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A B S T R A C T  
 

 

In this paper, modified solutions were compared through utilizing three different approximate methods 

for bar structures. The modifications considered various changes in the initial design. To authors' best of 
knowledge, the studies have carried out on this matter so far are not broad enough and have considerred 

the simeltaneous variations of size, geometry and topology on the bar structures. In this study, three well-

known methods, including combined approximation, rational approximation and the approximate 
inversion of stiffness matrix methods are formulated. A large variety of problems will be performed with 

different characteristics to compare the ability of these approaches in determining the suitable 

approximate modified displacements. Cross sectional properties and nodal coordinates are considered as 
design variables. Displacement errors and computational efforts of the processes considered as 

comparison factors. It is shown that the approximate inversion of the stiffness matrix method cannot 

solve the problems, which requires the modification of structural geometry. Furthermore, the combined 
approximation and rational approximation methods have the ability of reaching displacements with 

suitable quality in the problems with a moderate size. 

doi: 10.5829/ije.2020.33.01a.06 
 

 
1. INTRODUCTION1 
 
Many structural problems can be solved by running 

repeated procedures. In other words, structural response 

can be achieved gradually. Every step of the problem 

solving procedure includes extensive computations. 

Structural analysis contributes the largest part in the 

computational effort. This obstacle has led to numerous 

studies on approximate reanalysis methods. The purpose 

of utilizing these approaches is to achieve the structural 

response after each change in design without solving the 

modified equations. This will highly decrease the 

computational costs. The different approximate 

reanalysis methods may determine exact or approximate 

responses for the modified structure. It should be 

mentioned that in these analyses, the exact relations, 

which are usually complicated, are substituted by 

approximate methods. Structural optimization, designing 

damage-proof structures, structural nonlinear analysis, 

and eigenvalue problems are among the current problems 

the solutions of which needs reanalysis [1]. 

 

*Corresponding Author Email: rezaiee@um.ac.ir (M. Rezaiee-Pajand) 

Various methods of structural reanalysis can be 

categorized in two general groups of exact and 

approximate methods. Several researchers have 

employed such methods for the reanalysis of structures. 

The bases of combined approximation method (CA) were 

founded in 1980s by Kirsch [2]. He then dealt with 

formulation and studying the properties of this method 

[3]. Moreover, if a binomial series of the modified 

response function is used in a reduced basis expression, 

an effective method of structural reanalysis will be 

achieved. In other words, the efficiency of the local 

approximations and the proper accuracy of the global 

approximations are combined together to achieve this 

method. Wu et al. [4] suggested a rational approximation 

method (RA) for reanalysis problem. This approach is 

based on the combination of power series of response 

function and a vector-valued extrapolation. The purpose 

is to preserve the ease of implementation of power series 

approximation and improved quality of vector-valued 

extrapolation. The vector-valued extrapolation methods 

are used to accelerate the convergence of the vector-
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valued sequences. Sidi suggested procedures to achieve 

rational approximations in partial sum of Macluren series 

of a vector-valued complex function. He named this 

approach the process of rational approximation [5]. Wu 

et al. [4] then dealt with the extension of the range of 

validity of the truncated power series by using this 

method and represented approximate solutions. Inverse 

of the stiffness matrix was represented in the form of an 

explicit function of cross sectional properties and 

material constants of structural elements. Impollonia [6] 

achieved this function by the non-conventional assembly 

of global stiffness matrix and using Sherman-Morrison-

Woodbury (SMW) relation. He factorized the element 

stiffness matrix following the unimodal component's 

concept. The idea of unimodal components was raised by 

Fuchs [7, 8] for the first time. He emphasized that the 

explicit and exact responses of all the structures are 

achievable from scientific hypothesis point of view, but 

as they have a great number of terms, are not practically 

useful [9]. Utilizing the most effective terms of the exact 

pattern will form the explicit function of approximate 

response. Using such a method on the exact inverse 

function of stiffness matrix, Impollonia represented 

relations to determine the approximate inverse of this 

matrix. Wang et al. [10] suggested a modified CA 

approach to deal with reanalysis problems. Gao et al. [11] 

