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The problem of maximal hub coveringas a challenging problem in operation research. Transportation
programming seeks to findan optimal location ofa set of hubs to reach maximum flow in a network.
Since the main structure's parameters of the problem such as origin-destination flows, costs and travel
time, change periodically in the realworld applications, newissues arise in handlingit. Inthis paper, to
deal with the periodic variations of parameters, a bi-objective mathematical model is proposed for the
single allocation multi-period maximal hub covering problem. The g-constraint approach has been
appliedto achieve non-dominated solutions. Given that the single-objective problem found in the ¢-
constraint method is computationally intractable. Benders decomposition algorithm by adding valid
inequalities is developedtoaccelerate thesolution process. Finally, the proposed method is carried out
by CAB data set, andthe results confirm theefficiency of it regarding optimality and running time.

doi: 10.5829/ije.2019.32.07a.09

1. INTRODUCTION

In recent years, many shipping and telecommunication
companies have tended to use hub networks for
transferring flows between origins and destinations.
Hub facilities are located in network nodes and provide
services such as switching, sorting, and consolidation of
flows. Using hubs can reduce network connections and
thus reduce network construction costs. Also, with the
use of special transport facilitiess between hubs,
economic savings will be made in traveling costs. Hub
location issues are commonly applied in air transport
industries, postal delivery services, telecommunication
services, container, and maritime transportation
systems.

In general, the hub location problems (HLPs) can be
divided into four categories, including p-hub median
location problem, hub location problem with fixed
costs, p-hub center problem and hub covering problems
[1]. For the first time, Campbell [2] presented the
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mathematical model of hub covering problem with
single and multiple allocations. The difference between
hub covering problems (HCPs) with other HLPs is the
limitation of length or time or cost of the path of origin-
destination (O/D) pairs. HCPs can be applied to the
design of the distribution network of perishable goods
and also the design of transportation networks with
driving time limitation. HCPs are divided into two
categories: Hub set-covering problem (HSCP) and
Maximal-hub covering problem (MHCP). HSCP aims
to determine the location of the hubs so that all O/D
pairs are covered, and the total costs of establishing
hubs are minimized. In MHCP, due to the limitations
such as the number of fleets and available budgets, the
goal is to maximize the amount of covered demand by
locating a certain number of hubs.

Campbell [2] defined three types of coverage in
HCPs. Each O/D pair (i,j) is covered by hubs k and | if:
e The flow transmission cost (time or distance) from

origin i to destination j does not exceed a

predetermined value.
e The flow transmission cost (time or distance) from
origin i to hub k and from hub k to hub | and from
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hub | to destination j does not exceed a

predetermined value.

e The flow transmission cost (time or distance) from
origin i to hub k and from hub | to destination j does
not exceed a predetermined value.

Karimi and Bashiri [3] presented models for HSCP and

MHCP with type 2 coverage and provided two heuristic

algorithms. Hwang and Lee [4] proposed a new

mathematical formulation for the MHCP with fewer
constraints and variables than the existing models. Also,
they presented two heuristic algorithms to solve MHCP
and confirmed them on the Civil Aeronautics Board

(CAB) Dataset. The results showed that the algorithms

are efficient regarding to solution quality and solving

time. Jabalameli et al. [5] proposed two mathematical
formulas for MHCP with a single allocation and
developed a simulated annealing algorithm to solve it.

Ebrahimi-zade et al. [6] presented a non-linear multi-

objective model for MHCP by considering uncertainty.

The model was provided for single and multiple

allocation types and it was also linearized. Since there is

the possibility of interruptions in each O/D path in the
real world, maximizing the reliability in the weakest
network path were also considered along with the
common goal of maximizing the amount of covered
flow. Also, the modified non-dominated sorting genetic
algorithm 1l (NSGAII) was used to solve the problem.

Pasandideh et al. [7] presented a bi-objective model for

uncapacitated single allocation MHCP considering

time-dependent reliabilities. They used the second type
of coverage, and the objectives of the problemincluding
maximizing the flow and the reliability of the network.

They transformed the proposed model to a single-

objective model by goal attainment method. Because of

the NP-hardness of the problem, the genetic algorithm
was developed.

