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A B S T R A C T  
 

 

The problem of maximal hub covering as a challenging problem in operation research. Transportation 
programming seeks to find an optimal location of a set of hubs to reach maximum flow in a network. 

Since the main structure's parameters of the problem such as origin-destination flows, costs and travel 
time, change periodically in the real world applications, new issues arise in handling it . In this paper, to 
deal with the periodic variations of parameters, a bi-objective mathematical model is proposed for the 
single allocation multi-period maximal hub covering problem. The ε-constraint approach has been 

applied to achieve non-dominated solutions. Given that the single-objective problem found in the ε-
constraint method is computationally intractable. Benders decomposition algorithm by adding valid 
inequalities is developed to accelerate the solution process. Finally, the proposed method is carried out 
by CAB data set, and the results confirm the efficiency of it  regarding optimality and running time.  

doi: 10.5829/ije.2019.32.07a.09 
 

 
1. INTRODUCTION1 
 
In recent years, many shipping and telecommunication 

companies have tended to use hub networks for 

transferring flows between origins and destinations. 
Hub facilities are located in network nodes and provide 

services such as switching, sorting, and consolidation of 

flows. Using hubs can reduce network connections and 

thus reduce network construction costs . Also, with the 

use of special transport facilities between hubs, 

economic savings will be made in traveling costs. Hub 

location issues are commonly applied in air transport 

industries, postal delivery services, telecommunication 

services, container, and maritime transportation 

systems. 

In general, the hub location problems (HLPs) can be 

divided into four categories, including p-hub median 

location problem, hub location problem with fixed 

costs, p-hub center problem and hub covering problems 

[1]. For the first time, Campbell [2] presented the 

                                                                 
*Corresponding Author Email: y.khosravian@in.iut.ac.ir (Y. 

Khosravian Ghadikolaei) 

mathematical model of hub covering problem with 

single and multiple allocations. The difference between 

hub covering problems (HCPs) with other HLPs is the 

limitation of length or time or cost of the path of origin-

destination (O/D) pairs. HCPs can be applied to the 

design of the distribution network of perishable goods 

and also the design of transportation networks with 

driving time limitation. HCPs are divided into two 

categories: Hub set-covering problem (HSCP) and 

Maximal-hub covering problem (MHCP). HSCP aims 

to determine the location of the hubs so that all O/D 

pairs are covered, and the total costs of establishing 

hubs are minimized. In MHCP, due to the limitations 

such as the number of fleets and available budgets, the 

goal is to maximize the amount of covered demand by 

locating a certain number of hubs. 

 Campbell [2] defined three types of coverage in 

HCPs. Each O/D pair (i,j) is covered by hubs k  and l if: 

 The flow transmission cost (time or distance) from 

origin i to destination j does not exceed a 

predetermined value. 

 The flow transmission cost (time or distance) from 

origin i to hub k  and from hub k  to hub l and from 
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hub l to destination j does not exceed a 

predetermined value. 

 The flow transmission cost (time or distance) from 

origin i to hub k  and from hub l to destination j does 

not exceed a predetermined value. 

Karimi and Bashiri [3] presented models for HSCP and 

MHCP with type 2 coverage and provided two heuristic 

algorithms. Hwang and Lee [4] proposed a new 

mathematical formulation for the MHCP with fewer 

constraints and variables than the existing models. Also, 

they presented two heuristic algorithms to solve MHCP 

and confirmed them on the Civil Aeronautics Board 

(CAB) Dataset. The results showed that the algorithms 

are efficient regarding to solution quality and solving 

time. Jabalameli et al. [5] proposed two mathematical 

formulas for MHCP with a single allocation and 

developed a simulated annealing algorithm to solve it. 

Ebrahimi-zade et al. [6] presented a non-linear multi-

objective model for MHCP by considering uncertainty. 

The model was provided for single and multiple 

allocation types and it was also linearized. Since there is 

the possibility of interruptions in each O/D path in the 

real world, maximizing the reliability in the weakest 

network path were also considered along with the 

common goal of maximizing the amount of covered 

flow. Also, the modified non-dominated sorting genetic 

algorithm II (NSGAII) was used to solve the problem. 

Pasandideh et al. [7] presented a bi-objective model for 

uncapacitated single allocation MHCP considering 

time-dependent reliabilities. They used the second type 

of coverage, and the objectives of the problem including 

maximizing the flow and the reliability of the network. 

They transformed the proposed model to a single-

objective model by goal attainment method. Because of 

the NP-hardness of the problem, the genetic algorithm 

was developed.  

Bashiri and Rezanezhad [8] presented a multi-

objective model for uncapacitated single allocation 

HSCP and used ε-constraint and NSGAII algorithms to 

solve the problem. The model aims to minimize the total 

investment and transportation costs, minimizes the 

maximum traveling time between pair of nodes, 

maximizes the total reliability of available paths and 

forces to allocate near nodes to more reliable hubs. 