presented a reanalysis method for the structures with 

local modification. The algorithm was based on block 

matrix. Moreover, Wang et al. [12] integrated reanalysis 

methods and apace mapping algorithms to tackle 

optimization problems. Kim and Eun [13] considered 

structural reanalysis due to addition/removal of 

substructures and changes in design variables by a 

generalized inverse method. Based on polynomial-type 

extrapolation for reanalysis of structures under changes 

in the initial design, Hosseinzadeh et al. [14] proposed 

another approach. The force method for the reanalysis of 

structures was adopted by Koohestani [15]. By utilizing 

sequential piecewise linear programming to deal with the 

topology optimization, Senne et al.  [16]combined 

approximate reanalysis technique. While the concurrent 

variations of size, geometry, and topology of structures 

are important cases for the analysis and design of 

structures, to the best of authors' knowledge, no articles 

have investigated such simultaneous variations in the bar 

structures. Therefore, this is the main goal of the present 

article to fill this gap. This article studies three 

approximate procedures for analyzing the structures, and 

records its computational efforts. To evaluate the aspects 

of these methods, a comprehensive computer program is 

designed by the authors. This program can analyze the 

bar structures. It is assumed that the materials behave like 

linear elastic. Furthermore, the members are assumed to 

be in the small deformation regime. Besides, the 

members are homogeneous and isotropic. Various 

examples, which include different forms of the design 

modification, are solved. The displacement errors and 

computational efforts are the criteria to compare these 

approaches. After performing extensive numerical 

computations, the characteristics of each method are 

revealed, according to the results of the analysis. 

Outcomes demonstrate the CA and RA methods provide 

better solutions than SMW approach. 

 

 

2. REANALYSIS 
 

In this section, the basis of problems are reanalysized. 

Such a problem in structural mechanics consists of 

following steps: 
1. Given an initial design, the stiffness matrix 

S and load 

vector 
P , the initial displacements 𝐝∗  are computed 

through equilibrium equations [1]:  

  =S d P  (1) 

2. Assuming a change in the design variables, the 

corresponding changes in the stiffness matrix and load 

vector are as follows: 

( ), ,Δ Δ c g m=S S  (2) 

( ), , ,Δ Δ c e g m=P P  (3) 

The parameters of c, e. g. and m represent the properties 

of the structure and its environment. Cross sectional 

properties are represented by c, geometry of the structure 

by g, and the mechanical properties of the material by m. 

the parameter e is the external load acting on the 

structure.  

3. The modified stiffness matrix S and load vector P are 

given as follows: 

Δ= +S S S  (4) 

Δ= +P P P  (5) 

4. The reanalysis approaches should be able to compute 

modified displacements d without solving the complete 

set of modified analysis equations. 

( ) ( )Δ Δ + = +S S d P P  (6) 

 
 
3. COMBINED APPROXIMATION METHOD  
 

As pointed out in the Introduction, Kirsch [2] developed 

this scheme in 1980s. The following is an introduction of 

each part contained in this method: 

 

3. 1. Reduced Basic Approach         The displacement 

function of the modified design in the reduced basis 

method is written in the form of linear combination of a 
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number of linearly independent basis vectors [17]: 

1 1 2 2 s s By y y= + + + =d d d d d y  (7) 

Basis vector matrix B
d  contains vectors of given values. 

The number of these vectors s is defined as less than the 

number of degrees of freedom n. Substituting equation 

(7) into the modified analysis equation (6), utilizing the 

reduced stiffness matrix R
S  and load vector R

P

introduced in Equations (8) and (9), the set of equation 

(10) is achieved to determine the coefficient vector y: 

T

R B B=S d Sd  (8) 

T

R B=P d P  (9) 

R R=S y P  (10) 

 
3. 2. Binomial Series                  Choosing a proper set 

of basis vectors in the reduced basis method is of great 

importance. Rearranging Equation (6), binomial series of 

the modified displacement function can be expressed as 

follows [4]: 

( )
1 12

1 2 3 ; Δ
− − = − + − = + + + =d I B B S P d d d B S S  (11) 

Being the spectral radius or the greatest eigenvalue of 

matrix B less than 1, makes the binomial series converge. 

The basis vectors are calculated by the following 

recurrence relation: 

( )
1 1

1 11 ; 2,3, ,
i i

i i i s
− −

−= − = − =d Bd B d  (12) 

 
 

4. RATIONAL APPROXIMATION METHOD 
 

Wu et al. [4] proposed this method after the CA in 2003. 