Bashiri and Rezanezhad [8] presented a multi-
objective model for uncapacitated single allocation
HSCP and used e-constraint and NSGAII algorithms to
solve the problem. The model aims to minimize the total
investment and transportation costs, minimizes the
maximum traveling time between pair of nodes,
maximizes the total reliability of available paths and
forces to allocate near nodes to more reliable hubs.
Karimi, et al. [9] presented a mathematical formulation
for capacitated single allocation HSCP in multi-modal
network. They presented six valid inequalities to tight
the linear programming lower bound and developed a
heuristic based on the tabu search algorithm to solve the
problem.  Ebrahimi-zade, et al. [10] presented a bi-
objective model for uncapacitated single allocation
MHCP with uncertainty. They also used fuzzy multi-
objective linear programming to solve the problem. The
model aims to maximize flow and maximize reliability
in the weakest path of the network. They assumed that
the transportation time is a normal random variable.

Jankovi¢c and  Stanimirovic [11] proposed a
mathematical model for uncapacitated r-allocation
MHCP. To solve the model, they used the general
variable neighborhood search algorithm. Jankovic, et al.
[12] presented different mathematical models for
uncapacitated MHCP with single and multiple
allocations. They used two different types of coverage
(binary and partial) and general variable neighborhood
search algorithm to solve the proposed models. Madani,
et al. [13] presented a reliable bi-objective mathematical
model for the single allocation MHCP. The objectives
include maximizing the covered flow and minimizing
congestion in the network. They used NSGAII
algorithm to solve the proposed model and examined its
effectiveness against multi-objective particle swarm
optimization (MOPSO) and Epsilon constraint
algorithms.

Several parameters influence the design of hub
networks, such as O/D flows, hub capacity, the capacity
of transportation facilities, costs, and traveling time.
These parameters may change periodically in the future
by some reasons such as seasonal variations, inflations
and technology improvements. Regarding the periodic
variations of parameters during the planning horizon,
HLPs can be divided into static and multi-period
(dynamic) issues. In static HLPs, it is assumed that the
effective decision parameters are fixed and remain
unchanged over the planning horizon. Therefore, the
optimum locations of the hub facilities are fixed in the
planned horizon. While in multi-period HLPs, it is
assumed that the effective decision parameters change
periodically and their values are constant in each period.
In this situation, the planning horizon is divided into
different periods, while the location of hub facilities can
change in different periods. In this case, the obtained
solution may not be optimal for each of the periods but
it will be the best solution throughout the planning
horizon, indeed.

Gelareh [14] thesis is one of the first studies in
designing a multi-period hub network in public
transport. He considered parameters such as demand,
discount factor, the operational cost of the hubs, and the
cost of opening and closing hubs are changed
periodically. A few research has been conducted on
multi-period hub location problems. In hub covering
problems, only Ebrahimi-zade et al. [15] presented a
mathematical formulation for multi-period hub set-
covering problem, in which the coverage range is a
decision variable. They considered parameters such as
travel cost, opening and closing costs of hubs, hubs
covering costs, and the income of closing hubs are
changed periodically. Moreover, because of the NP-
hardness of the proposed model, they developed a
genetic algorithm to solve it.

Reviewing the literature on the MHCPs showed that
most of the proposed models provide conditions in
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which decision-making parameters will not change in
the future, and mathematical models have been
developed in a static environment. One of the primary
reasons for this, is the high cost of constructing and
launching hubs, which has made it impossible to make
changes into the hub network. However, in some cases,
the establishing cost of hubs is meager in comparison
with  the cost of routing flows (such as
telecommunications networks) or the hub network
service providers are not the infrastructure owner (such
as airlines). So, in these contexts, the structure of the
hub network can be changed over the planning horizon
[16]. Also, even if changing the location of the hubs is
impossible, we can adequately determine the flow path
according to the periodic variations of the parameters.

In this study, to deal with the periodic variations of
parameters, a mathematical formulation for the bi-
objective multi-period maximal hub covering problem
(BOMMHCP) is developed. Another contribution in the
model is the simultaneous consideration of the goals of
maximizing the covered demand of all O/D Pairs and
minimizing the cost of hub establishment. The purpose
of most MHCPs is maximizing the flow due to the
coverage limits and the number of hubs, while most
network owners seek to reduce the cost of the network
construction. Therefore, by designing a bi-objective
model and presenting non-dominated solutions,
managers can choose one of them according to their
preferences. The e-constraint method has been
developed for obtaining non-dominated solutions. Given
that the single-objective problem found in the &
constraint method is computationally intractable,
Benders decomposition algorithm is developed to
accelerate the solution process by adding valid
inequalities.

