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ABSTRACT

Reversible logic is one of the new paradigms for power optimization that can be used instead of the
current circuits. Moreover, the fault-tolerance capability in the form of error detection or error correction
is a vital aspect for current processing systems. In this paper, as the multiplication is an important
operation in computing systems, somenovel reversible multiplier designs are proposed with the parity-
preserving property whichwill be useful for error detection. At first, two optimal signed serial multipliers
are presented based on the Booth’s algorithm and its enhanced version called the K-algorithm, utilizing
the newarrangements ofreversible gates. Then, another low-cost serial multiplier is proposed based on
the conventional Add & Shift methodto be utilized in the applications in which unsigned numbers are
used. Finally, a new signed parallel multiplier is proposed based on the Baugh-Wooley method that is
useful for speed-critical applications. The comparative results showed that the proposed multipliers are
much better than the existing designs regarding the main criterions used in reversible logic circuits

including quantum cost, gate count, constant inputs, and garbage outputs.

doi: 10.5829/ije.2019.32.03¢c.05

1. INTRODUCTION

Generally, the VLSI circuits are built using irreversible
gates and circuits that always lead to power dissipation.
It is proved in literature [1] that each bit in irreversible
logic consumes at least kTIn2 Joules of energy in which
k is the Boltzmann’s constant and T is the absolute
temperature at which the computation is performed.
Reversible logic is one of the best solutions to decrease
energy consumption since there is no energy dissipation
in this kind of circuit as the internal power consumption
[2]. Reversible circuits are made of reversible gates,and
it is required that a one by one mapping exists between
the input vector and the output vector of each gate or
circuit. This way, the number of outputs is equal to the
number of inputs, and the input vector can be retrieved
from the output vector. That means no information is lost
in these circuits. This fact helps to decrease power
consumption. Reversible circuits may have lots of
applications in designing low power circuits, quantum
computing and nanotechnology although nowadays there
are some problems in the design of quantum circuits.
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Similar to irreversible circuits, reversible circuits are
fault-prone in their operations because a fault inside a
reversible gate caused by an environmental effect can
corrupt the resultant output vectorwhich makes the input
vectornot to be recovered from the output vector, and the
information is lost. Therefore, the fault-tolerance
capability, at least in the form of fault or error detection,
is an important aspect in reversible circuits. A well-
known and low-cost method to detect errors is parity-
based coding. However, in reversible gates and circuits,
this coding can be used in the form of parity-preserving
characteristic. A gate having this characteristic is called
a parity-preserving reversible gate. In this type of
reversible gate, the parity of the input vectoris equal to
the parity of the output vector. However, since fan-out
and feedback are not allowed in reversible logic [3,4]; the
implementation of this type of circuits is more difficult
compared to irreversible circuits.

The multiplication is one of the important arithmetic
operations in different computing systems including the
quantum computers. Thus, designing a better multiplier
with respect to different design aspects assiststo reach a
more efficient processing system. Until now, different
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types ofreversible multipliers have been designed [5-13].
However, many of the designs are not fault-tolerant or
parity-preserving circuits. In this paper, some new low-
cost parity-preserving reversible multipliers  are
proposed; in which more beneficial parity-preserving
gates as well as better arrangements of the existing gates
are exploited. The proposed multipliers include both
serial and parallel architectures to be used for signed and
unsigned multiplications in different applications. These
designs are based on different multiplication algorithms
comprising the Booth’s algorithm and K-algorithm [14],
Add & Shift, and Baugh-Wooley algorithm [15]. It is
shown that the proposed multipliers have better design
parameters compared to previous reversible multipliers
especially with respect to quantumcost.

The rest of the paper is organized as follows. In
section 2, some basic concepts and definitions as well as
the parity-preserving reversible gates are described. In
section 3 the related works are characterized. Sections 4
and 5 explain the proposed parity-preserving serial and
parallel multipliers, respectively. The evaluation of the
proposed reversible multipliers compared to the existing
designs is presented in section 6. Finally, some
conclusions are drawn in section 7.

2. BACKGROUND

In this section, at first, we discussed the basic concepts
and definitions regarding reversible logic. Then, we
introduced the parity-preserving reversible gates,
required for the next sections of this paper.

2. 1. Basic Concepts and Definitions A
reversible gate or circuit is an nxn circuit so that for any
n-tuple input vector, a unique n-tuple output vector will
appearat the circuit's output. Due to the fact that the input
vector can be retrieved by the outputvector, as well, we
can write Iy < Oy in which Iv = (lo,ls,...,Ih-1) and Oy =
(00,04,...,0n1) as the input and output vectors,
respectively.

