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A B S T R A C T  
 

Regarding the development of distribution systems in the recent decades, fuel consumption of trucks has 
increased noticeably, which has a huge impact on greenhouse gas emissions. For this reason, the 

reduction of fuel consumption has been one of the most important research areas in the last decades. The 
aim of this paper is to propose a robust mathematical model for a variant of a vehicle routing problem 
(VRP) to optimize sales of distributers, in which the time of distributor service to customers is uncertain. 
To solve the model precisely, the improved differential evolution (IDE) algorithm is used and obtained 

results were compared with the result of a particle swarm optimization (PSO) algorithm. The results 
indicate that the IDE algorithm is able to obtain better solutions in solving large-sized problems; 
however, the computational time is worse than PSO. 

doi: 10.5829/ije.2019.32.07a.10  
 

 
1. INTRODUCTION1 
 

In recent years, by increasing large-scale greenhouse 

gases (GHG) emissions, the social cost of the 

governments have considerably increased [1]. Increasing 

of fuel consumption creates significant negative impacts 

on greenhouse gas emissions.  

Research has shown that in the real competitive 

world, the decrease of the distribution cost (especially in 

fuel consumption) has affected on the operation cost. The 

distribution cost depends on many criteria and can be 

separated into two broad categories. The first one 

includes the load, speed, road status, fuel consumption 

rate (in any distance), fuel price, etc. that are directly 

related to the scheduling issues. The second category 

includes vehicle depreciation, maintenance and repair 

costs, driver's wages, taxes, etc. [2–5].  
Tavakkoli-Moghaddam et al. [6] considered a rival 

vehicle routing problem for the first time that maximizes  
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the profit of earning liquidity and minimizes  

simultaneously the transportation costs.  If competitors 

before drivers meet customers, the portion of income will 

be decreased. For this reason, distributors try to meet 

customers before their competitors to gain more profit. 

[7, 8]. However, in variant of a vehicle routing problem 

(VRP), parameters are considered deterministic. In order 

to use non-deterministic parameters, a stochastic 

approach has been used [9–11]. Mulvey et al. [12] 

presented stochastic robust optimization instead of a 

stochastic approach to estimate non-deterministic 

parameters. In this model, robustness considers 

robustness optimality and solution based on trade-off 

between cost and benefit. In addition, robust optimization  

model makes the structure to contribute robustness in the 

constraints and objective [13]. A VRP is classified as NP-

Hard problem [14]. In recent years, different meta-

heuristic methods were developed in order to solve a 

VRP, like tabu search [15], particle swarm optimization  
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algorithm (PSO) and simulated annealing (SA) algorithm 

[16, 17].  

Innovations of this research are as follows: the 

servicing time of rivals is considered under uncertainty 

and instead of an expected starting service time, a set of 

scenarios are considered in the proposed model, and a 

robust model is used to maximize the rate of sales and 

reduce the cost. In addition, reducing fuel consumption 

to reduce the operational cost and the harmful effects of 

greenhouse gases (especially, carbon and carbon dioxide) 

is also considered as bi-objectives. Moreover, a meta-

heuristic based on IDE algorithm to find optimal 

solutions is another contribution used in this paper. 

 

 

2. PROBLEM DEFINITION AND MODELING 
 
2. 1. Collections And Indices          A VRP can be 

indicated by a graph G = (S, A), such that the points of 

nodes and 𝑠 = {𝑖|𝑖 = 0, … , 𝑛} so that G is a set of the 

arrows and nodes; 𝐴 = {(𝑆𝑖 , 𝑆𝑗): 𝑖 ≠ 𝑗} that is a set of 

nodes joining the arrows, and S0 represents the source. 

Dij≥0, which is denoted arc (i, j), indicates the distance or 

cost of traveling among  the two nodes i and j. The 

parameters used in this model are presented as follows : 

N 
Number of customers (i and j are the indices of 
customers) 

𝑦𝑣  Number of vehicles  

 𝑘𝑦𝑣   The Capacity of vehicle v 

𝑇𝑣   Upper bound of the travel time of vehicle v. 

𝑇𝑣   Demand of the nodei. 