This article is arranged as follows. In section 2 the
mathematical model of bi-objective multi-period
MHCPs is proposed. The e-constraint mixed integer
linear programming (MILP) model is presented in
section 3. We define a valid inequality to speed-up the
solving process. In the following, the Benders
decomposition (BD) algorithm is developed and
improved to quicken the implementation of the BD. In
section 4, we show the experimental results. Finally,
The conclusion is presented in section 5.

2. MATHEMATICAL FORMULATION

To provide the proposed BOMMHCP model, we

considered the following assumptions:

e The planning horizon is divided into some limited
and equal periods.

e The amount of flow between O/Ds, the cost of
establishing and closing hubs are changes
periodically.

e Due to the use of special facilities for transferring
flows between hubs, it is assumed that traveling
time (cost) between two hubs is less than usual.
Accordingly, the discount factor a is used (0<a<l).

e The time (cost) of the direct connection from node i
to node j is equal to the time (cost) of the direct
connection from node jto node i.

e Transmission between two non-hub nodes is not
possible directly and the O/D route passes at least
one and at most two hubs.

e Hub nodes can be selected fromall network nodes.
o It is possible to open the hubs in different periods,
but hubs can be closed fromthe second period.

e In each period, the number of hubs is predetermined
and the number of hubs in different periods can be
various.

e Non-hub nodes can be allocated to one hub node at
most.

e There is no capacity constraint in the network. In
other words, the capacity of the hubs and arcs of

the network are unlimited.
Notations and Parameters:

N: Node sets

T: Period sets

i,j; indices of Origin (destination) nodes i,j=1..,N

k,I: indices of Hubs k,I=1..,N

t: indices of periods t=1..T

P : Number of hubs in period t t=1..T
D;; : time of direct path from node i to node j i,j=1..,N

Wij; © the amount of demand flow from i,j=1..,N

origin node i to destination node j in periodt ~ t=1...T

o The discount factor for transferring flow
between two hub nodes

Coverage radius (allowable travel
time/cost between O/D nodes)

OPy; : the fixed setup cost for establishinga k =1,...,N
hub at node k in period t t=1..T
CLy : The fixed cost of closing a hub that k =1,...,N
located at node k in period t, CLy; <OPy, t=2..T

Decision variables:
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Yijkie =1 if flows of nodes i and j routed
through hubs k and | respectively and

otherwise equal 0. t=1..
Xit =1if node i is allocated to hub k in

period t,and unless equal 0. i k=1..N
If Xy =1, this indicates that at the _;
beginning of period t, a hub established in

node k.

r. =1if at the beginning of period t a hub K =1
established in node k and otherwise, equal t :Ll

0.
Sy = Lif at the beginning of period t, hub k=1.
node Kk is closed and otherwise, equal 0. t=2,..,

Mathematical formulation of BOMMHCP as follows:

Max ii NZNZTZWijtyijklt

N T N T
Min D" 0Py + YD Cligsiq
k=1t= k=1t=2
st
N

inkt <1

k =

N
Zxkkt =R

k=1

Xikt < Xkkt
2Yijkit < Xikt + X jit
(Dix +aDyy +Dyj) % Vijue < B

Mk1=Xuk1

Mkt =Skt =Xkkt —Xkk (t-1)

Yijkit Xkt : Tt - Skt €03

i=1.,Nt=1.T

t=1..T

ik=L.,Nt=1.T

)

@

©)

4)

®)

(6)

0]

®)

©)

(10)

The objective function (1) maximizes the total covered
flows during the planning horizon. The objective
function (2) minimizes the total cost of establishing and
closing hubs during the planning horizon. Constraints
set (3) ensure that in each period, each non-hub node
can be allocated to at most one hub. Constraints set (4)
show the number of hubs which are going to be
operated in each period. Constraints set (5) state that in
each period, node i can be allocated to node k, if node k
is served as a hub. Constraints set (6) show that in each
period, the path i — k — [ — j will be established where
node i is allocated to hub k and node j is allocated to
hub I. Constraints set (7) ensure that in each period, the
path i — k — [ — j is established, where traveling time
is less than the coverage radius of B. Constraints set (8)
and (9) indicate the possibility of creating and closing
hubs over different periods. It is possible to close a hub
if it had been located in previous periods and it can be
opened if it had not been established in the previous
periods. Constraints set (10) represent the type of
decision variables. In the next section, the method of
solving the proposed model is investigated.