A parity-preserving reversible gate is a gate in which the
parity of the inputs is equal to the parity of the outputs
according to the following equation:

10D 1LD...Bln1= 0oPO0:1P...PHO0n1 1)

The parity-preserving characteristic for a gate makes
possible single error detection and in some cases multiple
error detection at its outputs. It is worth mentioning that
a reversible circuit containing only the parity-preserving
gates has itself the parity-preserving property. Therefore,
if a reversible circuit with error detection capability is
intended; it should only include the parity-preserving
gates. After designing a parity-preserving circuit, the
error detection process can be performed using the rules
stated in literature [16,17].

In areversible gateor circuit, the constantinputs are the
inputs whose values do not change in a gate, and are
maintained at either O or 1 in order to perform the
intended functions. These inputs are also added to a gate
to make it reversible [18]. In addition, the outputs that
would not be used in the subsequent computations are
called the garbage outputs. In other words, the garbage
outputs are needed just to maintain the circuit's
reversibility orto make it parity-preserving [19].

In a reversible circuit, the delay is defined as the
maximum number of gates on the paths from the inputs
to the outputs [19]. Another parameter considered in
reversible circuits is the hardware complexity which is
the number of AND, XOR and NOT operations,
separately, appeared in the output expressions. In other
words, the hardware complexity shows the
computational complexity of a reversible circuit thatcan
be important in some types of implementations. This
way, if a, B, and y are the representatives for XOR, AND,
and NOT operations in the outputs, respectively. Then,
the hardware complexity ie. H.C. can be computed
according to Equation (2):

H.C.=N(a).0+N(B).p+N(y). T )

In the above equation, N(*) is the number of *-type
operations in the output expressions.

As stated in literature [20], in calculating the
hardware complexity, it would be desired and more
precise if the common operations in the output
expressions would be accounted once. Therefore, in this
paper, the calculation approach presented in literature
[20] is used.

The most important parameter in designing the
reversible circuits is the quantum cost. This criterion is
defined as the number of 1x1 and 2x2 quantum
primitives required for implementing a reversible circuit.
The NOT gate is the only 1x1 quantumprimitive which
has the quantumcost of one unit. The quantum primitives
are used to build the reversible gates bigger than 2x2. In
a point of view, the reversible gates can be classified in
two general groups, parity-preserving reversible gates
and non-parity-preserving reversible gates. In this paper,
we are only dealing with the parity-preserving circuits;
the main parity- preserving gates are introduced in the
following section.

2. 2. Parity-Preserving Reversible Gates
1. Double Feynman gate (F2G) [21] as a parity-
preserving 3x3 reversible gate with the quantum cost of
two is shown in Figure la. The hardware complexity of
this gate is equal to 2«a. This gate can be used as a fan-
out generator in reversible circuit synthesis.

2. Fredkin gate (FRG) [22] (Figure 1b) as the oldest
parity-preserving reversible gate with the quantum cost
of five has the hardware complexity equalto 2a + 48 +
1y due to the fact that there exist two distinct XOR
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operations, four distinct AND operations, and only a
distinct NOT operation in its output expressions. This
gate is a universal gate that means all logic operations or
reversible logic circuits can be implemented only by
using this type of gate.

3. New fault-tolerant gate (NFT) [23] as another parity-
preserving reversible gate with the quantum cost of five
has the hardware complexity equal to 3a + 38 + 2y.
Similar to FRG, this gate is a universal gate.

4. Modified Islam gate (MIG) [24] is a 4x4 parity-
preserving reversible gate with the quantumcostof 7 and
the hardware complexity of 3a + 28 + 1y. This gate is
also a universal gate. In addition, this gate can be used as
a parity-preserving half adder when its two last inputs are
setto zero. In this case, the sum and carry are produced,
accordingly.

5. LMH [25] shown in Figure 2 is a 4x4 parity-preserving
reversible gate with the quantum cost of six and the
hardware complexity equal to 3a + 28 + 1y. The
obtained hardware complexity is based on the fact that
the common or the same operations are accounted once
according to the approach presented in literature [20].
Thus, as two XOR operations in the output expressions
operate onthe same operands (in R and S outputs shown
in Figure 2), it results in 3a instead of4a. In addition, two
same A'C operations and two same AB operations exist
in the output expressions which are result in a simpler
term 2f instead of 4B. Finally, a distinct NOT operation
(A") results in ly.

6. ZCG [26] shown in Figure 3a is another 4x4 parity-
preserving reversible gate with the quantum cost of six.
The hardware complexity of this gate is equal to 5a +
2B + 1y. Similar to MIG, this gate can be used as a
parity-preserving half adder when its C and D inputs are
set to zero. In addition, this gate produces the minimum
cost half adder.

7. ZPLG [26] shown in Figure 3b is a 5x5 parity-
preserving reversible gate with the quantum cost of eight
and its hardware complexity is equalto 8a + 38 + 1y.