Karimi, et al. [9] presented a mathematical formulation 

for capacitated single allocation HSCP in multi-modal 

network. They presented six valid inequalities to tight 

the linear programming lower bound and developed a 

heuristic based on the tabu search algorithm to solve the 

problem.  Ebrahimi-zade, et al. [10] presented a bi-

objective model for uncapacitated single allocation 

MHCP with uncertainty. They also used fuzzy multi-

objective linear programming to solve the problem. The 

model aims to maximize flow and maximize reliability 

in the weakest path of the network. They assumed that 

the transportation time is a normal random variable. 

Janković and Stanimirović [11] proposed a 

mathematical model for uncapacitated r-allocation 

MHCP. To solve the model, they used the general 

variable neighborhood search algorithm. Janković, et al. 

[12] presented different mathematical models for 

uncapacitated MHCP with single and multiple 

allocations. They used two different types of coverage 

(binary and partial) and general variable neighborhood 

search algorithm to solve the proposed models. Madani, 

et al. [13] presented a reliable bi-objective mathematical 

model for the single allocation MHCP. The objectives 

include maximizing the covered flow and minimizing 

congestion in the network. They used NSGAII 

algorithm to solve the proposed model and examined its 

effectiveness against multi-objective particle swarm 

optimization (MOPSO) and Epsilon constraint 

algorithms. 

Several parameters influence the design of hub 

networks, such as O/D flows, hub capacity, the capacity 

of transportation facilities, costs, and traveling time. 

These parameters may change periodically in the future 

by some reasons such as seasonal variations, inflations 

and technology improvements. Regarding the periodic 

variations of parameters during the planning horizon, 

HLPs can be divided into static and multi-period 

(dynamic) issues. In static HLPs, it is assumed that the 

effective decision parameters are fixed and remain 

unchanged over the planning horizon. Therefore, the 

optimum locations of the hub facilities are fixed in the 

planned horizon. While in multi-period HLPs, it is 

assumed that the effective decision parameters change 

periodically and their values are constant in each period. 

In this situation, the planning horizon is divided into 

different periods, while the location of hub facilities can 

change in different periods. In this case, the obtained 

solution may not be optimal for each of the periods but 

it will be the best solution throughout the planning 

horizon, indeed. 

Gelareh [14] thesis is one of the first studies in 

designing a multi-period hub network in public 

transport. He considered parameters such as demand, 

discount factor, the operational cost of the hubs, and the 

cost of opening and closing hubs are changed 

periodically. A few research has been conducted on 

multi-period hub location problems. In hub covering 

problems, only Ebrahimi-zade et al. [15] presented a 

mathematical formulation for multi-period hub set-

covering problem, in which the coverage range is a 

decision variable. They considered parameters such as 

travel cost, opening and closing costs of hubs, hubs 

covering costs, and the income of closing hubs are 

changed periodically. Moreover, because of the NP-

hardness of the proposed model, they developed a 

genetic algorithm to solve it.  

Reviewing the literature on the MHCPs showed that 

most of the proposed models provide conditions in 
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which decision-making parameters will not change in 

the future, and mathematical models have been 

developed in a static environment. One of the primary 

reasons for this, is the high cost of constructing and 

launching hubs, which has made it impossible to make 

changes into the hub network. However, in some cases, 

the establishing cost of hubs is meager in comparison 

with the cost of routing flows (such as 

telecommunications networks) or the hub network 

service providers are not the infrastructure owner (such 

as airlines). So, in these contexts, the structure of the 

hub network can be changed over the planning horizon 

[16]. Also, even if changing the location of the hubs is 

impossible, we can adequately determine the flow path 

according to the periodic variations of the parameters. 

In this study, to deal with the periodic variations of 

parameters, a mathematical formulation for the bi-

objective multi-period maximal hub covering problem 

(BOMMHCP) is developed. Another contribution in the 

model is the simultaneous consideration of the goals of 

maximizing the covered demand of all O/D Pairs and 

minimizing the cost of hub establishment. The purpose 

of most MHCPs is maximizing the flow due to the 

coverage limits and the number of hubs, while most 

network owners seek to reduce the cost of the network 

construction. Therefore, by designing a bi-objective 

model and presenting non-dominated solutions, 

managers can choose one of them according to their 

preferences. The ε-constraint method has been 

developed for obtaining non-dominated solutions. Given 

that the single-objective problem found in the ε-

constraint method is computationally intractable, 

Benders decomposition algorithm is developed to 

accelerate the solution process by adding valid 

inequalities. 

This article is arranged as follows. In section 2 the 

mathematical model of bi-objective multi-period 

MHCPs is proposed. The ε-constraint mixed integer 

linear programming (MILP) model is presented in 

section 3. We define a valid inequality to speed-up the 

solving process. In the following, the Benders 

decomposition (BD) algorithm is developed and 

improved to quicken the implementation of the BD. In 

section 4, we show the experimental results. Finally, 

The conclusion is presented in section 5. 

 

 

2. MATHEMATICAL FORMULATION  
 

To provide the proposed BOMMHCP model, we 

considered the following assumptions: 

 The planning horizon is divided into some limited 

and equal periods. 

 The amount of flow between O/Ds, the cost of 

establishing and closing hubs are changes 

periodically. 

 Due to the use of special facilities for transferring 

flows between hubs, it is assumed that traveling 

time (cost) between two hubs is less than usual. 