3. SOLUTION APPROACH

Epsilon constraint method is one of the most appropriate
solution methods for multi-objective programming
models and is one of the recommended ways when there
is no access to the decision makers (DM) [17]. In this
method, after selecting one of the objectives as the
primary objective function, others are moved into the
problem constraints and an upper or lower limit (g) is
considered for them. As a result, the multi-objective
problem is converted into a single-objective problem
and Pareto solutions can be determined by assigning
different values to Epsilon [18]. Consider the multi-
objective programming problem (11) which consists of
m different objectives and S represents the feasible
region [17].

Max I Min (1), f(¢),....F i (X))

11
st. X €S (1)

By choosing k (ke {1,..,m}) as the primary objective,
the other objectives are moved to the constraints.

Max / Min f (x)

12
st. x e$S 12)

fi(x)>¢g i e{l..m},i =k for max objectives (13)

fi(x)<g je{l..m},j=k for min objectives (14)
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3. 1. e-constraint Method To implement the e-
constraint method in the proposed BOMMHCP model,
two single-objective problems are considered as
follows.

Problem 1:

The objective function (1)

s.t.

Constraints (3)-(10)

N T N T
zzopkt Tkt +ZZCth3kt <¢ 1)

k=1t=1 k=1t=2

The parameter Obj 1 is equal to value of the optimal
objective function of problem 1.
Problem 2:

The objective function (2)

s.t.
Constraints (3)-(10)

N N N N T
z z ZZ Wijt Yijkir 20bj1 2
i=1j=l=ik=11=1t=1

The following steps are implemented to obtain the set of
Pareto optimal solutions:

Step 1: Set the Pareto optimal solutions to the empty

and the ¢ value to infinity.

Step 2: Solve Problem 1. If the problem has an

optimal solution, then set the Obj 1 and go to step 3.

Otherwise, stop.

Step 3: Solve Problem 2. Put Obj 2 equal to the value

of the optimal objective function and go to step 4.

Step 4: Add the solution (Obj 1, Obj 2) to the Pareto

optimal solutions and go to step 5.

Step 5: Set the value of e to (Obj 2-1) and go to step 2.
Problem 1 in e-constraint MILP model of BOMMHCP
is computationally intractable such that even small-size
examples cannot be solved optimally in a reasonable
runtime using a commercial solver. Accordingly, we
proposed a valid inequality to accelerate the solving
process of the problem. Since BOMMHCP is a single
allocation model and each non-hub node can be
connected to at most one hub, then at most one path
would be existed to transfer the flow between each O/D
pair. Therefore, valid inequality can be stated as
follows:

NN
ZZYijklt <1

k=11=1

ij=L.Nt=1.T a7

By increasing the number of network nodes and periods,
Problem 1 will be intractable due to the existence of

many binary variables and constraints and addition of
valid inequality (17) does not help either to solve the
problem in a reasonable time. As a result, to accelerate
the solution process, the Benders decomposition
algorithm will be developed in the following section.

3. 2. Benders Decomposition (BD) BDis a
classical solution approach that was initially introduced
in 1962 by Benders to solve the NP-hard Mixed Integer
Programming (MIP) problems. In this algorithm, the
MIP model is decomposed into two smaller problems:
the Master Problem (MP) and the Sub-problem (SP).
The MP only contains integer variables and the SP
includes continuous variables of the original problem.
The MP and SP are iteratively solved to produce lower
bound (LB) and upper bound (UB) for optimal objective
value. Then, by the convergence of LB and UB, the
optimal solution is found. To illustrate the Benders
decomposition algorithm, consider the following MIP
model [19]:

P:minCTx +fTy
AX +By >b
Dy >d (18)
yez®
X =0

Or equivalently,

MP:minny+77(y)
Dy >d (19)
yez*

where,

SP: n(y)=minCTx
Ax >b —By (20)
X =0

By fixing y to the feasible values (¥ ), the dual of sub-
problem (DSP) is shown as follows:
DSP : max (b—B)T)Tu

ATu <c (22)

u=0

By obtaining the optimal values of u (0 ) the relaxed
master problem is shown as follows:

RMP : min Z

Z>b-By) T+fTy ViePQcQ

(b-By)'T<0 VI eRQcQ (22)
Dy >d

yez®

where PQ is all of the extreme point sets and RQ is all
of the extreme ray sets of polyhedron Q. Also, Q is
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defined by the constraint sets of DSP model (). The
classical BD algorithm is operated as follows for the
minimization problem [19]:

y = initial feasible integer solution
LB :=—0 and UB =0
while UB —-LB >¢ (0 is the user-defined optimality

gap) do
solve the DSP ()
if the DSP () Unbounded then

Get unbounded ray U and Add the cut
(b -By)T 7 <0 tothe RMP ()

else
Get the extreme point 0 and Add the cut

Z 2(b—By)TLT+ny to the RMP ()
UB = min(UB,(b —By)Tmey)
endif
solve the RMP ()
Z =min{Z |cuts,y eZ*}and LB =7
end while

In the following, we develop BD for the e-constraint
model of BOMMHCP.