A — —P=A A— L pP=A

B —| FRG — Q=AB®AC | B—| f2g — Q=AeB

C — — R =AC®AB CcC— — R = A®C
(@ (b)

Figure 1. Block diagrams of (a) double Feynman gate, and
(b) Fredkin gate

A - - P=A
B — —Q=B@C
LMH a
C — — R=A’C ®AB
D — —S=A’C®AB®D

Figure 2. Block diagram of LM H gate

This gate can be used as a parity-preserving full adder
when the D and E inputs are set to zero. In this case, the
sum and carry are produced on the R and S outputs,
respectively. In addition, this gate produces the minimum
cost full adder.

8. Low-cost gate (LCG) [20] is another 5x5 parity-
preserving reversible gate which has the quantum cost of
10. The hardware complexity of this gate is equal to 6a +
2(. Similar to ZPLG, this gate can be used as a parity-
preserving full adder when its two last inputs are set to
zero. In this case, the sum and carry are produced,
accordingly. Despite the fact that the quantum cost of
LCG is higher than that of ZPLG, its hardware
complexity is much less than that of ZPLG which makes
it more desirable in some applications.

3. RELATED WORKS

3. 1. Parity-Preserving Reversible Full Adders
Both types of serialand parallel multiplications somehow
require the addition operation. This operation is usually
performed by using full adders and half adders.

As stated before, there exist some parity-preserving gates
that can perform the operation of a parity-preserving full
adder (LCG [20] and ZPLG [26]) or half adder (MIG [24]
and ZCG [26]) after setting some of their inputs to zero.
However, a full adder can be constructed by connecting
two half adders, as well. In addition, a parity-preserving
full adder may be constructed by using a few parity-
preserving gates similar to SNFA (single NFT full adder)
[27] in which three F2Gs and a NFT gate have been used.
This gate has the quantum cost of 11 which is more than
that of LCG and ZPLG, and its hardware complexity is
equalto 9a + 34 + 24.

3. 2. Parity-Preserving Reversible Multipliers
Since the multiplier is one of the important elements of a
computing system, many studies have been performed to
design optimal multipliers. However, despite the fact that

A— P =AB'®C
B— L Q=A®B
c— 266 [_Rr-nR@C
D— — S=A®C®D
(a
A— L P=A®D
B—f —— Q=A®B®D
C—— Z7ZPLG |[—R=A@B®Ca&®D
D— L S=(A®D)(B®C)®BCAD
E— L T=(A®D)(B®C)®BCODDE
(b)

Figure 3. Block diagrams of () ZCG, and (b) ZPLG
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there are many works [5-11] regarding reversible logic
multipliers and even the recent designs reported in
literature [12, 13, 28-32], there is not much work
incorporating the parity-preserving multipliers. The
multipliers are designed in two manners, serial or
parallel. When a low-cost design is very important, serial
multipliers are better because of having a lower cost.On
the otherhand, if ahigh speed design is intended, parallel
multipliers are better because they require a lower delay.

3. 2. 1. Serial Multipliers As stated above, there
is not much work with respect to the parity-preserving
serial multipliers. In fact, this type of multipliers is only
proposed in literature [14] based on the well-known
Booth’s algorithm and its modified version called
Keshuv or K-algorithm for multiplying signed numbers.
The general structure of a 4-bit multiplier based on the
Booth’s algorithm is shown in Figure 4. As stated in
literature [14], this circuit has been implemented using 46
reversible gates and with the total quantum cost of 200.
It should be noted thatin Figure 4, A is the first operand
or multiplicand, X is the second operand or multiplier,
and Zis the product.

Table 1 is used in the Booth’s-based multiplier.
However, the K-algorithm proposed in literature [14]
(shown in Figure 5) utilizes Table 2 to perform the
required operations. This table results in simpler circuit
by using 2to 1 multiplexers instead of 4 to 1 multiplexers
used in the Booth’s-based multiplier. In addition, it does
not require copying the first operand opposed to the
Booth’s-based multiplier. Asshownin Figure 5, in the K-
algorithm the select line's value of 2 to 1 multiplexer is
equal to x @ x-1. If this value equals '0", a 4-bit zero
number is selected; otherwise the first operand (A) is
selected. The two's complement of A is produced by an
XOR operation between each bit of A and yi shown in
Table 2, and then, adding to the input carry equal to yi.
This method produces the two's complement of A if yi
equals 'L'. The proposed multiplier in literature [14] based
on the K-algorithm includes 39 reversible gates with the
quantumcost of 126.