Accordingly, the discount factor α is used (0<α≤1). 

 The time (cost) of the direct connection from node i 

to node j is equal to the time (cost) of the direct 

connection from node j to node i. 

 Transmission between two non-hub nodes is not 

possible directly and the O/D route passes at least 

one and at most two hubs. 

 Hub nodes can be selected from all network nodes. 

 It is possible to open the hubs in different periods, 

but hubs can be closed from the second period. 

 In each period, the number of hubs is predetermined 

and the number of hubs in different periods can be 

various. 

 Non-hub nodes can be allocated to one hub node at 

most. 

 There is no capacity constraint in the network. In 

other words, the capacity of the hubs and arcs of 

the network are unlimited. 
Notations and Parameters: 

N: Node sets 

T: Period sets 

i,j: indices of Origin (destination) nodes  , 1,...,i j N   

k,l: indices of Hubs , 1,...,k l N  

t: indices of periods 1,...,t T  

tP : Number of hubs in period t 1,...,t T  

ijD : time of direct path from node i to node j , 1,...,i j N  

ijtW : the amount of demand flow from 

origin node i to destination node j in period t 

, 1,...,i j N

1,...,t T  

α: The discount factor for transferring flow 

between two hub nodes 

 

β: Coverage radius (allowable travel 

time/cost between O/D nodes) 

 

 ktOP : the fixed setup cost for establishing a 

hub at node k in period t  

1,...,k N

1,...,t T  

ktCL : The fixed cost of closing a hub that 

located at node k in period t, kt ktCL OP  

1,...,k N

2,...,t T  

Decision variables: 
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1ijklty   if flows of nodes i and j routed 

through hubs k and l respectively and 

otherwise equal 0. 

, , , 1,...,i j k l N

1,...,t T  

1iktx  if node i is allocated to hub k in 

period t,and  unless equal 0. 

If 1kktx  , this indicates that at the 

beginning of period t, a hub established in 

node k. 

, 1,...,i k N

1,...,t T  

1ktr  if at the beginning of period t a hub 

established in node k and otherwise, equal 

0. 

1,...,k N

1,...,t T  

1kts  if at the beginning of period t, hub 

node k is closed and otherwise, equal 0. 

1,...,k N

2,...,t T  

Mathematical formulation of BOMMHCP as follows: 

1 1, 1 1 1

N N N N T

ijt ijklt

i j i k l t

Max W y

     

     (1) 

1 1 1 2

N T N T

kt kt kt kt

k t k t

Min OP r CL s

   

   (2) 

s.t.   

1

1

N

ikt

k

x



   1,..., , 1,...,i N t T   (3) 

1

N

kkt t

k

x P



  1,...,t T  (4) 

ikt kktx x  , 1,..., , 1,...,i k N t T   (5) 

2 ijklt ikt jlty x x   
, , 1,...,

, 1,...,

i j k l N

t T

 


 (6) 

( )ik kl lj ijkltD D D y      
, , 1,...,

, 1,...,

i j k l N

t T

 


 (7) 

1 1k kkr x  1,...,k N  (8) 

( 1)kt kt kkt kk tr s x x     1,..., , 2,...,k N t T   (9) 

, , , {0,1}ijklt ikt kt kty x r s   
, , , 1,...,

, 1,...,

i j k l N

t T




 (10) 

The objective function (1) maximizes the total covered 

flows during the planning horizon. The objective 

function (2) minimizes the total cost of establishing and 

closing hubs during the planning horizon. Constraints 

set (3) ensure that in each period, each non-hub node 

can be allocated to at most one hub. Constraints set (4) 

show the number of hubs which are going to be 

operated in each period. Constraints set (5) state that in 

each period, node i can be allocated to node k , if node k  

is served as a hub. Constraints set (6) show that in each 

period, the path i → k → l → j will be established where 

node i is allocated to hub k  and node j is allocated to 

hub l. Constraints set (7) ensure that in each period, the 

path i → k → l → j is established, where traveling time 

is less than the coverage radius of β. Constraints set (8) 

and (9) indicate the possibility of creating and closing 

hubs over different periods. It is possible to close a hub 

if it had been located in previous periods and it can be 

opened if it had not been established in the previous 

periods. Constraints set (10) represent the type of 

decision variables. In the next section, the method of 

solving the proposed model is investigated. 

 

 

3. SOLUTION APPROACH 
 

Epsilon constraint method is one of the most appropriate 

solution methods for multi-objective programming 

models and is one of the recommended ways when there 

is no access to the decis ion makers (DM) [17]. In this 

method, after selecting one of the objectives as  the 

primary objective function, others are moved into the 

problem constraints and an upper or lower limit (ε) is 

considered for them. As a result, the multi-objective 

problem is converted into a single-objective problem 

and Pareto solutions can be determined by assigning 

different values to Epsilon [18]. Consider the multi-

objective programming problem (11) which consists of 

m different objectives and S represents the feasible 

region [17]. 

(11) 
 1 2/ ( ), ( ),..., ( )

. .

mMax Min f x f x f x

s t x S
  

By choosing k  (k∈ {1,...,m}) as the primary objective, 

the other objectives are moved to the constraints. 