𝑡𝑖𝑗
𝑣   Time travel  from node i to node j by vehicle v 

M large number  

𝑑𝑡𝑑𝑖  Time dependent demand of customeri 

𝑡𝑢𝑖𝑠  
In scenario s, an upper limit of rivals arrival time to 
node i 

𝑡𝑙𝑖𝑠  
In scenario s, a lower limit of rivals arrival time to 
node i 

𝐷𝑖  Total i-th customer demand so that  𝐷𝑖 = 𝑑𝑡𝑑𝑖 + 𝑑𝑖𝑛𝑖 

𝐷𝑡𝑑𝑖  Demand of customer i (dependent to time) 

𝐷𝑖𝑛𝑖  Demand of customer i (independent to time) 

𝑐𝑜𝑟𝑟  Slip friction coefficient in each road 

𝐶𝑒𝑑  Air resistance coefficient 

𝐹𝑘  Front of the vehicle v 

𝐴𝑑   The density of air 

𝐺𝑅  Earth's gravitational force 

𝜃𝑔𝑖𝑗  Average gradient of the road from node i to j 

𝑎𝑐𝑘  
Acceleration of vehicle v in meters per squared 
second  

 𝑤𝑣𝑘  Weight of vehicle v  

𝑊𝑙   Load unit weight 

 𝑑𝑖𝑗  Distance between customers i and j 

 𝑣𝑘  Speed of vehicle v 

𝑙𝑖  Amount of time when vehicle reaches node i 

𝐷𝑖  Demand of customer i 

𝑥𝑖𝑗
𝑣   1, if vehicle v passes via route [𝑖, 𝑗] 

𝑜𝑖𝑠  
1, in scenario s, if the driver meets the customer more 

quickly than the lower bound of the rival 

 𝑞𝑖𝑠  
1, in scenario s, if the driver meets the customer 

during the rival time period 

𝑧𝑖𝑠  
1, in scenario s, if the distributer begins customer 

service after the rival upper bound 

 𝑦𝑖𝑠  
1, in scenario s, if the driver meets customer before 

the rival upper bound. 

 

2. 2. Mathematical Model     The proposed 

mathematical model is defined as follows: 

Max 𝑍1 = ∑ 𝑝𝑠𝑠∈Ω [∑ (𝑜𝑖𝑠𝑑𝑡𝑑𝑖 +𝑛
𝑖=1

𝑞𝑖𝑠 (
𝑡𝑢𝑖𝑠−𝑡𝑖

𝑡𝑢𝑖𝑠−𝑡𝑙𝑖𝑠
)𝑑𝑡𝑑𝑖)] + 𝜆 ∑ 𝑝𝑠𝑠∈Ω [(∑ (𝑜𝑖𝑠𝑑𝑡𝑑𝑖 +𝑛

𝑖=1

𝑞𝑖𝑠 (
𝑡𝑢𝑖𝑠−𝑡𝑖

𝑡𝑢𝑖𝑠−𝑡𝑙𝑖𝑠
)𝑑𝑡𝑑𝑖) − ∑ 𝑝𝑠′𝑠′∈Ω [∑ (𝑜𝑖𝑠′𝑑𝑡𝑑𝑖 +𝑛

𝑖=1

𝑞𝑖𝑠′ (
𝑡

𝑢𝑖𝑠′
−𝑡𝑖

𝑡
𝑢𝑖𝑠′

−𝑡
𝑙𝑖𝑠′

)𝑑𝑡𝑑𝑖)]) + 2𝜃𝑠] − 𝜔 ∑ 𝑝𝑠𝑠∈Ω 𝛿𝑠  

Min 𝑍2 = ∑ ∑ ∑ (𝑓𝑘 + 𝑔𝑠𝑖𝑛𝜃𝑔𝑖𝑗 +𝑛
𝑖=1

𝑛
𝑗=0

𝑦𝑣
𝑣=1

𝑔𝑟𝑐𝑜𝑟𝑟𝑐𝑜𝑠𝜃𝑔𝑖𝑗) (𝑤𝑣𝑘 + 𝑤𝑙𝑗
𝑣)dij𝑥𝑖𝑗

𝑣 +

∑ ∑ ∑ 0.5𝑛
𝑖=1

𝑛
𝑗=0

𝑛𝑣
𝑣=1 𝑐𝑒𝑑 𝐴𝑐𝑘𝐴𝑑𝑣𝑘

2dij𝑥𝑖𝑗
𝑣   

(1) 

∑ ∑ 𝑥𝑖𝑗
𝑣 = 1,       

𝑦𝑣
𝑣=1

𝑛
𝑖=1   ∀ 𝑗 = 2, … , 𝑛  (2) 