3. 2. 2. Parallel Multipliers One of the popular
parallel multiplier architectures is array multiplier that
includes two steps, partial product generation (PPG) and

c
z
g
i
i P p—
2 4
8 0—%| L [z
4 | COPYING [ % 4 41 | 4 [ADDER |4 | &
A= FRST 4 Mux [ 7 =
4 no|4
OPERAND 0% il & 2320

Value: X

Figure 4. Block diagram of a 4-bit Booth’s-based multip lier
according to literature [14]

TABLE 1. Operations in the Booth’s algorithm versus
consecutive bits of multip lier

x; Xi_q Required operation

0 0 Addition with zero, equivalent to no operation
0 1 Add A to partial product

1 0 Subtract A from partial product

1 1 Addition with zero, equivalent to no operation

TABLE 2. Operations in the K-algorithm versus consecutive
bits of multiplier [14]

X; Xi—q Vi Required operation
0 0 - No operation
PassAasit is to the addition
0 ! 0 stage
PassAasit is to the addition
! 0 1 stage
1 1 - No operation

8-bit Product

A

- Initial values stored in parallél shifter
; Xa Xz Xa Xo

'Y
Ld

Xi

Cout Cin=¥i
{—I 4-bit Adder |17

Figure 5. Block diagram of a 4-bit multiplier based on the
K-algorithm [14]

multi-operand addition (MOA) in which the partial
products will be added together. Despite the fact that
various reversible array multipliers exist in the literature,
few designs are parity-preserving, as well. The first
parity-preserving signed array multiplier is proposed in
literature [9] based on the Baugh-Wooley method [15].
As stated in literature [9], this multiplier includes 57
gates with the quantum cost of 401 for 5-bit input
operands. In this design, two new parity-preserving gates
called MNFT (modified NFT) and F2PG are used in
addition to the well-known parity-preserving gates
including F2G, FRG and MIG.
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In literature [8] a parity-preserving unsigned array
multiplier is proposed utilizing F2Gs and FRGs to
implement the PPG part, and MIGs to construct half
adders and full adders of the MOA part. This multiplier
requires a quantum cost of 244 for 4-bit input operands.
In literature [25] another parity-preserving unsigned
array multiplier is presented which reduces the required
quantumcost to 205. This design utilizes FRG and a new
gate called LMH (Lafifa-Mushfig-Hafiz) to implement
the PPG part, and incorporates MIG and SNFA to
construct halfadders and full adders, respectively, for the
MOA part.

4. PROPOSED PARITY-PRESERVING
MULTIPLIERS

SERIAL

In this section, the new parity-preserving serial
multipliers with better criteria compared to the existing
designs are introduced in details. The preliminary work
regarding serial multipliers is proposed in literature [33].
Similar to previous parity-preserving designs, the
proposed multipliers help to detect at least single errors.
As stated in section 2, after designing a parity-preserving
multiplier, the error detection process can be performed
using the methods illustrated in literature [16,17].

4. 1. Signed Multipliers The Booth’s algorithm

which is the base of signed serial multipliers has five

stages according to Figure 4:

Stage (1): copying the first operand’s bits (multiplicand's

bits)

Stage (2): computing the two’s complement of first

operand

Stage (3): using a multiplexer to select among the first

operand, it's two's complement, and zero (based on Table

1

Stage (4): using an adder to perform the required

additions

Stage (5): shifting the result to right arithmetically using

a parallel shifter

Stages 1 and 2 are performed once. However, the next

stages should be run more times dependentto the size of

operands.

As stated before, a reversible circuit should only include

the parity-preserving gates if the error detection

capability is intended. Therefore, the proposed

multipliers comprise only the parity-preserving gates.

The first proposed signed serialmultiplier is based on the

Booth’s algorithm. In this multiplier, different stages

mentioned above are implemented as follows for 4-bit

operands that will be extended to n-bit operands (nxn

multiplier):

(1) In literature [14] for copying multiplicand's bits, four
F2Gs are used. One of the copies is sent to the stage
(2) to compute the two’s complement of multiplicand,

and the other copy is sent to the multiplexer in stage
(3). However, in the first proposed multiplier, the
one's complement of multiplicand is produced as
well, by the same number of F2Gs and is sent to the
next stage to compute the two's complement. In other
words, different from literature [14], half of the stage
(2) is performed along with the stage (1). The
quantumcost of this section with the operation shown
in Figure 6 is equal to eight because of using four
F2Gs.

(2) For generating the two’s complement of multiplicand,
the received one's complement from stage (1) is
added to one. However, in literature [14] four NOT
gates have been used for inverting four bits of
multiplicand before adding to one. Thus, due to the
fact that the NOT gate is not parity-preserving, two
F2Gs should be used for this purpose according to
Figure 7. By this modification, the quantum cost of
the multiplier proposed in literature [14] does not
change. However, according to Figure 7, both the
number of constant inputs and the number of garbage
outputs are increased by one while the number of
gates is decreased by two.

To perform the required addition and prepare the
last two's complement result four half adders are
required. In the proposed multiplier, four ZCGs are
used instead of MIGs in literature [14] with the total
quantumcost of 24.

(3) Each one-bit 4 to 1 parity-preserving multiplexer is
made by three one-bit 2 to 1 multiplexers. Since each
one-bit 2 to 1 multiplexer can be constructed by a
FRG, the stage (3) requires 12 FRGs with the total
quantumcost of 60 for a4x4 multiplier. The outcome
of this section is shown in Figure 8.