The following is the way how some approximations are 

made for the solution of the reanalysis problem: 

 

4. 1. POWER SERIES        If the artificial parameter ε is 

utilized in the interval of [0 1], the set of equations 

governing the modified structural behavior stated as 

follows [4]:  

( )ε Δ + =S S d P  (13) 

The power series of response function is given as 

follows: 

2

1 2 3( )pse ε ε ε= + + +d d d d  (14) 

The coefficient vectors are computed by the following 

recursive relation: 

1 1

1

1 1

1

; 2,3, ,

,

i

i i i s

Δ
− −

−

−

 

= = =

= − =

d Bd B d

B S S d S P
 (15) 

The partial sum of power series (14) can be expressed as 

follows: 

( ) 1

1

; 1,2,
o

i

o i

i

o  −

=

= =F d  (16) 

This series has a finite radius of convergence and its 

partial sum validity limits to the neighborhood of zero. 

Thus, the responses which are achieved by putting an 

amount of one for   in Equation (16) are not appropriate. 

 

4. 2. Rational Approximation Procedures      
According to works of Sidi [5] and Wu et al. [4], one can 

write: 

( )
( )1

1

1

1

1

1
1

1

, 1; 1,2,

o o j

j jjo

ra o o j

jj

o o k io
kk i

i oo o j
i

jj

c ε ε
ε

c ε

c ε
with c o

c ε

− +

=

− +

=

− + +

=

− +
=

=

=

 
 = = =
 
 










F
d

d

 
(17) 

Where jc  factors are determined by solving a system of 

equations of the form: 

1

`

1

; 1 1,
o

T

ij j io ij i j

j

d c d i o d
−

=

= −   − = d d  (18) 

Rewriting the coefficient matrix in Equation (13) as 

follows: 

( ) ( )1ε Δ ε ε Δ  + = − + +S S S S S  (19) 

It has been derived that the matrix is positive definite and 

has no pole point for 1ε0  . Therefore, by putting the 

amount of one for   in Equation (17) the approximate 

response of Equation (13) will be achieved: 

( )
1

1

1 1; 1,2, ,

o
o

ko k i

ra i oo
i

jj

c
ε with c o s

c

=

=
=

 
 = = = =
 
 





d d  (20) 

 
 

5. THE APPROXIMATE INVERSION OF STIFFNESS 
MATRIX METHOD 
 
The third method which revolves around the inverse of 

the stiffness matrix is explained bellow:  
 

5. 1. Decomposition of Element Stiffness Matrix      
Element stiffness matrix an explicit function of the cross-

sectional properties, the material properties and the 

element geometry can be decomposed into its unimodal 

components as follows [6]: 

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( )
( )( )

1 1

T

e e
α αT

e e e e e e

N N
e e e e e

i i i i i

i i

α α

 

 
= =

=   

= = 

S

k

 (21) 
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where the diagonal matrix ( ) ( )( )e e
  lists the stiffness of 

all the unimodal components, ( )e

iα , and its order ( )e

αN  is 

equal to the number of those components in the finite 

element. Structural topology properties are included in 

the matrix ( )e
  which has dimension ( ) ( )( )e e

dof αN N  with 

( )e

dofN  being number of degrees of freedom of element. 

Equation (21) derived for 2D truss elements are given as 

follows: 

( )

( ) ( )( )
( ) ( )

( )

Te

xx xy xx xy

e e
e e

e

1
Φ C C C C

2

2E A
Λ α

L

 = − − 

=

 (22) 

here the cross section area, Young modulus, the length of 

the element and directive cosines are denoted by ( )e
A , 

( )e
E , ( )e

L  and C  , respectively. 

 

5. 2. Stiffness Matrix Assemblage      When the 

element stiffness matrix is factorized in the global frame, 

the global stiffness matrix is amenable to a non-

conventional assemblage, which demonstrates the 

contribution of each unimodal element. The global 

stiffness matrix can be assembled in the following form 

[6]: 

( ) T=  S  (23) 

The matrix   is built up by assembling the matrices 
( )e

  according to element connectivity. 

