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A B S T R A C T  

 

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which 
make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method 

based on morphological component analysis (MCA) and ensemble empirical mode decomposition 

(EEMD) was proposed. Based on the advantages of the morphological component analysis method in 
the signal separation, using the morphological difference of the components in the automatic vibration 

signal, different sparse dictionaries were constructed to separate the components, eliminates the noise 

components and extracted the effective fault characteristic component, the extracted impact components 
are decomposed by EEMD and the energy feature of each IMF component is calculated as the fault 

features, then put the fault features into SVM (Support Vector Machine) and identify the faults. Through 

the construction simulation example and the typical fault simulation test of automatic machine, it showed 
that the morphological component analysis method had better noise reduction and signal separation 

effect. Compared with the traditional EEMD method, the feature extraction method based on the MCA-
EEMD can distinguish automaton fault types more effectively. 

doi: 10.5829/ije.2019.32.07a.14 
 

 
1. INTRODUCTION 
 
Automaton is the core part of the antiaircraft weapon 

system, it contains numerous parts and the mechanism 

movement of automaton is complex. Because of the high 

load and badly working environment (high temperature, 

high pressure), the automaton is prone to a series of faults 

and failures, such as wear, ablation and fatigue occurred 

in components. The vibration signal contains abundant 

running state information in the mechanical system [1], 

acquiring the vibration signal from automaton for feature 

extraction is an important method for fault diagnosis.1 

When a fault occurs in automaton, the vibration signal 

measured is complex, non-stationary, non-linear, non-

periodic and the vibration of automaton usually contains 

some unknown interference components and background 

noise. It is a challenge for automaton fault diagnosis 

because the weak fault characteristics is always 

submerged in signals with complex compositions. In 

recent years, researchers have proposed many effectively 

                                                           

*Corresponding Author Email: fangliqingze@163.com (L. Fang) 

method to detect faults for automaton. Zhang et al. [2] 

proposed a method based on empirical mode 

decomposition (EMD) and fuzzy C means clustering 

(FCM) to detect and identify automaton problems. Pan et 

al. [3] used several chaotic parameters (correlation 

dimension, kolmogorov entropy) to extract the fault 

features in automaton fault diagnosis. Cao and Pan [4] 

used wavelet transform to extract the state characteristics 

to realize condition monitoring and fault diagnosis. 

However, the above methods extract features directly 

from the original vibration signal and do not consider 

separating effective components from the complex 

signals, these shortcomings make the accuracy of 

automaton fault diagnosis is not very satisfactory. 

The automaton’s operating characteristics determine 

that the impact component contains most of the fault 

information in the vibration signal, so the key to 

automaton fault diagnosis is to separate the impact 

component from original signal. Cao et al. [5] used the 

independent component analysis (ICA) method to remove 
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the interference signal and noise from automaton signals, 

but statistically independent assumptions components of 

ICA limited the separation effect. Starck et al. [6] 

proposed morphological component analysis (MCA), it is 

a signal processing method based on sparse 

characterization. According to the differences in the 

morphological components of signals, different sparse 

representation dictionaries are used to separate the 

components in MCA. At first, MCA was applied to image 

processing [7]. In recent years, the MCA method has been 

applied in the field of mechanical signal analysis. Li et al. 

[8] used the MCA method to realize the effective 

separation of the gearbox vibration signal and improved 

the ability to extract transient shock signatures from a 

strong noise environment. Chen et al. [9] proposed the 

morphological component analysis method based on 

semi-soft threshold and achieved good results in the early 

stage of rubbing fault diagnosis of the rotor. Xu et al. [10] 

applied the double tree complex wavelet noise reduction 

method based on morphological component analysis 

(MCA) to gear fault diagnosis and obtained clear fault 

feature frequency, which provided a new method for early 

fault feature extraction of gears. 

EEMD method was first introduced by Huang et al. 

[11], it is a self-adaptive decomposition method and is an 

improved form of EMD method that can effectively solve 

the modal aliasing defects existing in the EMD method, 

EEMD has a good performance for feature extraction in 

the machinery vibration signals.  

In this paper, we proposed an effective method for 

automatic machine fault diagnosis. Firstly, the MCA 

method is applied to the preprocessing of automatic 

vibration signals to achieve noise reduction and separate 

the impact components from complex original signal. 

After that, the EEMD method is used to analyze the 

impact component, then the energy of the several IMFs is 

obtained as fault features. Finally, the fault features were 

entered into the support vector machines (SVM) for fault 

type identification. 

 

 
2. TECHNICAL BACKGROUND 

 
2. 1. The Review of Morphological Component 
Analysis      MCA is a sparse decomposition method 

based on the morphological diversity of signal 

components. The specific principle is as follows:  

Assume that the real signal S  is a linear combin

ation of N  different forms of signal ns :
1

N

n
n

s


 S . 