(4) The main adder of the proposed multiplier requires a
4-bit adder which includes a half adder in the least
significand bit and three full adders. In the proposed
multiplier, ZCG and ZPLG are utilized to construct
the only half adder and three full adders, respectively,
instead of using MIGs. Therefore, this stage, shown
in Figure 9, has the quantum cost of 3x8+6=30.

(5) Different from literature [14] in which seven FRGs
and one F2G are used to implement the parallel
shifter, eight F2Gs are utilized in the first proposed
multiplier to realize the parallel right shift which
leads to lower quantum cost. However, some extra
F2Gs are required to feedback some bits to the
parallel input in the manner that a direct feedback is
not produced from a gate's output to its input to
prevent unallowable feedbacks. In the proposed
Booth’s-based multiplier, four F2Gs are used for this
purpose instead of seven F2Gs in literature [14].
Therefore this section that is depicted in Figure 10 has
the quantum cost of 24.

According to the explanation above, the first
proposed signed serial multiplier which is a Booth’s-
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based design includes 36 gates with the quantum cost of
146 by exploiting new arrangements of the well-known
gates to rebuild the different parts in addition to utilizing
some newer gates. This multiplier is shown in Figure 11.
To extend the size of first proposed multiplier to be
used for larger operands, Equation (3) can be used to
compute the number of different gates and total quantum
cost. The generalized circuit of proposed Booth’s-based
multiplier is shown in Figure 12 for n-bit operands.

Required gates of (nxn) multiplier

= 4n X F2G +3n X FRG + (n + 1) X ZCG + ©)
(n—1) x ZPLG
0 1As 01 A 01 A 0 1 Ao
L1 L1 L1 L1
F2G F2G F2G F2G
T 1 T 1 T 1 T 1
A3 A3 A2 A A1 A Ao Ao

Figure 6. Generation of one's complement of a 4-bit
multiplicand along with its replication in the first proposed
multip lier

Figure 7. Proposed circuit for inverting four bits of
multiplicand instead of using four NOT gates

B=2's complement of A

0 As B3 0 0A; B, 0 0A B; 0 0 Ao Bo 0 X;
- L1 ] J [ - - | (- | —
[FrG | | [Fr| | [FrG] | [FRG ] [FRGﬂ[FRG] [FRGﬂ [ FRG |
" 7] —J LT T 7] —J 7]
N
FRG FRG FRG FRG
Rs R‘z R‘l R‘o

Figure 8. 4-bit 4 to 1 multiplexer based on [14]

0 0X7Rs 00X R, 0 0Xs Ry 0 0 XsRo
[ 111 [ 111 [ 111 [ 111
ZPLG ZPLG ZPLG ZCG
T [T]TT [T]TT [T
¢ S3 S; S1 So
ot toX7 to X6 to X5 to X4

Figure 9. 4-bit adder in the first proposed multiplier

to 4-bit adder

Figure 10. Parallel shifter in the first proposed multiplier

FULL FULL ULL HALF

Cout ADDER || ADDER || ADDER ™| ADDER

s3 s2 s1 S0
toX7 to X6 toXs toXa

Figure 11. Proposed 4-bit parity-preserving Booth’s-based
multip lier

FULL FULL

€out %~ AppER [* | ADDER

Sn1 Sn2
toXn1  toXen2 toX

Figure 12. Generalized structure of proposed nxn Booth’s-
based multiplier

The second proposed signed serial multiplier is based on

the K-algorithm reported in literature [14] which is an

improved version of the Booth’s algorithm, as stated in
section 3.2.1. This multiplier, depicted in Figure 13, is
implemented as follows for 4-bit operands:

(1) Similar to that of the first proposed multiplier, 12
F2Gs are used for parallel shifter. However, this
section has been implemented by eight FRGs and five
F2Gs in literature [14].

(2) The implementation of 4-bit parity-preserving 2 to 1
multiplexer requires four FRGs since each one-bit 2
to 1 multiplexer can be realized by a FRG.

(3) According to Figure 5, to obtain the one's complement
of multiplicand using the XOR gates between the
multiplexer and the adder, only two F2Gs are required
similar to Figure 7 instead of four F2Gs used in
literature [14]. It should be noted that the one's
complement will be sent to the adder only when ;i
equals '1".
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(4) The 4-bit adder of the second proposed multiplier
includes four full adders implemented by four ZPLGs
instead of using MIGs. The input carry of this adder
is yi so that the two's complement of multiplicand is
finally used when yijequals '1' according to Table 2
and Figure 5.

In addition to the sections described above, a F2G is
required to produce % @ %-1 and two copies of x; to be
moved to the y; by default. This gate is placed on top-
right of Figure 13. Therefore, the second proposed signed
serial multiplier includes 23 gates with the quantum cost
of only 82 by utilizing new arrangements of some basic
parity-preserving gates to realize the different parts ofthe
multiplier.