3. 2. 1. The Sub-Problem The SP for the fixed
integer variable x =X, is created as follows:

N N T

NN
Min —Z Z zzzwijtyijklt (23)

il j=L#i k=11=1 t=1

s.t.
2 <K, +X i=jk,I=1..,N
Yijkit = Xikt jlt tetT (24)
i#j,kI=1.,N
(Oic +aDig +Dy)xViga <A —11 T (25)

=N =T (26)

N
ZYijklt <1

=11=1

Mz

=~

Yijie {03 :t’ J:]|j|T b 27
BD uses the results of the dual SP solutions to create
cutting constraints in each iteration. SP has binary
variables and its dual representation is not possible. So,
firstly, the structure of SP model is changed in order to
transform it into a model with continuous variables. So:

N N N N T
Min —Z Z zzzwijt x At * Y ijiit (28)

i1 j=li k=11=1t=1

s.t.

yijk|t Sikkt i# J 1k1| =1..,Nt=1..T (29)

Yijk|t SX7||»[ i # J ,k ,| =1.,Nt=1...T (30)
N N

Zzyijklt <1 ij=L.Nt=1.T (31)
k=11=1

OSyijkh Sl i,j,k,l :].,...,N,t ::I.,...,T (32)

The parameter Ay is used to specify the feasible

paths with respect to the coverage radius, as follows:
1if (Dy +aDy +Dy)x Vi < B
ijkit =
Oelse

3. 2. 2. The Dual of Sub-Problem Given the dual
variables ey, for constraints set (29), fy for

constraints set (30) and g;;; for constraints (31), the dual
of SP (DSP) is created as follows:

533 ZZZ T *up

i=1j=1=i k=11 =1

N N N N T
+Z Z ZZZ e > Fije ®)
i=1j=1=ik=11=1t=1
N N T
DI
i=1j=1=i t=1
s.t.
P2kl =1.N
&iikie + Fijkie + Dijt < Wit Ajjire (1T (4)
i,j.k1=1..N
8jjict » Fijicie » Jije <O i1T (5)

Constraints set (4) are related to the primal variable
Yijkit -

3. 2. 3. The Relaxed Master Problem (RMP) SP
always has a feasible and finite optimal solution.
Therefore, by dual theory, DSP has an optimal finite

solution (& - fijer» Gije )- Thus, by the principle of

weak duality, the optimality Benders cut is obtained as
constraint (37). As a result, the RMP is created as
follows:

Min Z (36)

s.t.
N N N N T
Z2 ZZ zzz Xkt % Cijkit
N NT ~
ZZZ X > Fijire (37)
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N T N T
zzopkt Tkt +ZZCth5kt <& (38)

k=1t=1 k=1t=2

N

Xikg <1 i=L.,Nt=1.T (39)

k=1

N
D X =R t=1..T (40)
k=1
Xikt = Xkkt ik=L.Nt=1.T (42)

N

Z Xikt = Xkkt k=L.,Nt=1.T (42)
i—Li=k
Mk1=Xuk1 k =1..,N (43)
Mt =Skt <Xukt ~Xkk -1 K =L Nt=2..T (44)

ik, =L1..N

Xikt Nt » Skt €40,1

ikt Tkt »Skr €{0. 1 felT (45)

3. 2. 4. Accelerating the Proposed BD In some
cases, direct use of classic BD may not result in a
significant reduction in solution runtime. Some of the
main reasons for the slow convergence rate of the
classical BD are: (1) solving the excessive numbers of
RMPs and SPs, and (2) the low quality of the cuts
created in each iteration. Therefore, various methods
and techniques have been developed to increase the
convergence speed of the BD [20].

In early runs of BD, it was observed that there was a
low convergence rate at the lower bound of the
objective function (RMP problem). Therefore, to
increase the efficiency and speed of BD, the cutting
constraints set (46)-(47) are added to RMP problem.
These constraints limit the maximum flow through the
network.