∑ ∑ 𝑥𝑖𝑗
𝑣 = 1,       

𝑦𝑣
𝑣=1

𝑛
𝑗=1   ∀𝑖 = 2, … , 𝑛  (3) 

∑ 𝑥𝑖𝑗
𝑣𝑛

𝑖=1 =

∑ 𝑥𝑗𝑖
𝑣  ,                   𝑛

𝑖=1   

∀ 𝑗 = 1,2, … , 𝑛      𝑣 =
1, … , 𝑦𝑣  

(4) 

(𝑙𝑖
𝑣 − 𝑑𝑖 − 𝑙𝑗

𝑣)𝑥𝑖𝑗
𝑣 = 0  

∀𝑖 = 0,1, … , 𝑛  𝑗 =
1, … , 𝑛  𝑣 = 1, … , 𝑦𝑣  

(5) 

∑ 𝑠𝑖 ∑ 𝑥𝑖𝑗
𝑣𝑛

𝑗=1
𝑛
𝑖=1 +

∑ ∑
𝑑𝑖𝑗

𝑣𝑘

𝑛
𝑗=1 𝑥𝑖𝑗

𝑣 ≤𝑛
𝑖=1

𝑇𝑣                            

∀ 𝑣 = 1, … , 𝑦𝑣  (6) 

𝑡𝑗 = ∑ 𝑡𝑖 ∑ 𝑥𝑖𝑗
𝑣𝑦𝑣

𝑣=1
𝑛
𝑖=1 +

∑ ∑ (
𝑑𝑖𝑗

𝑣𝑘
)𝑦𝑣

𝑣=1 𝑥𝑖𝑗
𝑣 + 𝑠𝑗 𝑛

𝑖=1   
∀ 𝑗 = 2, … , 𝑛    (7) 

∑ (𝐷𝑖 − 𝑑𝑡𝑑𝑖𝑧𝑖𝑠) ∑ 𝑥𝑖𝑗
𝑣𝑛

𝑗=1
𝑛
𝑖=1 −

𝛿𝑠 ≤ 𝑘𝑦𝑣  
∀ 𝑣 =
1,2, … , 𝑦𝑣    𝑠𝜖Ω    

(8) 

(𝑡𝑢𝑖𝑠 − 𝑡𝑖) − 𝑀(𝑦𝑖) ≤ 0  𝑖 = 1,2, … , 𝑛, 𝑠 ∈ Ω    (9) 

(𝑡𝑢𝑖𝑠 − 𝑡𝑖) − 𝑀(𝑧𝑖𝑠) ≥ 0  𝑖 = 1,2, … , 𝑛    𝑠 ∈ Ω  (10) 
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𝑧𝑖𝑠 + 𝑦𝑖𝑠 = 1  𝑖 = 1,2, … , 𝑛    𝑠 ∈ Ω  (11) 

(𝑡𝑢𝑖𝑠 − 𝑡𝑖)+𝑀(1 − 𝑞𝑖𝑠) ≥ 0  𝑖 = 1,2, … , 𝑛    𝑠 ∈ Ω   (12) 

(𝑡𝑙𝑖𝑠 − 𝑡𝑖)+𝑀(1 − 𝑜𝑖𝑠) ≥ 0    𝑖 = 1,2, … , 𝑛    𝑠 ∈ Ω  (13) 

(𝑡𝑙𝑖𝑠 − 𝑡𝑖) + 𝑀𝜛𝑖𝑠 ≤ 0  𝑖 = 1,2, … , 𝑛    𝑠 ∈ Ω    (14) 

𝑞𝑖𝑠 + 𝜛 = 1  𝑖 = 1,2, … , 𝑛    𝑠 ∈ Ω    (15) 

∑ (𝑜𝑖𝑠𝑑𝑡𝑑𝑖 +𝑛
𝑖=1

𝑞𝑖𝑠 (
𝑡𝑢𝑖𝑠−𝑡𝑖

𝑡𝑢𝑖𝑠−𝑡𝑙𝑖𝑠
)𝑑𝑡𝑑𝑖) −

∑ 𝑝𝑠𝑠∈Ω (∑ (𝑜𝑖𝑠𝑑𝑡𝑑𝑖 +𝑛
𝑖=1

𝑞𝑖𝑠 (
𝑡𝑢𝑖𝑠−𝑡𝑖

𝑡𝑢𝑖𝑠−𝑡𝑙𝑖𝑠
)𝑑𝑡𝑑𝑖)) + 𝜃𝑠 ≥ 0  

 𝑠 ∈ Ω  (16) 