To extend the size of second proposed multiplier to
be used for larger operands, Equation (4) can be usedto
compute the number of different gates and total quantum
cost. The generalized circuit of proposed multiplier based
on the K-algorithm is shown in Figure 14 for n-bit
operands.

Required gates of (nxn) multiplier

=(Bn+1+[n/2]) X F2G +n X FRG + n X 4)
ZPLG

4. 2. Unsigned Multiplier The third proposed
multiplier in this paper is an unsigned serial multiplier
based on the Add & Shift method. Due to the fact that
this multiplier is unsigned, it naturally has less
complexity compared to the first and second proposed
multipliers. In this method, according to the least
significant bit of the second operand, only two situations
may occur. If this bit equals zero, "0000" will be sentto
the adder, otherwise if it equals one, the multiplicand (A)
will be sent to the adder. This multiplier, depicted in
Figure 15, is implemented as follows for 4-bit operands:
(1) Similar to previous proposed multipliers in this paper,
12 F2Gs are used for parallel shifter.

(2) Similar to the second proposed multiplier, the
implementation of 4-bit 2 to 1 multiplexer requires four
FRGs. The selection is made between the multiplicand
and the 4-bit zero number.

too

Cout FULL FULL FULL FULL | Cin=yi
o ADDER ADDER || ADDER ADDER

S3 s2 s1 SO
to X7 toXe toXs toXa

Figure 13. Proposed 4-bit parity -preservingmultip lier based
on the K-algorithm

o —————
sqrsfqdreq Z20 77

FULL FULL

Cout ADDER ADDER

Sn-1 Sn-2 So
toXn1  toXan2 toXn

Figure 14. Generalized structure of proposed nxn multip lier
based on the K-algorithm

(3) The 4-bit adder of the third proposed multiplier
includes a half adder in the least significand bit and
three other full adders. Thus, it is constructed by a
ZCG as a half adder and three ZPLGs as full adders.

This multiplier that includes 20 gates requires the

guantum cost of 74 which is lower than that of the

previous multipliers. Toextend the size of third proposed
multiplier for larger operands, Equation (5) is useful to
compute the number of different gates and total quantum
cost. The generalized circuit of proposed multiplier based

on the Add & Shift method is shown in Figure 16 for n-

bit operands.

Required gates of (nxn) multiplier

=3nX F2G +n X FRG + 1% ZCG + (n — ®)
1) x ZPLG

5. PROPOSED PARITY-PRESERVING PARALLEL
MULTIPLIER

The proposed parity-preserving parallel multiplier in this
paper is a signed array multiplier based on the Baugh-
Wooley method. A sample 4-bit multiplication regarding
this method is shown in Figure 17. In this figure, Pjj' is
the complement of Pij,and X3, Y3 and Z7 are the sign bits
of two input operands and output product, respectively.

EREER RS

Cout FULL FULL FULL HALF
ADDER ADDER ADDER ADDER

S3 S2 S1 SO
to X7 to X6 to X5 to X4

Figure 15. Proposed 4-bit parity -preserving multip lier based
on the Add & Shift method
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el <77 ]

0

Cout [ FULL FULL HALF
ADDER ADDER ADDER

Sn-1 Sn-2 So
to X2n-1 to X2n-2 toXn

Figure 16. Generalized structure of proposed nxn multip lier
based on the Add & Shift method

PARTIAL PRODUCT X3 X2 X1 Xo
GENERATION Y3 Y2 Y1 Yo

Po3’ Po2 Po1 Poo

MULTI OPERAND
ADDITION P13’ P12 P11 P10

P23’ P22 P21 P20
P33 P32’ P31’ P30’
1

+ 1
27 76 7s 714 I3 72 71 2o
Figure 17. A 4x4 signed multiplication based on the Baugh-
Wooley method

In addition, Pjj stands for Xj.Yi that can be produced by
an AND gate in the partial product generation part.
According to literature [25], Figure 18 can be used for a
low-cost PPG part of a 4x4 multiplier which includes
seven FRGs and nine LMH gates with the total quantum
cost of 89. In this figure, LMH gates receive two
operands as inputs, and generate a copy of both input
operands and their corresponding one-bit partial product
Pij, as well. However, based on Figure 17, some Pij
signals should be inverted to comply with the signed
multiplication. Therefore, some F2Gs should be utilized
similar to Figure 7 to produce the required inverted
values. For a 4x4 multiplier, three F2Gs are enough to
yield six Pij' signals shown in Figure 17, as depicted in
Figure 19.

The second part of an array multiplier is the multi-
operand addition. To implement this circuit in the
proposed design, ZCG is used as half adder and ZPLG is
used as full adder, according to Figure 20. Since these
gates have the quantum cost of six and eight,
respectively, the quantum cost of multi-operand addition
circuit shown in Figure 20 is equal to 92 including the
single F2G. This F2G is responsible to produce the
correct MSB of the product based on the Baugh-Wooley
method. Therefore, the total quantum cost of this 4x4
multiplier including the circuits shown in Figs. 18 to 20
is equal to 187.