N
hije SZAijklt XXy =X jie +1
k=1

(46)

N N T
2237 Y Sy @
j=l=i t=1

i=l]j

4. COMPUTATIONAL RESULTS

Bxperiments were conducted to assess the performance
of the wvalid inequality and proposed Benders
decomposition approach. In the following, we will
explain the data generation approach and analyze the
obtained results.

4. 1. Data Generation The well known standard
benchmark that is refers to data obtained from the Civil
Aeronautics Board of the United States of America
(CAB dataset [21]), is used for evaluating BOMMHCP
model. Since the CAB dataset is not provided for multi-
period problems. Therefore, according to Alumur et al.
[22], flows in the CAB dataset are considered for the
first period only. Also, for following periods, it is
obtained from the multiplication of the flows of the
previous period by a random number from the uniform
interval (0.9, 1.2). The cost of establishing and closing
hubs has been generated according to Gelareh et al.
[23]. Moreover, the cost of establishing the hub for the
first period is randomly generated from the interval
(500,700). Likewise, for following periods, it is
obtained from the multiplication of the establishment
costs of the previous period by a random number from
the uniform interval (1, 1.05). Additionally, the cost of
closing the hub for the first period is randomly
generated from the interval (200,300) and for following
periods, it is obtained from the multiplication of the
closing costs of the previous period by a random
number from the uniform interval (1, 1.05). Different
values for discount factor and coverage radius are
considered according to the article by Silva and Cunha
[24]. The various values of the parameters are shown in

TABLE .

4. 2. Results Analysis The GAMS software
(version 24.9.1) and CPLEX solvers (version 12.7.1)
were used for solving e-constraint MILP model of
BOMMHCP and the proposed BD algorithm. The
software runs on a 4 GHz Intel processor (Intel Core i7-
6700k) and 32GB of RAM. A time limit of 7200 and
3600 seconds was considered for the implementation of
g-constraint MILP model with valid inequality and BD
algorithm, respectively. In continue, we will explain the
results from various aspects.

TABLE 1. Parameter Values for BOMMHCP

Parameter Values

N 10,15,20,25

P 2,3,4,5

W CAB dataset t=1

It Wij-n*xU[09,12] t>1

U [500,700] t=1

OPyt OPy¢_1yxU[L0511] t>1
U [200,300] t=2

CLt

Cly-y*xUM.0511] t>2
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4. 2. 1. Performance of The Valid Inequality
Different problems with 10 and 15 nodes were solved to
illustrate the efficiency of valid inequality and the
results are presented in Table 2. The stars (*) indicate
that the optimal solution has been achieved. As it is
evident, the optimal solution is obtained by applying the
valid inequality (17) for all sample issues, while without
considering the inequality, only the optimal solution to
the problems with ten nodes is obtained. Also, the
results confirm the high performance of a valid
inequality in terms of runtime and show a significant
decrease.

971

4. 2. 2. Evaluation of Speeding Up The BD In
this paper, we proposed a modification to speeding up
the classical BD algorithm. The computational results
are presented in Figures 1 and 2. Several experiments
have been conducted to verify the effectiveness of
correction. As an example, the NIOP2T3a0.2R1425
problem (problem with ten nodes, two hubs, three
periods, 0=0.2 and the coverage radius of 1425) is
solved by the classical BD and improved BD. The
results show that the classical BD converges in iteration
39 (Figure 1Figure ), while, the improved BD converges
in two iterations (Figure 2).