(12) 
/ ( )

. .

kMax Min f x

s t x S
 

(13)  ( ) 1,..., ,i if x i m i k   for max objectives    

(14)  ( ) 1,..., ,j jf x j m j k    for min objectives  
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3. 1. ε-constraint Method       To implement the ε-

constraint method in the proposed BOMMHCP model, 

two single-objective problems are considered as 

follows. 

Problem 1: 

The objective function  (1)  

s.t.   

Constraints (3)-(10)  

1 1 1 2

N T N T

kt kt kt kt

k t k t

OP r CL s 

   

    (1) 

The parameter Obj 1 is equal to value of the optimal 

objective function of problem 1. 

Problem 2: 

The objective function (2)  

s.t.   

Constraints (3)-(10)  

1 1, 1 1 1

1

N N N N T

ijt ijklt

i j i k l t

W y Obj

     

    (2) 

The following steps are implemented to obtain the set of 

Pareto optimal solutions: 

Step 1: Set the Pareto optimal solutions to the empty 

and the ε value to infinity. 

Step 2: Solve Problem 1. If the problem has an 

optimal solution, then set the Obj 1 and go to step 3. 

Otherwise, stop. 

Step 3: Solve Problem 2. Put Obj 2 equal to the value 

of the optimal objective function and go to step 4. 

Step 4: Add the solution (Obj 1, Obj 2) to the Pareto 

optimal solutions and go to step 5. 

Step 5: Set the value of ε to (Obj 2-1) and go to step 2. 

Problem 1 in ε-constraint MILP model of BOMMHCP 

is computationally intractable such that even small-size 

examples cannot be solved optimally in a reasonable 

runtime using a commercial solver. Accordingly, we 

proposed a valid inequality to accelerate the solving 

process of the problem. Since BOMMHCP is a single 

allocation model and each non-hub node can be 

connected to at most one hub, then at most one path 

would be existed to transfer the flow between each O/D 

pair. Therefore, valid inequality can be stated as 

follows: 

1 1

1

N N

ijklt

k l

y

 

  , 1,..., , 1,...,i j N t T   (17) 

By increasing the number of network nodes and periods, 

Problem 1 will be intractable due to the existence of 

many binary variables and constraints and addition of 

valid inequality (17) does not help either to solve the 

problem in a reasonable time. As a result, to accelerate 

the solution process, the Benders decomposition 

algorithm will be developed in the following section. 

 

3. 2. Benders Decomposition (BD)             BD is a 

classical solution approach that was initially introduced 

in 1962 by Benders to solve the NP-hard Mixed Integer 

Programming (MIP) problems.  In this algorithm, the 

MIP model is decomposed into two smaller problems:  

the Master Problem (MP) and the Sub-problem (SP). 

The MP only contains integer variables and the SP 

includes continuous variables of the original problem. 

The MP and SP are iteratively solved to produce lower 

bound (LB) and upper bound (UB) for optimal objective 

value. Then, by the convergence of LB and UB, the 

optimal solution is found. To illustrate the Benders 

decomposition algorithm, consider the following MIP 

model [19]: 

:min

0

T TP C x f y

Ax By b

Dy d

y Z

x





 







   (18) 

Or equivalently, 

:min ( )TMP f y y

Dy d

y Z











 (19) 

where, 

: ( ) min

0

TSP y C x

Ax b By

x

 

 



 (20) 

By fixing y to the feasible values ( y ), the dual of sub-

problem (DSP) is shown as follows: 

: max ( )

0

T

T

DSP b By u

A u c

u







 (21) 

By obtaining the optimal values of u (u ) the relaxed 

master problem is shown as follows: 

: min

( )

( ) 0

T T

T

RMP Z

Z b By u f y u P

b By u u R

Dy d

y Z 

       

      





 (22) 

where PΩ is all of the extreme point sets and RΩ is all 

of the extreme ray sets of polyhedron Ω. Also, Ω is 
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defined by the constraint sets of DSP model (). The 

classical BD algorithm is operated as follows for the 

minimizat ion problem [19]: 
 

y := initial feasible integer solution 

:LB    and :UB    

while  UB LB    (δ is the user-defined optimality   

gap) do  

        solve the DSP () 

       if the DSP () Unbounded then 

                 Get unbounded ray u and Add the cut           

( ) 0Tb By u   to the RMP () 

        else 

Get the extreme point u  and Add the cut 

( )T TZ b By u f y    to the RMP () 

             : min ,( )T TUB UB b By u f y    

        end if 

      solve the RMP () 

  : min{ | , } :Z Z cuts y Z and LB Z     

end while 

In the following, we develop BD for the ε-constraint 

model of BOMMHCP. 

 

3. 2. 1. The Sub-Problem      The SP for the fixed 

integer variable  x x , is created as follows: 

1 1, 1 1 1

N N N N T

ijt ijklt

i j i k l t

Min W y

     

    (23) 

s.t. 