∑ ∑ ∑ 𝑥𝑖𝑗
𝑣

𝑗∉𝑆𝑗∈𝑆
𝑛𝑣
𝑣=1 ≤ |𝑠| −

𝑝(𝑠)  
∀ 𝑆 ⊆ 𝐴 − {1}      𝑠 ≠ ϕ (17) 

𝑥𝑖𝑗 , 𝑜𝑖𝑠, 𝑦𝑖𝑠, 𝑧𝑖𝑠, 𝑞𝑖𝑠, 𝜛𝑖𝑠 ∈ [0,1]      𝑡𝑖 ≥ 0   𝑡1 = 0  (18) 

Equation (1) indicates the sales of distributer under 

uncertainty, and concerns reducing GHG emission and 

fuel consumption. 

Restrictions (2) and (3) make it possible for each 

request to be served only from a distributor vehicle. 

Constraint (4) states that if a vehicle is to be inserted into 

a node, it must be removed, thus connecting the routes. 

Constraint (5) states that if 𝑥 𝑖𝑗
𝑣 = 1, the amount of goods 

carried to the j-th node is equal to the load transferred to 

the i-th node minus the i-th node’s demand (i.e., the i-th 

node is served immediately by the i-th vehicle by the v-

th vehicle immediately). 

Constraint (6) indicates that the service time and route 

should be less than the specified value. Constraint (7) 

indicates the start time for serving customers. Constraints 

(8) to (11) indicates that if vehicle 𝑣 starts to serve in the 

scenarios earlier t han 𝑡𝑢𝑖𝑠  to customer 𝑖 then the i-th 

customer demand must be equal to 𝐷𝑖  from the base 

station. This is because the distributor starts service faster 

than other competitors do and can take all profitable 

business out of it. If the start-of-service time to the i-th 

customer is after 𝑡𝑢𝑖𝑠 , then the profit previously earned 

will only be equal to the amount of independent demand. 

Constraints (12) to (15) relate to maximizing profits. 

Constraint (16) indicates the difference between the 

profits earned in the scenarios and expected value of 

earning profits for all scenarios. Constraint (17) is related 

to the elimination of subtractions, and the Constraint (18) 

relates to the model variables. 

 

 

3. PROBLEM-SOLVING APPROACH 
 
The  differential  evolution  (DE)  was  first  proposed  by 

Storn and Price [18]. Due to considerable performance in 

discrete problems, DE has been used in solving problems 

in the past years [19]. The proposed algorithm is shown 

in Figure 1.  

To define mutation operator in DE, trial vector, 

𝑣𝑖
(l), for every individual of exciting population is 

generated by mutating. Off spring vector  is produced 

trial vector, 𝑣𝑖
(l) by a crossover operator for parent  yi(l). 

The trial vector 𝑣𝑖
(l) is demonstrated in Figure 2. 

Offspring vector, 𝑦𝑖
′(𝑡), is generated by:  

𝑦𝑖𝑘
′ (𝑡) = {

𝑣𝑖𝑘(𝑙)             if 𝑗 ∈ 𝛿

𝑦𝑖𝑘(𝑙)        otherwise
  (19) 

where 𝑦𝑖𝑘(𝑔)  presents to the 𝑘-th (𝑘 ∈ {1, … , 𝑛𝑥 }) 

particle of vector , 𝑦𝑖
(𝑔), and a set of crossover points 

are represented as   𝛿 . The DE binomial crossover 

operator is shown in Figure 3. 

Experimental studies show that model 

 𝐷𝐸 𝑟𝑎𝑛𝑑⁄ 1⁄ 𝑏𝑖𝑛⁄ , in which a target vector is chosen 

randomly, provides a good variety in answers and is 

capable of converging the answers. On the other hand, 

strategy 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑡𝑜 𝑏𝑒𝑠𝑡 2⁄ 𝑏𝑖𝑛⁄  will result in 

convergence in answers, which is shown in the following 

equation: 

𝑣𝑖(𝑔) = 𝑦𝑖1
(𝑔) + 𝛽(𝑦(𝑔) − 𝑦𝑖(𝑔)) + 𝛽(𝑦𝑖2

(𝑔) −

𝑦𝑖3
(𝑔))  