Each of the components ns  can be represented b

y a corresponding dictionary 
n

Φ , namely, 
n n n

s Φ α ,

n
α  is the decomposition factor, 

n
Φ  is an over com

plete dictionary and can only sparsely express ns . 

The sparse representation of S was converted to the 

optimal solution of the following relation： 
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Equation (1) can be converted to the following form: 
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In Equation (2),   is the given threshold. When the 

overcomplete dictionary is known, the sparse 

representation of n
s  is as follows: 
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From the implementation process of morphological 

component analysis, the threshold is continuously updated 

based on an increase in the number of iterations. At 

present, there are mainly three threshold processing 

methods for transform coefficients: soft threshold method, 

hard threshold method and semi-soft threshold method. 

The soft threshold method is: 

  sgn
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n n n
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Among them, sgn( )x  is a symbolic function, that is, 

when 0x  , the value is 1 and when 0x  , the value is 

-1. Soft thresholding method can ensure the continuity of 

the signal, but it may weaken the useful signal and lead to 

poor decomposition. 

Hard threshold method: 
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The hard threshold method is not continuous at the 

threshold point, which will give the signal a large variance. 

For the shortcomings of soft threshold processing and 

hard threshold processing, Gao and Brucc [12] proposed 

a semi-soft threshold method, as shown in Equation (7).  
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In the formula, 
2n is the upper threshold, 

2n is the lower 

threshold, generally, 
2 12n n  . 

Compared with the soft threshold method and the hard 

threshold method, the semi-threshold method can reduce 
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the mean square error more effectively while suppressing 

noise. In this paper, semi-soft threshold is used as the 

threshold of morphological component analysis. 

 

2. 2. Ensemble Empirical Mode Decomposition (EEMD)     
In the original EMD, the IMF components contain very 

different feature time scales or similar feature time scales 

distributed in different IMF components, this results in 

aliasing of two adjacent IMF waveforms and lead to 

modal aliasing phenomenon. EEMD method is mainly 

based on the principle that added white noise can populate 

the whole time–frequency space uniformly. According to 

the constituting components of different scales, when the 

signal is added with white noise, the signal will be 

continuous at different scales to reduce the degree of 

modal aliasing. 

In EEMD method, there are two parameters that need 

to be decided. They are the number of ensemble M and the 

noise amplitude a. From the conclusion of the literature 

[13], when M = 100, a = 20%, EEMD has satisfying result. 

Hence, in this paper these two parameters were set as M = 

100, a = 20%. 

 
2. 3. Fault Feature Extraction: EEMD Energy Feature      
When the signal is decomposed to several IMFs by EEMD, 

then selected the several IMF components based on the 

principle of correlation coefficient and calculated the 

energy feature. The method for calculating the energy of 

each IMF is as follows: 
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where Ei is the energy of ith IMF, E is the sum of energies 

of IMFs and Vi represents the percentage of energy of ith 

IMF in the whole signal energy E.  

 

 

3. SIMULATION ANALYSIS 
 
In order to verify the effect of the morphological 

component analysis method on the separation of the 

impact components in the vibration signal, a synthetic 

simulation signal is constructed to analyze by MCA. 

The synthetic signal is generated by harmonic 

components, impact components, and Gaussian white 

noise components. The harmonic components is produced 

by mixing a sine component with a frequency of 60 Hz 

and a cosine component with a frequency of 90 Hz, as 

shown in Figure 1(a), the impact signal is a series of 

impact components is show in Figure 1(b). The power of 

the added Gaussian white noise is 2dBW as shown in 

Figure 1(c). The sampling frequency of the synthetic 

simulation signal is 1024Hz and the sampling time is 0.5s 

and the signal is shown in Figure 1(d), the impact 

component is completely submerged in noise and 

harmonic signal, it is unable to distinguish the impact 

signal.  

Then morphological component analysis was used for 

the synthetic signal. In MCA. the number of iterations was 

set as 100, select discrete cosine transform (DCT) 

dictionary to characterize the harmonic components and 

using the dirac dictionary to symbolic the harmonic 

components. The decomposition results were shown in 

Figure 2. From the results, it can be seen that harmonic 

components and impact components can be accurately 

restored by the MCA from synthetic signal. This proves 

that MCA has good decomposition ability for mixed 

signals and can separate the required components 

according to the corresponding dictionary. 

 

 

4. APPLACATION 
 
4. 1. Technological Process of the Proposed 
Method    The original vibration signal of the 

automaton contains a large amount of interference signals 

and background noise, which makes it difficult to extract 

fault characteristics directly. Motived by the advantages 

of MCA in separating the impact components, a new 

feature extracting method is proposed for automaton fault 

diagnosis. The flowchart of this method is depicted in 

Figure 3. 

