

(12)

most of the energy of the noise, so we call wy(f, k) =
qw1(f, Kl L (f, K)w(f, k) as the dominant noise vector,
and  w'(f, k) = Xicy qua (f, ), (f, )W (f, k) is  the
remaining noise. Using (6), (10) and (12) we have:

)?(fl k) = hH(fJ k)Xd(f, k) + hH(fr k)Wd(f, k)
+h¥(f, )W’ (f, k) (13)
= de(fr k) + Wrd(frk) + VVT,r(fJ k)

where X¢4(f, k) = h¥(f,k)xq(f, k) is the filtered desired
signal, W,.(f, k) = W (f,k)wy(f, k) is the residual
dominant noise, and W/.(f,k) = hf(f,k)w'(f, k) is the
residual remaining noise. The error signal between the
estimated signal X(f, k) and the desired signal X(f, k) is
defined as:

e(f, k) = X(f,k) — X(f, k)

=Xpa(f 1) = X(f, k) + Wrq(f k) + Wi (f, k) (14)
= ed(f' k) + eqv}l(f' k) + er(ff k),
where e;(f, k) = Xy (F k) — X(fik)=

(W (f, k) px (f, k) — 1) X(f, k) is the speech distortion
due to the complex filter vector, ey,  (f, k) = Wy4(f, k) is
the residual dominant noise and e, (f, k) = W;,.(f, k) is the
residual remaining noise.

In the proposed method, we derive the LCMV filter
by minimizing the energy at the filter output with the
constraints that: 1) the speech is not distorted
(E{eZ(f,k)} = 0), and 2) the residual dominant noise is
cancelled (E{eg  (f,k)} = 0). This is mathematically
equivalent to:

hicuy (f, k) = argmin W (f, K)@y (f, k)h(f, k)

(15)
s.it. WA(F,)px(f, k) =1, h(f, k)qu.(f, k) =0
which can be rewritten as

by (f k) = argmin h (f, )@y (f, k)h(f, k)
(16)

s.t. h#(f,l)T(f, k) = [1 0],

where T(f, k) = [px(f, k) quw.(f, k)]. To solve this
optimization problem, we first adjoin the constraint to the
objective function using a Lagrange multiplier. Then, we
derivate the objective function with respect to h(f, k) and
set it to zero. So, the solution is obtained as:

hyeyy (f; k) =

-1 a7
©5 (T (1) (T, 005 (0T ) [1]

Once the clean speech STFT components are estimated
by applying the proposed LCMV filter to the noisy
speech vectors, the enhanced speech is obtained in time
domain by performing inverse STFT followed by the
overlap-add method.
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4. EXPERIMENTS AND RESULTS

In this section, we carry out a number of simulations to
evaluate and compare the proposed method for speech
enhancement.

4. 1. Simulation Conditions In our experiments,
we use 10 randomly selected speech files from the TIMIT
database [17]. Six different types of noises from the
NOISEX-92 database [18] including white, car, babble,
factory, f16 and hfchannel are added to clean speech
signals at SNR levels of -5 dB, 0 dB, 5 dB and 10 dB to
generate noisy speech signals. The sampling rates of the
noise and speech signals are adjusted to 8 kHz. The STFT
is implemented with a hamming window of length 64
samples, and a hop of 48 samples. To design the filter,
we empirically set F. =K, =2 in our experiments,
which yields L = 25.

To implement the proposed LCMV filter, we need to
estimate correlation matrices @, (f, k) and @, (f, k), and
the normalized neighboring correlation vector px(f, k).
Because the noisy speech is accessible, we can easily
compute @ (f, k). But to compute ®,(f, k) we would
need a noise estimator like the one proposed in [19].
However, we skip the noise estimation process and
directly estimate noise statistics from the noise signal as
was done in papers [10-13]. In this paper, we initially
estimate @, (f, k) and @,(f, k) using 200 frames from
their corresponding signals. Then, we use the rest frames
of the signals for performance evaluations, where
@, (f, k) and @, (f, k) are recursively updated as [10]:

q)y(fr k) =

18)
xyd)y(f' k— 1) + (1 - }"y)Y(fl k)Y(fl k)H

q)v(fr k) =
xvd)v(f' k — 1) + (1 - }"V)V(f' k)V(f, k)HI

where 0 <2, < 1and0 < A, < 1are forgetting factors.
We set i, =L, =0.8 in our experiments. After
®,(f, k) and ®,(f, k) are estimated, based on (5), we
obtain estimate of ®,(f,k) according to ®.(f, k) =
@y (f, k) — ®,(f, k). Then, we take py(f,k) as the
((L+1)/2)th vector of ®, normalized by its
((L + 1)/2)th element.