 

5. 3. The Approximate Inverse of the Stiffness 
Matrix            The Sherman-Morrison-Woodbury (SMW) 

formula determines the modification of the inverse of the 

initial stiffness matrix [18, 19]. Impollonia [6] suggested 

two approximate patterns imitating the exact explicit 

solution derived by the SMW formula. In the first pattern, 

the contributions of unimodal stiffness fluctuation in 

modification of initial stiffness matrix inversion are 

linearly superimposed:  

1

1 1

0 0

1 1 1

N N
T i

i i i i

i i i i

λ
λ

λ a
 

−

− −

= =

 
= +  − 

+ 
 S S S A  (24) 

where the following quantities appear: 

1 1 1

0 0 0,T T

i i i i i ia    − − −= =S A S S  (25) 

Being 0S  the reference stiffness matrix where the 

unimodal stiffness components take their reference 

values, 
0iα . Unimodal stiffness fluctuation around its 

reference value is shown by i
λ . 

The second procedure takes into account the 

interaction effects among the fluctuations of the 

unimodal stiffness components. 

( )

( )

1

1 1

0 0

1 1

2

2
1

1

1

1

1

1 1

N N
T i

i i i i

i i i i

N
i j ij

i i i j j i j i j ij
j i

j Ti

i j ij ij

i i j j ij

λ
λ

λ a

λ λ a

λ a λ a λ λ a a a

λλ

λ a λ a a

 

−

− −

= =

=
= +

 
= +  − 

+ 

−
+ + + −

 
 + − + 

+ +  

 



S S S A

A A A A

 
(26) 

where the new numerical quantities read: 

1 1 1

0 0 0,T T

ij i j ij i ja    − − −= =S A S S  (27) 

One could set the reference values equal to the initial 

design values, 

iα , if the amount of the following 

parameter is small: 

1

1 N
i

i i

λ
μ

N α




=

=   (28) 

here iλ
  is the fluctuation around initial design. Another 

choice for the reference values is to assume 

( )0 1i iα μ α = +  . So operating, in Equations (24)-(27): 

11

0

1
,

1
i i iλ λ μα

μ

−−   = = −
+

S S  (29) 

being 
S  the initial stiffness matrix made by the initial 

unimodal stiffness. 

 

 

6. NUMERICAL EXAMPLES   
 

Several bar structures are analyzed in this section. To this 

end, a special-purpose code based on three approximate 

analysis approaches, and approximate displacements are 

developed. The robustness of methods in achieving the 

allowed error of 0.5 and 5 percent is evaluated together. 

 
6. 1. The 3-Member Bar Structure            Figure 1 is 

a bar structure the cross-section of the members of which 

are circles with diameters of 10, 5, and 2.5cm, 

respectively. The modulus of elasticity is 5 27 10 Kgf cm

. Intensity of the force influencing the second node of the 

structure is in direction of +X, equal to 20000 Kgf. The 

properties of the modified structures are recorded in 

Tables 1 and 2. 
All the possible problems in modification of the 

variables of size and geometry are taken into account. 

The CA method has fewer operation counts in all the 

problems at the time of change in the cross sections, 

because in all the problems, the order of approximation 

is small. Both methods achieve the accuracy level, in 

other words, they get into an exact response. Each of the 

first versions of the SMW procedure in three problems 

and its improved version that utilizes the interaction 

effects in one problem leads to a more appropriate 
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response. The number of problems at the time of size 

variable modification in which each of the SMW 

procedures brings about an error more than the exact 

value, in problem numbers 1, 2, and 4 are respectively 4, 

1, 7 and 7 and in problem numbers 3 and 5, are 4, 1, 7, 

and 6. Using the geometry variables, the methods of CA 

and RA determine the exact response and the method of 

CA has a less computational cost in all the problems. In 

these problems in the 35 cases possible, each of the SMW 

procedure versions, respectively in 5, 20, 2, and 8 cases 

achieved better displacements. Moreover, the error of 

each of 6, 3, 7, and 7 problems is more than the error of 

the exact amount. If modification occurs at the same time 

with the variables of size and geometry, the number of 

analyses will be ( )4955  . Only in one case the RA 

method has a less computational cost, and in all the 

problems, both methods determine the exact response. 

Each of the SMW versions, respectively in 27, 660, 17, 

and 521 problems provide better displacements. Three 

modified structures in topology are achieved through 

omission of members 1, 3, 2 and 3, from the initial 

design. In all three problems, the exact displacements are 

achieved through RA and CA methods. Furthermore, CA 

method in all cases includes less computational efforts. If 

the SMW method is used, in the first two cases, the exact 

responses are achieved through the first version and 

without the help of the interaction effects, and in the third 

problem, where the numbers of degrees of freedom 

decrease, the first version that does not consider the 

interactions brings about the smallest error. 