 

4. 2. Experimental Platform    The proposed 

method was validated on an automaton experimental 

platform,  the  test  platform consists of three parts: the 

 

 

 
Figure 1. Simulation signals 

 

 

 
Figure 2. Synthetic signal decomposition by MCA 
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Figure 3. Flow chart of the of the proposed method 

 
 

automaton, the pneumatic control device and data 

collection system, as shown in Figure 4. In the 

experimental platform, the automaton is the main device, 

the sensor installation position is shown in Figure 4(a). It 

is a piezoelectric acceleration sensor, the type is CA-YD-

193. Pneumatic device keeps the automaton working 

continuously, and the data acquisition system is used to 

collect the vibration acceleration signal along the axial 

direction of automaton, the sampling frequency is 10KHz 

and the sampling number is 1200 points. 

 

4. 3. Fault Settings      In the actual working process 

of the automaton, due to the influence of high temperature, 

high pressure, strong ablation and high rate of fire 

conditions, the automaton’s locking block is prone to 

produce wear and pitting fault; the spring in the ballistic 

mechanism is prone to fatigue failure. The wear and 

pitting faults may cause the automaton latch could not 

reach the correct position, the fatigue failure may cause 

the breech bolt could not reach the normal re-entry 

position in time and reducing the shooting speed. Figure 5 

is the process of fault experiment. The settings of the three 

faults are shown in Figures 6(a), 6(b) and 6(c). In the 

experiment, the data of normal state and 3 fault states are 

collected and 20 groups of data were collected for each 

condition, among these 20 groups data, 10 groups were 

used for training and the remaining were used for testing. 

These details are given in Table 1. 
 

 

 
Figure 5. The flow chart of automaton typical fault experiments 

  

 
Figure 4. Automaton experimental platform. (a) automaton, (b) 

pneumatic control device, (c) data collection system 

 

 

 
Figure 6. Automaton fault setting; (a) wear, (b) pitting, (c) 

spring fatigue 

 
 

TABLE 1. The detailed arrangements of the experimental data 

sets for classification 

Conditions Class label training data testing data 

Healthy 1 10 10 

Wear 2 10 10 

Pitting 3 10 10 

Fatigue 4 10 10 

 

 

4. 4. Morphological Component Analysis (MCA) for 
Automaton Vibration Signal     In the experiment, 

the original vibration signal under four different 

conditions were shown in Figure 7. When the fault occurs 

in the automaton, the impact component in the vibration 

signal changes and the shock component contains most of 

the fault characteristics, so analyzing the impact 

components is the key to fault feature extraction [2], [3], 

[5]. However, the complexity of the working conditions of 

the automaton makes it difficult to extract the impact 

components from vibration signals which contain 

unknown interference components and background noise. 

We used MCA to separate the impact components from 

the original vibration signals. Before the decomposition, 

it needs to choose a dictionary, here using undecimated 

discrete wavelet transform (UDWT) as the analysis 

dictionary  to  match  the  impact components in the 

Test 
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pitting 

fatigue 

sensor 

Data acquisition 
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Figure 7. The separated impact component by MCA from 

original signal; (a) normal condition, (b) wear fault, (c) pitting 

fault, (d) spring fatigue failure 

 

 

 

vibration signal, the wavelet function is symlet 8, semi-

soft threshold was chosen as threshold function and the 

number of iterations was set to 100. Then perform the 

MCA under MATLAB and the separated impact 

component is show in Figure 8. 

In order to quantitatively analyze the separation effect 

of the impact component, here we defined the signal-to-

noise ratio between the impact component and the original 

signal. The calculation process is as follows: 
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where nS  is the original signal, nS is the impact 

component obtained by MCA decomposition, and N is the 

number of sampling points. A high value of snR  indicates 

that the effect of noise reduction is better. 

rE  is the energy ratio of the impact component to the 

original signal. rE  was defined as follows: 
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(13) 

0E  is the energy of original signal and imE
 
is the impact 

component energy; The magnitude of rE  reflects the 

proximity of the impact component to the original signal. 

it is expected to obtain a larger rE  in order to have a 

better decomposition result. 

 
 

Calculate the Rsn and Er for the vibration signals, the 

result are shown in Table 2. From the result, we can find 

the decomposed impact signals not only have a high 

signal-to-noise ratio, but also contain most energy of the 

original vibration signal. This shows that the MCA 

method has good noise reduction and impact component 

extraction capabilities. 

 

4. 5. EEMD Energy Feature Extraction     The 

impact signals obtained from MCA were decomposed by 

EEMD, the intrinsic mode functions（IMFs）1-11 and 

residual component (r) are displayed in Figure 9. Since the 

first five IMFs are highly correlated with the original 

signal, these components are selected to calculate the 

energy feature using Equation (13) as the fault feature 

vectors. Part of the results are shown in Table 3. 