6. RESULTS AND DISCUSSION

In this section, some comparisons will be performed
between the proposed parity-preserving multipliers and

their previous counterparts. To perform precise
comparisons, the main criterions are used including gate
count, number of constant inputs, number of garbage
outputs, quantum cost, and hardware complexity. The
gate count is the number of required gates to realize a
circuit. In addition, the number of constant inputs in each
circuit is the number of gates' inputs whose values should
be constant at either '0' or '1' to perform the intended
functions. However, the number of garbage outputs is the
number of gates'outputs in the whole design that are not
connected to the other gates orare not used as the outputs
of the circuit.

The proposed parity-preserving serial multipliers are
characterized in Table 3 along with the previous designs.
The only existing parity-preserving serial multipliers
were proposed in literature [14], so the comparisons are
made with these circuits in Table 3. According to this
table, the first and second proposed serial multipliers
which are based on the Booth’s algorithm and the K-
algorithm, respectively, are better than their previous
equivalent designs presented in literature [14] in all

criteria.
N Vg: LMH ﬁ FRG [
[on(9 7] Fxovz o] L ors
Fxave] o H el o tvH ey FRG
F o R o o+
H C

Pij=XjYi 0

1 I X3Yo 0— I Xay1 0 XaY2 0

Figure 18. Partial product neration for the 4x4 array
multip lier

P32 P23 P31 P13 P30 Po3 1
| | | | L 1 1
F2G F2G F2G
T 1 I I
P32’ P23’ P31’ P13’ P30’ Po3’

Figure 19. Inverted one-bit partial products as required in
Figure 17

0 0 1P2P31" 0 OP12P21P30” 0 OPo2P11P20 0 0 Po1 P1o Poo
L1111 L1111 | I | 1111

| ZPLG | | ZPLG | ZPLG | | 2CG |
T TT T TT T TT T T
0 0Ps2’P23’ 00 [P ,/oo Poz',/oo ,/
L1 T ] [ 11
| ZPLG | | ZPLG | | ZPLG | | CG |

T
00 P33 ,/00
111 11
| ZPLG | | ZPLG
T

T TT
01 ¥
13

F2G

77
Figure 20. Proposed multi-operand addition for the 4x4
signed array multiplier
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In addition, the third proposed serial multiplier which
is based on the Add & Shift method is the only unsigned
multiplier in Table 3, and has the best values based on the
mentioned criteria.

It should be noted that the number of constant inputs
and garbage outputs in the proposed multipliers can
simply be obtained regarding their corresponding figures
shown before. However, the Cout signal of the adder part
in the first and second proposed multipliers (Figures 11
and 13) is accounted as a garbage output due to the fact
that it is not used for the multiplication process.
Furthermore, the number of constant inputs and garbage
outputs of half adders and full adders are apparent since
ZCG and ZPLG are used in the adder parts of proposed
serial multipliers similar to the adder shown in Figure 9.
Regarding the hardware complexity, this criterion for
each circuit is calculated by summing the hardware
complexity of all the gates constructing the circuit.

To illustrate the precise amounts of improvements
attained by the new proposed multipliers, Figure 21
depicts the percentages of reduction in four different
criterions for the first and second 4-bit proposed
multipliers compared to their older Booth’s-based and K-
based counterparts proposed in literature [14],
respectively. According to this figure, the maximum

389

literature [14] based on the gate countand quantum cost
that are 41% and 34.9%, respectively.

The amounts of required gate countand quantumcost
for larger multipliers are illustrated in Table 4 according
to their general formula. Similar to that of Table 3, the
third proposed serial multiplier which is based on the Add
& shift method requires the least gate countand quantum
cost for all the adder sizes. Furthermore, Figure 22
depicts the percentages of reduction in the gate countand
quantum cost ofthe first and second proposed multipliers
compared to the Booth’s-based and K-based counterparts
proposed in literature [14], respectively, for 8x8 and
16x16 multipliers. According to this figure, the amounts
of improvements are almost the same for a specific
proposed multiplier with different sizes. However, the
amounts of improvements are slightly increasing for the
first proposed multiplier while the size of multiplier is
increasing. The reverse of this characteristic is true for
the second proposed multiplier.