 

6. 2. The 9-Member Bar Structure            The structure 

members in Figure 2 include the modulus of elasticity of 
6 22 10 Kgf cm . The forces with the intensity of 40000, 

30000, 15000, and 25000 Kgf affect the nodes of 3, 5, 7, and 

9, respectively in the direction of +X. The initial and 

modified cross sections, and the modified geometry of 

the structure are chosen respectively from Tables 3 and 

4. 

 
Figure 1. 3-Member Bar Structure 

 

 
TABLE 1. The Ratio of the Size of Modified Cross Sections to 

the Initial in the 3-Member Bar Structure 

Member 
Modified Design 

3 2 1 

2.6 0.9 0.5 1 

0.7 0.3 1.5 2 

4 2.5 0.1 3 

3.4 1.5 4 4 

1.1 3.5 3.6 5 

 

 

TABLE 2. The Horizontal Modified Coordinates of the 3-

Member Bar Structure (Centimeters) 

Node 
Modified Design 

4 3 2 1 

300 200 150 0 1 

355 190 150 0 2 

312.5 212.5 100 0 3 

365 187.5 45 0 4 

585 195 12.5 0 5 

 

 

 
Figure 2. 9-Member Bar Structure 

 

 
 

TABLE 3. The Size of Initial and Modified Cross Sections of 9-Member Bar Structure (Square Centimeters) 

Member 
Cross Section 

9 8 7 6 5 4 3 2 1 

36.62 56.25 19.64 44.18 24.54 44.18 19.64 19.64 36.62 Initial 

164.87 225 60.13 78.54 18.41 78.54 11.04 11.04 145.21 Modified 

 

 

 
TABLE 4. The Horizontal Modified Coordinates of 9-Member Bar Structure (Centimeters) 

Node 
X 

10 9 8 7 6 5 4 3 2 1 

750 650 575 475 387.5 350 300 200 125 0 Modified 
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Approximate analysis of (29-1) structures that have 

undergone modification in the size of cross section, 

shows that the RA and CA methods include a less 

computational effort respectively in 491 and 20 

problems. Furthermore, in all the problems the exact 

response is achievable. If the SMW approach is utilized, 

the exact displacements are achieved in all problems, and 

its first version will include fewer operation counts. In 

another case only the horizontal coordinates of structural 

nodes undergo change. In this case (29-1) problems are 

analyzed. It is clear that the methods of RA and CA are 

superior to each other in 509 and 2 problems, 

respectively. The exact response is achieved in all 

problems. The problems, in which the first version of 

SMW provides a more proper response, are more in the 

number. If the cross sections are respectively 36.62, 

36.62, 19.64, 24.54, 24.54, 24.54, 19.64, 36.62, and 

36.62, square centimeters, the topology modification of 

the initial design will bring about elimination and 

addition of the members. (24-1) analyses have been 

carried out. The RA and CA methods have less 

computational efforts in 6 and 9 problems, respectively. 

In both cases, response errors can be placed in the interval 

of exact displacement errors. If the SMW method is 

applied, the exact response is achievable and its first 

version has little computational costs. Now the variables 

of geometry and size are modified together. In this case, 

(29-1)(29-1) approximate analysis is performed through 

each of the procedures. The rational approximation 

method in most of the problems has fewer operation 

counts than combined approximation. In this case, the 

first version of SMW procedure has less computational 

cost. In all problems, the exact response is achievable. 

Approximate reanalysis is performed at the time of 

simultaneous geometrical and topological modification 

of (29-1)(24-1) structures. RA has a less computational 

cost than CA in most of the problems. In all the problems, 

the exact response is achievable. Since the exact response 

is achieved through all the procedures of SMW, the first 

version of this method is the best, as it includes a less 

computational effort. 