2 ijklt ikt jlty x x   
, , 1,...,

, 1,...,

i j k l N

t T

 


 (24) 

( )ik kl lj ijkltD D D y      
, , 1,...,

, 1,...,

i j k l N

t T

 


 (25) 

1 1

1

N N

ijklt

k l

y

 

  , 1,..., , 1,...,i j N t T   (26) 

{0,1}ijklty   
, , , 1,...,

, 1,...,

i j k l N

t T




 (27) 

BD uses the results of the dual SP solutions to create 

cutting constraints in each iteration. SP has binary 

variables and its dual representation is not possible. So, 

firstly, the structure of SP model is changed in order to 

transform it into a model with continuous variables. So: 

1 1, 1 1 1

N N N N T

ijt ijklt ijklt

i j i k l t

Min W A y

     

      (28) 

s.t.   

ijklt kkty x  , , 1,..., , 1,...,i j k l N t T    (29) 

ijklt llty x  , , 1,..., , 1,...,i j k l N t T    (30) 

1 1

1

N N

ijklt

k l

y

 

  , 1,..., , 1,...,i j N t T   (31) 

0 1ijklty   , , , 1,..., , 1,...,i j k l N t T   (32) 

The parameter  ijkltA  is used to specify the feasible 

paths with respect to the coverage radius, as follows: 

1 ( )

0

ik kl lj ijklt
ijklt

if D D D y
A

else

    
 


 

 
3. 2. 2. The Dual of Sub-Problem         Given the dual 

variables ijklte  for constraints set (29), ijkltf for 

constraints set (30) and ijtg for constraints (31), the dual 

of SP (DSP) is created as follows: 

1 1, 1 1 1

1 1, 1 1 1

1 1, 1

N N N N T

kkt ijklt

i j i k l t

N N N N T

llt ijklt

i j i k l t

N N T

ijt

i j i t

Max x e

x f

g

     

     

   



 



  

  

  

 
(3) 

s.t.  

  ijklt ijklt ijt ijt ijklte f g W A      
, , 1,...,

, 1,...,

i j k l N

t T

 


 (4) 

  , , 0ijklt ijklt ijte f g   
, , , 1,...,

, 1,...,

i j k l N

t T




 (5) 

Constraints set (4) are related to the primal variable 

ijklty . 

 

3. 2. 3. The Relaxed Master Problem (RMP)       SP 

always has a feasible and finite optimal solution. 

Therefore, by dual theory, DSP has an optimal finite 

solution ( , ,ijklt ijklt ijte f g ). Thus, by the principle of 

weak duality, the optimality Benders cut is obtained as 

constraint (37). As a result, the RMP is created as 

follows: 

Min Z   (36) 

s.t.   

1 1, 1 1 1

1 1, 1 1 1

1 1, 1

N N N N T

kkt ijklt

i j i k l t

N N N N T

llt ijklt

i j i k l t

N N T

ijt

i j i t

Z x e

x f

g

     

     

   

 

 



  

  

  

 
(37) 
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1 1 1 2

N T N T

kt kt kt kt

k t k t

OP r CL s 

   

    (38) 

1

1

N

ikt

k

x



  1,..., , 1,...,i N t T   (39) 

1

N

kkt t

k

x P



  1,...,t T  (40) 

ikt kktx x  , 1,..., , 1,...,i k N t T   (41) 

1,

N

ikt kkt

i i k

x x

 

  1,..., , 1,...,k N t T   (42) 

1 1k kkr x  1,...,k N  (43) 

( 1)kt kt kkt kk tr s x x     1,..., , 2,...,k N t T   (44) 

, , {0,1}ikt kt ktx r s   
, , , 1,...,

, 1,...,

i j k l N

t T




 (45) 

 
3. 2. 4. Accelerating the Proposed BD        In some 

cases, direct use of classic BD may not result in a 

significant reduction in solution runtime. Some of the 

main reasons for the slow convergence rate of the 

classical BD are: (1) solving the excessive numbers of 

RMPs and SPs, and (2) the low quality of the cuts 

created in each iteration. Therefore, various methods 

and techniques have been developed to increase the 

convergence speed of the BD [20]. 

In early runs of BD, it was observed that there was a 

low convergence rate at the lower bound of the 

objective function (RMP problem). Therefore, to 

increase the efficiency and speed of BD, the cutting 

constraints set (46)-(47) are added to RMP problem. 

These constraints limit the maximum flow through the 

network. 

1

1

N

ijt ijklt ikt jlt

k

h A x x



      
, , 1,...,

, 1,...,

i j l N
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4. COMPUTATIONAL RESULTS 
 
Experiments were conducted to assess the performance 

of the valid inequality and proposed Benders 

decomposition approach. In the following, we will 

explain the data generation approach and analyze the 

obtained results. 

 

4. 1. Data Generation      The well known standard 

benchmark that is refers to data obtained from the Civil 

Aeronautics Board of the United States of America 

(CAB dataset [21]), is used for evaluating BOMMHCP 

model. Since the CAB dataset is not provided for multi-

period problems. Therefore, according to Alumur et al. 

[22], flows in the CAB dataset are considered for the 

first period only. Also, for following periods, it is 

obtained from the multiplication of the flows of the 

previous period by a random number from the uniform 

interval (0.9, 1.2). The cost of establishing and closing 

hubs has been generated according to Gelareh et al. 