(20) 

where a differential vector is first calculated from the 

difference between best available vector 𝑦(𝑔) with 

parent vector 𝑦𝑖
(𝑔)  and the second differential vector is 

calculated by the difference between 𝑦𝑖2
(𝑔), 𝑦𝑖3

(𝑔) 

vectors which are chosen randomly to achieve the best 

results in DE,  strategies are used  dynamically based  on 

 

 

 
Figure 1. Pseudo code of the proposed algorithm 

 

 

 
Figure 2. Selecting trial vector by the mutation 

𝑙 is a generation and set  𝑙 = 0 
𝑐(𝑙) is indicated as a member of generation 𝐺 

the control parameters are 𝜆 and  𝑘𝑟 ; 
For, 𝑦𝑖(𝑔)𝜖𝐶(𝑙) do 

Calculate, 𝑓(𝑥𝑖(𝑙)) 
Use the mutation operator to calculate trial vector, 𝑣𝑖(𝑙); 

Use the crossover operator to calculate an child, 𝑦𝑖
′ (𝑙) ; 

If 𝑓(𝑦𝑖(𝑡))  is less than 𝑓(𝑦𝑖
′(𝑙))  

then 𝑦𝑖
′ (𝑙) ∈ 𝑐(𝑙 + 1); 

Else 𝑦𝑖(𝑙) ∈ 𝑐(𝑙 + 1) 
End. 

For each individual, 𝑦𝑖𝑖
(𝑙)𝜖𝐶(𝑙)  and   𝑖𝑖 ~𝑈(1,𝑛𝑠) do 

Select target vector, such that𝑖𝑖  and 𝑖1  not equal. 

Select 𝑦𝑖2
(𝑙) and 𝑦𝑖3

(𝑙) randomly, t  𝑖 ≠ 𝑖1 ≠ 𝑖2 ≠ 𝑖3 . 

 Calculate trial vector ass follow ing equation: 

𝑣𝑖(𝑙) = 𝑦𝑖1
(𝑡) + 𝜆(𝑦𝑖2

(𝑔) − 𝑦𝑖2
(𝑔))  

End. 
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Figure 3. DE binomial crossover operator 

 
 
probability. 𝑑𝑠,1 and 𝑑𝑠,2 = 1 − 𝑑𝑠,1 are assumed as the 

probable selection of strategy DE rand⁄ 1⁄ bin⁄  and 

 DE current − to best⁄ 2⁄ bin⁄ , respectively as the 

following equation: 

𝑑𝑠,1 =
𝑞𝑠,1(𝑞𝑠,2+𝑞𝑓,2)

𝑞(𝑞𝑠,2+𝑞𝑓,2)+𝑞𝑠,2(𝑞𝑠,1+𝑞𝑓,1)
  

(21) 

where 𝑞𝑠,1 and 𝑞𝑠,2 in next repetition 𝑐(𝑔 + 1), indicates 

children number 𝑦𝑖
′(𝑔) which are considered according 

to DE rand⁄ 1⁄ bin⁄  and DE current − to best⁄ 2⁄ bin⁄  

respectively. Also, qf ,1 and qf ,2 are the number of 

children which are not converted to the next repetition. 

 

 

4. COMPUTATIONAL RESULTS 
 

In this paper, standard samples of the PVRPTW 

considered by Cordeau et al. [20] are used. For each 

scenario, lower and upper bound of time windows are 

considered as upper and lower reaching times of vehicles. 

That is the upper limit of reaching time to customers is 

considered in all scenarios 𝑡𝑢𝑖𝑠  in a uniform distribution 

in interval [15, 60] and the  lower limit of the distributors’ 

reaching time to customers in all scenarios 𝑡𝑙𝑖𝑠 in a 

uniform distribution in interval [10, 40]. 

The performance of algorithms is demonstrated in 

Table 1. In terms of the quality, IDE algorithm's solution 

could improve an average of more than 1% of the 

solutions. The mean error for the IDE and PSO 

algorithms is 0.36 and 1.1%, respectively. The greatest 

improvement in IDE solution algorithm occurred in 

problem 9, and a 3.66% improvement in response has 

occurred. The average run time for PSO is lower than the 

IDE. On average, the PSO algorithm has a run time of 

PSO algorithm 1,233 seconds, which is about 10% less 

than the IDE resolution time. 