(19)

4. 2. Performance Evaluations In Figure 1, we
present a visual example of speech enhancement using
the proposed method. Figures 1(a) and (b) show
waveform and spectrogram of the noisy speech (with
SNR=0 dB), Figures 1(c) and (d) show wavform and
spectrogram of noise, Figures 1(e) and (f) show wavform
and spectrogram of clean speech, Figures 1(g) and (h)
show wavform and spectrogram of enhanced speech
(which is a combination of filtered desired signal,
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Figure 1. Signal waveforms and spectrograms for the
proposed LCMV filter: (a) and (b) noisy speech with SNR=0
dB, (c) and (d) white noise, (e) and (f) clean speech, (g) and
(h) enhanced speech, (i) and (j) filtered desired signal, (k)
and (I) residual dominant noise, (m) and (n) residual
remaining noise

residual dominant noise and residual remaining noise),

Figures 1(i) and (j) show wavform and spectrogram of

filtered desired signal, Figures 1(k) and (I) show

wavform and spectrogram of residual dominant noise,

Figures 1(m) and (n) show wavform and spectrogram of

residual remaining noise. As the figure shows, the filtered

desired signal highly resembles the clean speech signal,
and the residual dominant noise is highly mitigated. This
example shows effectiveness of the proposed method.

For further evaluations, we compare performance of our

proposed method with those of the following methods:

1. Frequency domain minimum variance distortionless
response filter, which takes interframe correlation
into account [10].

2. Frequency domain minimum variance distortionless
response filter, which takes intraframe correlation
into account [11].

To compare performance of these methods, we
calculate output SNR and speech distortion index on the
enhanced speechs obtained using these methods. Output
SNR which quantifies the level of noise remaining at the
output of the filter is defined as [11]:
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E{x7,4()}

SNR =101 _
? o810 E{(wra(t)+w£r(t))z}

(20)

where x4 (t), wq(t) and wy,.(t) are respectively the
time domain signals reconstructed from X.,(f,k),
W,q(f, k) and W,.(f, k). Higher oSNR means lower
residual noise, which indicates a better performance of
the method.

Speech distortion index which quantifies the distortion
level of the desired signal due to the filtering operation is
defined as [11]:

E{(xfd(t)—x(t))z} 1)
E(x2(0)}
Lower vy, indicates lower speech distortion, which
means better performance of the method.
Tables 1 and 2 present comparison results in terms of
output SNR and speech distortion index, respectively, at
different noise conditions.

Vsq = 10logyo

TABLE 1. Performance comparisons in terms of output SNR
Noise type Method -5dB 0dB 5dB 10dB

White Proposed 8.07 10.90 1386 17.01
[11] 7.56 1044 1348  16.69
[10] 6.96 10.06 13.33  16.67
Car Proposed 8.16 1092 1383  17.06
[11] 7.67 1055 1353  16.67
[10] 7.31 10.33 1353  16.97
Babble Proposed 6.58 9.22 1213 1532
[11] 5.93 8.64 1148 1455
[10] 5.78 8.52 11.62  15.04
Factory Proposed 7.60 10.39  13.37  16.63
[11] 7.12 10.02  13.04 16.27
[10] 6.70 9.73 13.02  16.56
F16 Proposed 7.32 1011 13.07 16.30
[11] 6.84 9.76 1281  16.01
[10] 6.40 9.40 12.66  16.13
Hfchannel Proposed 8.15 10.82 1365 16.74
[11] 7.81 1044 1335 16.55
[10] 7.10 10.05 1314  16.40
Average Proposed 7.64 10.39 13.31 16.51
[11] 7.15 9.97 1294  16.12
[10] 6.70 9.68 12.88  16.29

TABLE 2. Performance comparisons in terms of speech
distortion index

Noise type Method -5dB 0dB 5dB 10dB

White Proposed -22.28 -30.85 -4395 -51.40
[11] -1428 -2154 -30.92 -43.30
[10] -16.44  -22.32 -29.66 -38.10
Car Proposed -22.73 -30.11 -39.89 -51.00
[11] -17.09 -23.92 -3354 -51.58
[10] -16.38  -22.46 -29.63 -37.71
Babble Proposed -19.15 -2529 -34.71 -47.86
[11] -13.98 -20.33 -30.56 -47.05
[10] -12.85 -18.08 -2464 -32.27
Factory Proposed -22.38  -30.78 -4425 -52.82
[11] -1548 -2250 -32.77 -53.20
[10] -15.82  -21.98 -2956 -38.33
F16 Proposed -20.65 -28.34 -39.64 -48.83
[11] -14.07 -21.19 -31.21 -46.84
[10] -1408 -20.17 -2753 -35.74
Hfchannel Proposed -25.19 -35.75 -46.65 -53.12
[11] -16.04 -23.11 -32.20 -45.55
[10] -17.42  -2328 -30.68 -39.79
Average Proposed -22.06 -30.18 -4151 -50.83
[11] -15.15 -22.09 -31.86 -47.92
[10] -1549 -21.38 -28.61 -36.99