[23]. Moreover, the cost of establishing the hub for the 

first period is randomly generated from the interval 

(500,700). Likewise, for following periods, it is 

obtained from the multiplication of the establishment 

costs of the previous period by a random number from 

the uniform interval (1, 1.05). Additionally, the cost of 

closing the hub for the first period is randomly 

generated from the interval (200,300) and for following 

periods, it is obtained from the multiplication of the 

closing costs of the previous period by a random 

number from the uniform interval (1, 1.05). Different 

values for discount factor and coverage radius are 

considered according to the article by Silva and Cunha 

[24]. The various values of the parameters are shown in  

 

TABLE . 

 

4. 2. Results Analysis         The GAMS software 

(version 24.9.1) and CPLEX solvers (version 12.7.1) 

were used for solving ε-constraint MILP model of 

BOMMHCP and the proposed BD algorithm. The 

software runs on a 4 GHz Intel processor (Intel Core i7-

6700k) and 32GB of RAM. A time limit of 7200 and 

3600 seconds was considered for the implementation of 

ε-constraint MILP model with valid inequality and BD 

algorithm, respectively. In continue, we will explain the 

results from various aspects. 
 

 

TABLE 1. Parameter Values for BOMMHCP 

Parameter Values 

N 10,15,20,25 

P 2,3,4,5 

ijtW  
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[0.9,1.2] 1

  1
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W U t
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ktOP  
( 1)

                1[500,700]

[1.05,1.1] 1k t

tU

OP U t



 
 

ktCL  
( 1)

                2[200,300]

[1.05,1.1] 2k t

tU

CL U t
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4. 2. 1. Performance of The Valid Inequality   

Different problems with 10 and 15 nodes were solved to 

illustrate the efficiency of valid inequality and the 

results are presented in Table 2. The stars (*) indicate 

that the optimal solution has been achieved. As it is 

evident, the optimal solution is obtained by applying the 

valid inequality (17) for all sample issues, while without 

considering the inequality, only the optimal solution to 

the problems with ten nodes is obtained. Also, the 

results confirm the high performance of a valid 

inequality in terms of runtime and show a significant 

decrease. 

 

4. 2. 2. Evaluation of Speeding Up The BD         In 

this paper, we proposed a modification to speeding up 

the classical BD algorithm. The computational results  

are presented in Figures 1 and 2. Several experiments 

have been conducted to verify the effectiveness of 

correction. As an example, the N10P2T3α0.2R1425 

problem (problem with ten nodes, two hubs, three 

periods, α=0.2 and the coverage radius of 1425) is 

solved by the classical BD and improved BD. The 

results show that the classical BD converges in iteration 

39 (Figure 1Figure ), while, the improved BD converges 

in two iterations (Figure 2).  

 
TABLE 2. Results of adding Valid Inequality  

Number of 

Nodes 

Number of 

Hubs 

Discount 

Factor 

Coverage 

Radius 

Epsilon (Budget 

Constraint) 

With Valid Inequality Without Valid Inequality 

Flow 
Objective 

Runtime 
(seconds) 

Flow 
Objective 

Runtime 
(seconds) 

10 2 0.2 1425 1599 3,174,972
*
 3.2 3,174,972

*
 77.6 

10 3 0.2 1117 2433 3,139,640
*
 3.0 3,139,640

*
 193 

10 4 0.2 811 3273 2,794,350
*
 4.7 2,794,350

*
 185.2 

10 5 0.2 736 4134 2,733,823
*
 7.9 2,733,823

*
 147.3 

10 2 0.6 1671 1599 3,136,301
*
 4.0 3,136,301

*
 73.9 

10 3 0.6 1387 2433 3,091,015
*
 2.6 3,091,015

*
 179.7 

10 4 0.6 1148 3273 3,021,212
*
 1.7 3,021,212

*
 281.4 

10 5 0.6 1079 4134 2,896,000
*
 1.9 2,896,000

*
 138.7 

15 2 0.2 2004 1564.5 7,470,656
*
 275 7,407,953 4634.4 

15 3 0.2 1638 2349 7,341,687
*
 183 7,142,206 7203.2 

15 4 0.2 1324 3138 7,051,643
*
 278 6,912,159 7203.4 

15 5 0.2 1149 3964.5 7,075,740
*
 115 6,706,032 7203.9 

15 2 0.6 2103 1564.5 7,179,215
*
 340 7,133,948 7203.3 

15 3 0.6 1844 2349 7,073,270
*
 513 6,933,837 7203.5 

15 4 0.6 1756 3138 7,146,254
*
 125 6,589,729 7203.2 

15 5 0.6 1560 3964.5 6,871,335
*
 134 6,430,333 7203.8 

 

 

  

 
Figure 1. The performance of the classical BD 

 
Figure 2. The performance of the improved BD 
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4. 2. 3. Verifying and Validating the BD 
Algorithm Several examples were solved to confirm 

the efficacy of the improved BD algorithm. The 

obtained results are presented in Table 3. The stars (*) 

indicate that the optimal solution has been achieved. 