Table 5 demonstrates comparative results of different
parallel multipliers including the fourth proposed parity -
preserving multiplier which is based on the Baugh-
Wooley method along with the previous parity-
preserving designs. In this table, the designs from [8] and
[25] are unsigned array multipliers while the design from

improvements are obtained for the second proposed [9] is the only exsting parity-preserving signed
multiplier compared to its K-based counterpart in multiplier.
TABLE 3. Comparison of different parity-preserving serial multipliers
- Base . Gate Constant  Garbage Quantum Hardware
4x4 multiplier algorithm Signed count inputs outputs cost complexity
[14] (based on Figure 4) Booth’s Yes 44 52 61 200 990+98B+30y
1% proposed circuit (Figure 11) Booth’s Yes 36 44 48 146 105a+67p+20y
[14] (based on Figure 5) K-alg. Yes 39 30 34 126 82a+603+20y
2" proposed circuit (Figure 13) K-alg. Yes 23 24 28 82 700-+28B3+8y
3" proposed circuit (Figure 15) Add & Shift No 20 21 25 74 61a+27p+8y

TABLE 4. Comparison of larger serial multipliers and their general formula

Multiplier design Main formula

8x8 multiplier 16x16 multiplier

Gate count Quantum cost Gate count Quantum cosl

(3n+[n/2]) x F2G + (5n—1) X FRG

14] (based on Figure 4
[141¢ gure 4) +(3n—1) x MIG

« N 4nx F2G +3n X FRG
1% proposed circuit (Figure 11)
(n+1)XZCG+(n—1)x

[14] (based on Figure 5)

(Bn+1+ [n/2]) x F2G

2" proposed circuit (Figure 13
prop (Fig ) nX FRG+n X ZPLG

3" proposed circuit (Figure 15) (n—1) X ZPLG

+
ZPLG

(5n+ 3) X F2G + 3n x FRG + nx NFT

+

3InXF26+nXFRG+1XZCG+

90 412 182 836
72 294 144 590
75 246 147 486
45 162 89 322
40 150 80 302
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M 1st proposed multiplier
2nd proposed multiplier

ikl

Gate count Constantinputs Garbage outputs Quantum cost

Figure 21. Improvements obtained in the 1% and 2" 4-bit
proposed multipliers compared to the designs in [14]

558

o un

o

Improvement (%)
NN W W
w (9]

=
o

o un

M 1st proposed multiplier
2nd proposed multiplier

rinl

Gate count Quantum cost Gate count Quantum cost
8x8 8x8 16x16 16x16
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Figure 22. Improvements of the larger 1% and 2" proposed
multip liers compared to the designs in [14]

Based on this table, the fourth proposed multiplier in this
paper requires the least quantum cost and gate count
compared to previous designs while it is better than its

nearest counterpart proposed in literature [9] in all
criteria. Figure 23 illustrates the percentages of
improvements attained by the fourth proposed multiplier
in four different criterions compared to the only existing
signed multiplier proposed in literature [9] and the best
unsigned multiplier proposed in literature [25] for the
4x4 size. According to this figure, the fourth proposed
multiplier is better than previous designs except in the
number of constant inputs and garbage outputs compared
to reported data in literature [25]. Regarding this fact, it
should be noted that signed multipliers naturally require
more cost in comparison with unsigned multipliers.
However, the fourth proposed design in this paper only
requires more constant inputs and garbage outputs
compared to reported data in literature [25], and it is
better in the other criteria especially in the quantum cost
that is a more important criterion.

35 M Compared to [9]
30 Compared to [25]

Improvemen
(9]

Gate count Constant Garbage Quantum
inputs outputs cost

Figure 23. Improvements of the 4™ proposed multiplier
compared to previous designs

TABLE 5. Comparison of different parity -preserving parallel multipliers

Gate Constant

4x4 multiplier Basealgorithm  Signed count inputs %S:SS?: Quce(l)r;';um c?r?{p()ilveviirtey

[8] Array No 48 64 64 244 1160+104B+36y
[25] Array No 52 49 49 205 1250+78B+36y
[9] Baugh-Wooley Yes 38 61 56 247 121a+109p+43y
4™ proposed circuit (Figures 18 to 20) Baugh-Wooley Yes 32 53 55 187 1360+79B+28y

7. CONCLUSIONS

In this paper, three novel low-cost reversible serial
multipliers were proposed along with a new parallel
multiplier with the parity-preserving capability. Since
attaining the low-cost designs useful for error detection
was the main goal of this paper, some techniques were

used including new arrangements of parity-preserving
reversible gates, better utilization of existing reversible
gates, and exploiting newer gates. This way, the low-cost
signed and unsigned serial multipliers were proposed for
cost-critical applications in which if only unsigned
numbers exist, the third proposed multiplier can be used
as the best design. On the otherhand, the fourth proposed
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design as a signed parallel multiplier which is based on
Baugh-Wooley method can be used in the applications in
which the speed is more unsigned numbers exist, the third
proposed multiplier important. In addition to the basic 4-
bit designs, larger serial multipliers were designed and
investigated respecting the main criteria used in
reversible logic circuits. The proposed multipliers with
different sizes are evidently superior in comparison with
the existing designs with respect to different criteria
especially the quantum costand gate count. For example,
the second proposed multiplier with different sizes
achieved to around 35and 40% improvements in the
quantum cost and gate count, respectively, compared to
the existing counterpart.
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