 

4. 6. Fault Identification     The fault feature vectors 

in four states were input into the SVM for identification, 

and the SVM parameters (penalty parameter C, kernel 

function parameter g) are optimized using the particle 

swarm optimization (PSO) algorithm [14]. The optimal 

parameters are C=1.145, g=0.2703, and the recognition 

results are as shown in Figure 8. As indicated in Figure 8, 

it can be observed that the automaton fault diagnosis 

model can recognize the fault types effectively. In order to 

verify the advantages of the method proposed in this
 
paper, 

compare it with EEMD feature extraction method, the 

comparison results in Table 4 show that the proposed 

method’s fault correct recognition rate is superior to the 

direct feature extraction method. 
 

 

 
Figure 8. The diagnosis result of test data 

 

TABLE 2. The result of
 
Rsn and Er in four conditions 
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Fault type  normal  wear  pitting  fatigue 

Signal 
number 

  Rsn(dB) Er(%)  Rsn(dB) Er (%)  Rsn(dB) Er(%)  Rsn(dB) Er(%) 

1  11.3 87.62  11.5 89.10  12.4 90.52  11.7 89.86 

2  13.4 92.74  11.5 89.10  8.3 82.68  11.3 89.08 

3  11.4 87.94  10.0 88.45  8.5 85.97  12.4 90.10 
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Figure 9. The results based on EEMD for wear fault 

 

 
TABLE 3. The energy feature of the first five IMFs

 
IMF-

energy 
IMF1 IMF2 IMF3 IMF4 IMF5 

Normal 
0.5077 0.3895 0.0599 0.0256 0.0173 

0.5032 0.3841 0.0633 0.0329 0.0164 

Wear 
0.4807 0.4372 0.0563 0.0183 0.0075 

0.4764 0.4389 0.0560 0.0204 0.0083 

Pitting 
0.4970 0.3723 0.0897 0.0281 0.0128 

0.5015 0.3660 0.0870 0.0299 0.0156 

Fatigue 
0.5485 0.4355 0.0733 0.0269 0.0157 

0.5506 0.4024 0.0614 0.0302 0.0054 

 

 
TABLE 4. The recognition result comparison of EEMD and 

MCA-EEMD method 

Conditions 
EEMD  MCA-EEMD 

Correct Accuracy (%)  Correct Accuracy (%) 

Normal 9 

82.5 

 10 

95 
Wear 8  9 

Pitting 7  9 

Fatigue 9  10 

 

 

5. CONCLUSION 
 
In this study, a new automaton feature extraction 

algorithm has been proposed, this approach is a 

combination of MCA, EEMD and energy feature method. 

The effectiveness of the MCA approach is investigated 

and its advantages in fault feature extraction are validated 

using both the simulated and experiment signals. It has a 

good ability to remove the noise and extract the effective 

impact components from complex signal. Experimental 

results demonstrate that the proposed method can 

successfully identify multiple types of faults on 

automaton. 
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 چکیده

 

سل را های گشود ویژگیدر تشخیص خطای اتوماتیک، سیگنال ارتعاش ارائه غیر ثابت و غیر دوره ای است، که باعث می

استخراج کند. برای حل این مشکل، یک روش تشخیص خطای اتوماتیک براساس تجزیه و تحلیل جزء مورفولوژیکی 

(MCA )و تجزیه حالت تجربی (EEMD )های مورفولوژیکی در پیشنهاد شد. بر اساس مزایای روش تجزیه و تحلیل مؤلفه

ختلف های نزولی منامهر سیگنال ارتعاش اتوماتیک، لغتها دجداسازی سیگنال، با استفاده از اختلاف مورفولوژیکی مولفه

برای جداسازی قطعات، حذف اجزاء نویز و استخراج جزء مشخصه خطای گشت ساخته شد. اجزای تاثیر استخراج شده 

شود و سپس های خطا محاسبه میبه عنوان ویژگی IMFشوند و ویژگی انرژی هر یک از اجزای تجزیه می EEMDتوسط 

سازی دهد. از طریق مثال شبیهو شناسایی خطاها اختصاص می (SVMپشتیبانی از ماشین بردار ) ای خطا را بههویژگی

سازی خطای دستگاه اتوماتیک، نشان داد که روش تجزیه و تحلیل مورفولوژیکی جزء بهتر از ساخت و آزمون معمول شبیه

-MCAسنتی، روش استخراج ویژگی بر اساس  EEMDکاهش نویز و اثر جداسازی سیگنال است. در مقایسه با روش 

EEMD های اتوماتیک را به طور موثرتر تشخیص دهد. تواند انواع گسلمی 

doi: 10.5829/ije.2019.32.07a.14 
 