The results demonstrated that the performance of 

the ε-constraint MILP models with and without valid 

inequality and the Improved BD algorithm are similar 

and they reach to the optimal solution for all instances 

with ten nodes in less than 3600 seconds. However, in 

all instances with 15 nodes, only ε-constraint MILP 

models with valid inequality and the improved BD 

algorithm performed similarly, while ε-constraint 

MILP models without valid inequality was not capable 

of solving the samples at the proposed runtime 

limitation and made even worse objective values . In 

addition, the results obtained from instances with 20 

and 25 nodes demonstrated that the proposed BD 

algorithm performed better than the others  and it had 

less runtime, and more appropriate solutions were 

obtained. The comparison of solution times and 

objective values are shown in Figures 3 and 4, 

respectively.  

 

 

TABLE 1. Results of improved BD 

Problem Nodes Hubs 
Discount 
Factor 

Without Valid Inequality With Valid Inequality Improved BD 

obj. value runtime obj. value  Runtime (seconds) obj. value  Runtime (seconds) 

1 10 2 0.2 3,177,612
*
 246.3 3,177,612

*
 3.191 3,177,612

*
 3.15 

2 10 3 0.2 3,132,909
*
 607.36 3,132,909

*
 3.07 3,132,909

*
 3.019 

3 10 4 0.2 3,203,761
*
 22.94 3,203,761

*
 2.2 3,203,761

*
 2.93 

4 10 5 0.2 3,156,751
*
 86.4 3,156,751

*
 2.72 3,156,751

*
 2.88 

5 10 2 0.6 3,130,815
*
 707.95 3,130,815

*
 3.18 3,130,815

*
 3.05 

6 10 3 0.6 3,143,466
*
 636.5 3,143,466

*
 2.52 3,143,466

*
 3.11 

7 10 4 0.6 3,148,697
*
 53.87 3,148,697

*
 2.09 3,148,697

*
 3.02 

8 10 5 0.6 3,163,102
*
 107.2 3,163,102

*
 2.14 3,163,102

*
 3.01 

9 15 2 0.2 5,712,456 3604 7,470,656
*
 314.7 7,470,656

*
 14.6 

10 15 3 0.2 7,305,615 3603.7 7,404,374
*
 1762.9 7,404,374

*
 36.7 

11 15 4 0.2 6,755,050 3603.6 7,521,565
*
 163.3 7,521,565

*
 10.9 

12 15 5 0.2 7,190,805 3603.7 7,394,625
*
 48.69 7,394,625

*
 7.6 

13 15 2 0.6 6,495,672 3603.7 7,446,354
*
 59.3 7,446,354

*
 11.6 

14 15 3 0.6 7,016,642 3603.3 7,255,354
*
 322.7 7,255,354

*
 30.2 

15 15 4 0.6 6,969,136 3603.8 7,443,425
*
 20.1 7,443,425

*
 6.6 

16 15 5 0.6 6,998,628 3603.5 7,458,756
*
 10.6 7,458,756

*
 6.5 

17 20 2 0.2 17,685,355 3608.7 18,210,653
*
 1184.9 18,210,653

*
 212.8 

18 20 3 0.2 13,936,717 3609.3 17,815,161 3608.5 17,947,235
*
 268.1 

19 20 4 0.2 13,854,186 3609.2 18,153,547 3609.2 18,176,821
*
 19.6 

20 20 5 0.2 13,326,320 3608.4 18,101,487 3609.1 18,114,561
*
 249.3 

21 20 2 0.6 15,110,702 3608.6 18,153,692
*
 1027.6 18,153,692

*
 90.1 

22 20 3 0.6 14,717,260 3608.4 17,881,134 3608.8 17,937,160
*
 230.7 

23 20 4 0.6 17,070,718 3609.6 18,197,128
*
 333.7 18,197,128

*
 46.4 

24 20 5 0.6 14,471,042 3608.9 18,128,884
*
 138.1 18,128,884

*
 17.2 

25 25 2 0.2 20,714,822 3620.2 22,402,229 3619.9 26,896,201
*
 921.4 

26 25 3 0.2 19,383,882 3625.3 20,206,324 3619.8 26,876,295
*
 1578.9 

27 25 4 0.2 19,064,977 3619.5 19,333,815 3619.2 26,952,730
*
 1246.2 

28 25 5 0.2 18,061,867 3618.6 21,150,505 3619.5 26,927,569
*
 736.2 

29 25 2 0.6 0 3618.5 21,498,335 3628.2 26,714,270
*
 658.6 

30 25 3 0.6 20,363,454 3640.1 22,702,714 3619.9 26,923,193
*
 724.9 

31 25 4 0.6 20,675,391 3621.6 22,331,966 3619.7 26,783,695
*
 863.3 

32 25 5 0.6 20,133,147 3619.6 20,538,530 3619.9 26,834,055
*
 1169.2 
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Figure 3. The comparison of the solution time of improved 

BD versus 𝛆-constraint MILP model 
 

 

 
Figure 4. The comparison of the objective value of improved 

BD versus 𝛆-constraint MILP model 

 
 
4. 2. 4. Pareto Optimal Solutions        Two sample 

problems have been solved to illustrate Pareto's 

optimal solutions in 𝛆-constraint method, including the 

problem with ten nodes, four hubs, three time periods 

and discount factor of 0.6 (N10P4T3α0.6) and the 

problem with 15 nodes, four hubs, three time periods 

and discount factor of 0.6 (N15P4T3α0.6). Results are 

shown in Table 4, Figures 5 and 6. 