TABLE 2. Results of adding Valid Inequality

With Valid Inequality ~ Without Valid Inequality

Numberof  Number of Discount Coverage Epsilon (Budget ) .
Nodes Hubs Factor Radius Constraint) Flow Runtime Flow Runtime
Objective (seconds) Objective (seconds)
10 2 0.2 1425 1599 3,174,972" 3.2 3,174,972 77.6
10 3 0.2 1117 2433 3,139,640 3.0 3,139,640 193
10 4 0.2 811 3273 2,794,350" 4.7 2,794,350 185.2
10 5 0.2 736 4134 2,733,823" 7.9 2,733,823" 147.3
10 2 0.6 1671 1599 3,136,301" 4.0 3,136,301" 73.9
10 3 0.6 1387 2433 3,091,015 2.6 3,091,015 179.7
10 4 0.6 1148 3273 3,021,212 1.7 3,021,212 281.4
10 5 0.6 1079 4134 2,896,000 1.9 2,896,000 138.7
15 2 0.2 2004 1564.5 7,470,656 275 7,407,953 4634.4
15 3 0.2 1638 2349 7,341,687 183 7,142,206 7203.2
15 4 0.2 1324 3138 7,051,643" 278 6,912,159 7203.4
15 5 0.2 1149 3964.5 7,075,740 115 6,706,032 7203.9
15 2 0.6 2103 1564.5 7,179,215 340 7,133,948 7203.3
15 3 0.6 1844 2349 7,073,270 513 6,933,837 7203.5
15 4 0.6 1756 3138 7,146,254" 125 6,589,729 7203.2
15 5 0.6 1560 3964.5 6,871,335 134 6,430,333 7203.8
16000000 3200000
oo 3100000
3000000
2900000
—+UB 8000000 -8
T o U8 2800000
4000000 2700000
-
2000000 2600000
0 1 2 3
0123456789 mluuaulslsum: 021 ; Benders Cy:les

Figure 1. The performance of the classical BD

Figure 2. The performance of the improved BD
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4. 2. 3. Verifying and Validating the BD
Algorithm Several examples were solved to confirm
the efficacy of the improved BD algorithm. The
obtained results are presented in Table 3. The stars (*)
indicate that the optimal solution has been achieved.
The results demonstrated that the performance of
the e-constraint MILP models with and without valid
inequality and the Improved BD algorithm are similar
and they reach to the optimal solution for all instances
with ten nodes in less than 3600 seconds. However, in
all instances with 15 nodes, only e-constraint MILP
models with valid inequality and the improved BD

algorithm performed similarly, while e-constraint
MILP models without valid inequality was not capable
of solving the samples at the proposed runtime
limitation and made even worse objective values. In
addition, the results obtained from instances with 20
and 25 nodes demonstrated that the proposed BD
algorithm performed better than the others and it had
less runtime, and more appropriate solutions were
obtained. The comparison of solution times and
objective values are shown in Figures 3 and 4,
respectively.

TABLE 1. Results of improved BD

Discount Without Valid Inequality With Valid Inequality Improved BD
Problem Nodes Hubs Eactor . . . . . .
obj. value runtime obj. value  Runtime (seconds) obj.value Runtime (seconds)
1 10 2 0.2 3,177,612 246.3 3,177,612" 3.191 3,177,612" 3.15
2 10 3 0.2 3,132,909 607.36 3,132,909" 3.07 3,132,909" 3.019
3 10 4 0.2 3,203,761" 22.94 3,203,761" 2.2 3,203,761" 2.93
4 10 5 0.2 3,156,751 86.4 3,156,751" 2.72 3,156,751" 2.88
5 10 2 0.6 3,130,815 707.95 3,130,815" 3.18 3,130,815" 3.05
6 10 3 0.6 3,143,466 636.5 3,143,466" 2.52 3,143,466" 3.11
7 10 4 0.6 3,148,697 53.87 3,148,697" 2.09 3,148,697" 3.02
8 10 5 0.6 3,163,102 107.2 3,163,102" 2.14 3,163,102" 3.01
9 15 2 0.2 5,712,456 3604 7,470,656" 314.7 7,470,656 14.6
10 15 3 0.2 7,305,615 3603.7 7,404,374" 1762.9 7,404,374" 36.7
11 15 4 0.2 6,755,050 3603.6 7,521,565" 163.3 7,521,565" 10.9
12 15 5 0.2 7,190,805 3603.7 7,394,625" 48.69 7,394,625" 7.6
13 15 2 0.6 6,495,672 3603.7 7,446,354" 59.3 7,446,354" 11.6
14 15 3 0.6 7,016,642 3603.3 7,255,354" 322.7 7,255,354" 30.2
15 15 4 0.6 6,969,136 3603.8 7,443,425" 20.1 7,443,425" 6.6
16 15 5 0.6 6,998,628 3603.5 7,458,756" 10.6 7,458,756" 6.5
17 20 2 0.2 17,685,355 3608.7 18,210,653" 1184.9 18,210,653 212.8
18 20 3 0.2 13,936,717 3609.3 17,815,161 3608.5 17,947,235 268.1
19 20 4 0.2 13,854,186 3609.2 18,153,547 3609.2 18,176,821 19.6
20 20 5 0.2 13,326,320 3608.4 18,101,487 3609.1 18,114,561 249.3
21 20 2 0.6 15,110,702 3608.6 18,153,692" 1027.6 18,153,692" 90.1
22 20 3 0.6 14,717,260 3608.4 17,881,134 3608.8 17,937,160" 230.7
23 20 4 0.6 17,070,718 3609.6 18,197,128 333.7 18,197,128" 46.4
24 20 5 0.6 14,471,042 3608.9 18,128,884 138.1 18,128,884 17.2
25 25 2 0.2 20,714,822 3620.2 22,402,229 3619.9 26,896,201 921.4
26 25 3 0.2 19,383,882 3625.3 20,206,324 3619.8 26,876,295 1578.9
27 25 4 0.2 19,064,977 3619.5 19,333,815 3619.2 26,952,730" 1246.2
28 25 5 0.2 18,061,867 3618.6 21,150,505 3619.5 26,927,569" 736.2
29 25 2 0.6 0 3618.5 21,498,335 3628.2 26,714,270" 658.6
30 25 3 0.6 20,363454 3640.1 22,702,714 3619.9 26,923,193" 724.9
31 25 4 0.6 20,675,391 3621.6 22,331,966 3619.7 26,783,695 863.3
32 25 5 0.6 20,133,147 3619.6 20,538,530 3619.9 26,834,055 1169.2
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4. 2. 4. Pareto Optimal Solutions Two sample
problems have been solved to illustrate Pareto's
optimal solutions in &-constraint method, including the
problem with ten nodes, four hubs, three time periods
and discount factor of 0.6 (N10P4T300.6) and the
problem with 15 nodes, four hubs, three time periods
and discount factor of 0.6 (N15P4T3a0.6). Results are
shown in Table 4, Figures 5 and 6.