 

6. 3. The 12-Member Bar Structure         The cross-

sectional properties, geometry and loading of the bar 

structure in Figure 3 have arbitrary units. The modulus of 

elasticity is 30000. The sizes of initial and modified cross 

sections of the bars are entered in Table 5. The modified 

geometry of the structure is represented in Table 6. Three 

concentrated forces with the magnitude of 100, 300, and 

200 affect the nodes 3, 4, and 7 in the direction of +X. 
If all the problems possible at the time of modification 

of cross-sectional variables and structural geometries are 

taken into account, (212-1) and (28-1) problems will be 

analyzed, respectively. The exact responses are achieved 

with 0.5 percent error in all the problems and in both 

cases by using the processes of RA and CA. In the former 

case the methods of RA and CA, respectively in 4082 and 

13 problems have fewer equation counts. If the process 

of SMW is utilized, each of its four versions respectively 

in 16, 2245, 1, and 1833 problems provide more proper 

displacements. Furthermore, their response errors 

respectively in 4083, 4017, 4095, and 4085 do not get 

placed in an exact interval. In the second case, the method 

of RA needs less computational effort in all cases. SMW 

process versions do, in this case, provide better responses 

respectively in 2, 106, 4, and 143 problems. Each of them 

 

 

 
Figure 3. 12-Member Bar Structure 

 

 
 

TABLE 5. The Size of Initial and Modified Cross-Sections of 12-Member Bar Structure 

Member 
Cross Section 

12 11 10 9 8 7 6 5 4 3 2 1 

1 2 1 3 4 2 2 1 2 1 2 3 Initial 

4 0.5 2.5 4.5 0.5 3 4 0.5 1 2 5 1.5 Modified 

 

 
TABLE 6. The Horizontal Modified Coordinates of 12-Member Bar Structure 

Node 
X 

9 8 7 6 5 4 3 2 1 

300 260 210 190 150 100 50 10 0 Modified 
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respectively in 255, 250, 255, and 254 problems do not 

reach the accuracy level of 0.5 percent. If the problems 

that have undergone simultaneous modification in size 

and geometry are analyzed, there will be less 

computational effort needed for RA and CA procedures 

respectively in 997977 and 46248 cases. The error in 

each process respectively in 21116 and 24353 problems 

is more than the error of exact value. Also both methods 

in 11343 common problems do not reach the accuracy 

level of 0.5 percent. The versions of SMW procedures 

provide better displacements respectively in 33663, 

503115, 51039, and 456408 problems. Their response 

error does not get placed in the allowed interval of 0.5 

percent respectively in 1044223, 1044188, 1044225, and 

1044224 problems.  

 

 

7. CONCLUSION 
 

Three important methods for the reanalysis of structures 

were investigated in this article. These approaches are 

called combined approximation (CA), rational 

approximation (RA) and the approximate inversion of 

stiffness matrix or Sherman-Morrison-Woodbury 

(SMW) methods. After formulating all schemes, several 

examples were solved in order to evaluate the robustness 

of each methods. Findings show that, in general, the 

SMW method cannot solve the problems which rise with 

the modification of structural geometry. On the other 

hand, outcomes suggest that the RA method reaches the 

favorable accuracy level in more cases with less 

computational efforts. It should be added that the 

relations of the process of CA are based on the structural 

concepts. That is why, though the ability of the method 

in solving different problems is high, its understanding is 

easy. 
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 چکیده 

 

  را در  یهای گوناگوندگرگونی ین کارپردازد. اای می های میلهازه س پاسخ سازیاین مقاله به مقایسه سه روش تقریبی بهبود 

  بررسی نکرده اند. ای  های میلهدر سازهرا    پیکرهاثرهمزمان انداره، هندسه و    پیشینیانهای  . پژوهش وارد می کندطرح نخستین  

های شوند. مسألهسازی می تقریب منطقی و وارون سازی تقریبی ماتریس سختی رابطه،  کار تقریب ترکیبیراهسه  در این مقاله،  

های سطح مقطع و  گردد. ویژگی شد و برتری هر شیوه در یافتن تغییرمکان بهبودیافته تقریبی آشکار می حل خواهدزیادی 

های عامل   رایفرایندها ب  واکاویهای  خطاهای تغییرمکان و تلاش   شند.با  می      ی  های گرهی متغیرهای طراحی پنداشتمختصه

های با روش وارون سازی تقریبی ماتریس سختی نمی تواند مسأله ،دهندروند. نتیجه ها نشان میکار میه ها بمقایسه روش

مناسب با اندازه متوسط   های تقریب ترکیبی و منطقی توانایی یافتن پاسخ دگرگونی هندسه را حل کنند. افزون بر این، شیوه

 را دارند.

doi: 10.5829/ije.2020.33.01a.06 
 
 

 