 

 
TABLE 4. Pareto optimal solutions for problems with 10 and 

15 nodes 

Solution  

Numbers 

N10P4T3α0.6 N15P4T3α0.6 

Flow O bj. Cost Obj. Flow O bj. Cost Obj. 

1 3,021,212 2402 7,146,254 2430 

2 3,017,047 2398 7,124,188 2396 

3 2,977,080 2389 7,096,680 2290 

4 2,951,872 2338 7,083,419 2288 

5 2,892,576 2330 7,074,650 2260 

6 2,862,641 2319 7,015,516 2225 

7 2,858,476 2315 6,884,141 2204 

8 2,834,144 2256 6,721,777 2179 

9 2,793,301 2255 6,702,545 2151 

10 2,788,025 2241 6,550,317 2126 

11 2,743,380 2196 6,543,344 2120 

12 2,712,631 2182   

 

 

 
Figure 5. Optimal Pareto Front for N10P4T3α0.6 

 

 

 
Figure 1. Optimal Pareto Front for N15P4T3α0.6 

 

 

As an example, for a network with 15 nodes, three 

hubs and three periods (N15P3T3α0.6), the designed 

hub network obtained in the first period (Figure 7), in 

the second period (Figure 8) and the third period 

(Figure 9) are shown. According to Figures, in the first 

period, hubs are located in nodes 9 (Detroit), 12 (Los 

Angeles) and 13 (Memphis), and in the second and 

third periods hubs are located in nodes 6 (Cleveland), 

12 (Los Angeles) and 13 (Memphis). Although the 

locations of the hubs are the same in second and third 

periods, the allocation of nodes to hubs is different. 
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Hub node

Hub arc

Access arc

 
Figure 7. Network structure for N15P3T3 in the first period 

 

 

Hub node

Hub arc

Access arc

 
Figure 8. Network structure for N15P3T3 in the Second 

period 

 

 

Hub node

Hub arc

Access arc

 
Figure 9. Network structure for N15P3T3 in the third period 

 

 

5. CONCLUSIONS 
 
In this paper, by considering the periodic changes in 

O/D flows and the costs of establishing and closing 

hubs, a mathematical model was proposed for a bi-

objective multi-period maximal hub covering problem. 

Furthermore, the ε-constraint method was used to solve 

the proposed model. Given that the single-objective 

problem found in the ε-constraint method is 

computationally intractable, we added a new valid 

inequality and also developed the BD algorithm to 

accelerate the solution process. Results showed that the 

proposed BD has a high performance in terms of 

runtime and optimal attainment. 

This work covers the application of HLPs in 

periodic variation of parameters. However, there are 

still issues for development. One of them includes 

taking into account stochastic parameters (such as O/D 

flows, traveling time and costs) along with periodic 

parameters to increase the efficiency of the 

BOMMHCP model when the decision parameters are 

changing. Meanwhile, it is useful to extend the 

proposed model by considering other constraints of the 

real world, including the amount of available budget 

and capacity constraint in the network. 
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 چکیده

 

 که هدف آنبوده  حمل و نقل یزیرو برنامه یاتعمل یقدر تحق یزل چالش برانگسائمیکی از پوشش هاب  مسأله حداکثر

 یواقع یایدندر  کهیشبکه است. از آنجائ یکدر  یانبه حداکثر جر یدنرس یها برااز هاب یامجموعه یینهمکان به یافتن

با  مواجههکنند، در یم ییرتغ یاها و زمان سفر به طور دورههینمقصد، هزبین مبدأ و  نیامانند جر مسأله یاصل یپارامترها

دو  یاضیمدل ر یکپارامترها،  یادوره ییراتمقابله با تغ یمقاله، برا ین. در اکار گرفته شوندبایست تمهیداتی بهها میآن

های ناچیره از برای دسترسی به جواباست.  هارائه شد تکی هاب پویا با تخصیصپوشش حداکثر مساله  یهدفه برا

 محدودیت اپسیلون روشه ایجاد شده در تک هدف یمسئله ینکهبا توجه به ایت اپسیلون استفاده شده است. محدود یکردرو

 یندبه فرآ یدنسرعت بخش یمعتبر برا نامعادلات نمودنبا اضافه  بندرز ییهتجز یتم، الگورپیچیده است یمحاسباتاز نظر 

دست آمده به یجو نتا اجرا شده  CAB مجموعه داده با استفاده از یشنهادیروش پ یت،شده است. در نها دهتوسعه دا حل

 .باشدمیو زمان اجرا  ینگیبهدهنده کارایی الگوریتم پیشنهادی از نظر نشان

doi: 10.5829/ije.2019.32.07a.09 

 