TABLE 4. Pareto optimal solutions for problems with 10 and
15 nodes

10 2,788,025 2241 6,550,317 2126
11 2,743,380 2196 6,543,344 2120
12 2,712,631 2182

2450
2400 /(-v‘
e (,_J

2250 /j
2200

2150

2650000 2750000 2850000 2950000 3050000
Flow objective

Cost Objective
o
w
(=]
(=]

Figure 5. Optimal Pareto Front for N10P4T300.6
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Solution N10P4T300.6 N15P4T300.6
Numbers  Fow Obj.  CostObj. Flow Obj.  Cost Obj.

3,021,212 2402 7,146,254 2430
3,017,047 2398 7,124,188 2396
2,977,080 2389 7,096,680 2290
2,951,872 2338 7,083,419 2288
2,892,576 2330 7,074,650 2260
2,862,641 2319 7,015,516 2225
2,858,476 2315 6,884,141 2204
2,834,144 2256 6,721,777 2179
2,793,301 2255 6,702,545 2151

© 0o N o g B~ W N P

Figure 1. Optimal Pareto Front for N15P4T300.6

As an example, for a network with 15 nodes, three
hubs and three periods (N15P3T300.6), the designed
hub network obtained in the first period (Figure 7), in
the second period (Figure 8) and the third period
(Figure 9) are shown. According to Figures, in the first
period, hubs are located in nodes 9 (Detroit), 12 (Los
Angeles) and 13 (Memphis), and in the second and
third periods hubs are located in nodes 6 (Cleveland),
12 (Los Angeles) and 13 (Memphis). Although the
locations of the hubs are the same in second and third
periods, the allocation of nodes to hubs is different.
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e Hub arc

Access arc

e HUb arc

— Access arc

Figure 8. Network structure for N15P3T3 in the Second
period

e HUb arc

Access arc

Figure 9. Network structure for N15P3T3 in the third period

5. CONCLUSIONS

In this paper, by considering the periodic changes in
O/D flows and the costs of establishing and closing
hubs, a mathematical model was proposed for a bi-
objective multi-period maximal hub covering problem.
Furthermore, the e-constraint method was used to solve
the proposed model. Given that the single-objective
problem found in the e-constraint method is
computationally intractable, we added a new valid
inequality and also developed the BD algorithm to
accelerate the solution process. Results showed that the
proposed BD has a high performance in terms of
runtime and optimal attainment.

This work covers the application of HLPs in
periodic variation of parameters. However, there are

still issues for development. One of them includes
taking into account stochastic parameters (such as O/D
flows, traveling time and costs) along with periodic
parameters to increase the efficiency of the
BOMMHCP model when the decision parameters are
changing. Meanwhile, it is useful to extend the
proposed model by considering other constraints of the
real world, including the amount of available budget
and capacity constraint in the network.
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