 

 
5. CONCLUSION AND FUTURE RESEARCH 
 
This paper has presented a robust mathematical model for 

a variant of a vehicle routing problem (VRP), in which a 

competition exists among distributors in order to increase 

their sales under uncertainty of customers by rivals. In 

addition, optimization of fuel consumption is related to 

decline of the effects of CO2. A set of scenarios for 

service time of distributers has been defined and 

optimized the objective function. Because of the 

computational complexity of the problem considered in 

this paper, two meta-heuristic algorithms (i.e., IDE and 

PSO) have been used and their performances were 

evaluated. The results indicate that IDE has better 

performance in terms of the results than PSO with more 

computational time in solving large-sized problems. For 

further studies, the demand for customers in an uncertain 

condition is proposed. Considering a competitive 

environment in other modes of the VRP may be an 

innovative topic for future research. Finally , 

implementation of the presented model, taking into 

account the actual data from a case study can be 

considered as one of the future studies. 

 
 

TABLE 1. Comparison of the performance of the proposed algorithms 

IDE  PSO   
No. problems 

Gap % Run Time (s) Best Solution   Gap% Run Time (s) Best Solution  

2.48% 536.90 1,209.60  0.00% 780.60 1,239.60  1 

0.70% 763.50 2,442.60  0.00% 962.30 2,459.70  2 

0.00% 987.30 4,189.70  1.55% 905.30 4,125.90  3 

0.00% 1,356.60 4,258.60  0.00% 1,236.30 4,258.80  4 

0.00% 1,305.60 5,386.40  0.73% 1,456.60 5,347.60  5 

1.47% 1,769.30 7,005.60  0.00% 1,950.30 7,108.80  6 

1.58% 967.60 5,705.60  0.00% 953.60 5,795.60  7 

0.00% 1,259.60 4,926.60  0.96% 1,500.60 4,879.60  8 

3.66% 1,537.90 6,725.60  0.00% 1,763.60 6,971.60  9 

2.21% 1,853.30 7,865.60  0.00% 2,100.30 8,039.70  10 

1.10% 1,233.76 4,971.59  0.36% 1,360.95 5,022.69  Mean 

Select  𝛿~𝑈(1, 𝑛𝑠)and  𝑝𝑟 randomly. 

   For each 𝑗,  𝑦𝑖(𝑙)   
           If  𝑘𝑟 > 𝑈(0,1)  then  𝛿 ← 𝛿 ∪ {𝑗}     

   End  
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 چکیده

 

ان مصرف اند، لذا میزهای توزیع کالا تغییرات اساسی داشتهتقاضا، سیستمهای گذشته، همزمان با افزایش میزان در طول سال

سوخت وسایط نقلیه توزیع کننده نیز به طور قابل توجهی افزایش یافته است که دارای تاثیر زیادی بر آلودگی هوا و انتشار 

ساله مسیریابی وسایط نقلیه به ای دارد. هدف از ارائه این مقاله، ارائه یک مدل ریاضی جدید از مگازهای گلخانه

شرایط عدم  کنندگان تحتسازی سود قابل کسب در شرابط رقابتی در میان توزیعسازی مصرف سوخت و بیشینهمنظورکمینه

ز سوی سازی استوار تحت سناریو است. اکنندگان به مشتریان با استفاده از رویکرد بهینهدهی توزیعقطعیت شروع سرویس

دهی به شود و کاهش زمان شروع سرویسهای جاری وسایط نقلیه میسوخت منجر به کاهش هزینه دیگر کاهش مصرف

ارایی مدل شود. به منظور ارزیابی ککنندگان در محیط رقابتی میمشتریان باعث افزایش نرخ فروش در مقایسه با سایر توزیع

شنهادی، تعدادی های پیه منظور ارزیابی عملکرد الگوریتمارائه شده از الگوریتم تکامل تفاضلی بهبود یافته استفاده شد و ب

مساله نمونه در ابعاد بزرگ ایجاد و با نتایج حل مساله توسط الگوریتم انبوه ذرات مقایسه و بررسی شد. نتایج محاسباتی 

ه ذرات دارای زمان باشد، اما الگوریتم انبودارای عملکردی محاسباتی بهتری می  دهد که الگوریتم تکامل تفاضلنشان می

 باشد. محاسباتی بهتری می

doi: 10.5829/ije.2019.32.07a.10 
 
 