As the results show, compared to the competing
methods, our proposed method achieves the highest
oSNR at all noise conditions while achieving the lowest
speech distortion index at 22 out of 24 noise conditions,
where the only exceptions are car and factory noises at
SNR level of 10 dB. Also, averaged results over all noise
types are presented at the last row of the tables to give
general comparisons at different SNR levels. Based on
these results, our method yields higher output SNR and
lower speech distortion than the competing methods at all
SNRs, which confirms superiority of the proposed
method.

Here we explain the reasons for the superiority of the
proposed method:

1. Neighboring correlation is a stronger correlation
than interframe or intraframe correlations, which
means Equation (8) is a better model for speech
signal in our proposed method. This explains why
the proposed method causes less speech distortion.
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2. By considering a low rank model for noise, because
of its neighboring correlation in STFT domain, we
manage the proposed filter to cancel the dominant
part of the noise. This explains why the proposed
method achieves higher noise reduction.

To further evaluate performace of the proposed
method, we apply the well-known perceptual evaluation
of speech quality (PESQ) metric [20]. PESQ reflects
perceptual quality of enhanced speech and has a high
correlation with subjective judgements of speech quality
[21]. Higher PESQ indicates higher quality of the
enhanced speech. Table 3 presents PESQ results of the
proposed method and the following competing methods:

TABLE 3. Performance comparisons in terms of PESQ

Noise type Method -5dB 0dB 5dB 10dB

White Proposed 242 2.76 3.09 3.40
[11] 2.32 2.59 2.87 3.17
[10] 1.96 2.34 2.74 3.09
[14] 243 2.67 2.93 3.17
Car Proposed 2.55 2.87 3.17 3.46
[11] 242 2.68 2.92 3.22
[10] 2.27 2.65 2.98 3.28
[14] 2.50 2.73 297 3.20
Babble Proposed 2.40 2.67 2.98 3.33
[11] 2.30 252 2.77 3.05
[10] 2.16 2.46 2.79 3.14
[14] 234 254 277 3.01
Factory Proposed 2.75 3.06 3.39 3.68
[11] 2.60 2.87 3.19 3.50
[10] 2.57 2.89 3.25 3.56
[14] 2.79 3.02 3.25 3.44
F16 Proposed 244 2.75 3.08 3.38
[11] 2.36 2.60 2.87 3.16
[10] 211 2.48 2.82 3.19
[14] 2.45 2.65 2.87 3.11
Hfchannel Proposed 2.39 271 3.03 3.34
[11] 231 2.58 2.87 3.12
[10] 197 2.33 2.72 3.07
[14] 2.36 2.63 2.87 3.09
Average Proposed 2.49 2.80 3.12 3.43
[11] 2.38 2.64 291 3.20
[10] 217 2.52 2.88 3.22

[14] 247 270 294 317

1. Frequency domain minimum variance distortionless
response filtering vector, which takes interframe
correlation into account [10].

2. Frequency domain minimum variance distortionless
response filtering vector, which takes intraframe
correlation into account [11].

3. Frequency domain minimum variance distortionless
response rectangular filtering matrix, which takes
neighboring correlation into account [14].

Comparison of the results show that our method
outperforms the methods in [10] and [11] at all noise
conditions, and outperforms the method in [14] at 21 out
of 24 noise conditions, where the only exceptions are
white, factory and f16 noises at SNR level of -5 dB.

General comparison results presented in the last row of

the table confirms superiority of the proposed method at

all noise levels in terms of PESQ.

5. CONCLUSION

This paper deals with the problem of single channel
speech enhancement in frequency domain. Unlike
conventional frequency domain methods that assume the
neighboring STFT coefficients are independent, this
neighboring correlation is considered in the proposed
method. Also, noise is considered to lie near a rank-1
subspace. Then, an LCMYV filter is derived to preserve
the speech and remove the dominant part of the noise.
The evaluation using output SNR and speech distortion
index metrics showed that the proposed method
outperforms the two recently developed methods.
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