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A B S T R A C T  
 

 

In recent years, privacy concerns about social network graph data publishing has increased due to the 

widespread use of such data for research purposes. This paper addresses the problem of identity 

disclosure risk of a node assuming that the adversary identifies one of its immediate neighbors in the 
published data. The related anonymity level of a graph is formulated and a mathematical model is 

proposed to solve the problem. The application of the method on a number of synthetic and real-world 
datasets confirms that the method is general and can be used in different contexts to produce superior 

results in terms of the utility of the anonymized graph. 
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1. INTRODUCTION1 
 

The vast dissemination of social networks data for 

research purposes in recent years has motivated the 

privacy concerns of individuals. Participants most often 

expressed privacy concerns about social network 

services, and the sharing of personal information online 

left them scared and feeling vulnerable [1]. In fact, in 

the case of online social networks, there are many 

reasons such as privacy that restrict datasets to be public 

which limits the application of interesting machine 

learning techniques [2]. For instance, in health 

information dissemination, the shift by health care 

providers towards more dynamic methods of 

information sharing can be the cause of threat to the 

privacy of social media platforms [3]. 

Usually, a social network is represented as a simple 

graph in which nodes are individuals and edges 

correspond to a relationship between individuals. 

Respecting the privacy issues of involving individuals, 

the owner of the social network has to anonymize the 

underlying graph before publishing it. Despite the fact 

that privacy concerns in releasing social network data 

                                                           
*Corresponding Author Email: r_mortazavi@du.ac.ir (R. Mortazavi) 

have been pinpointed, there is no agreement on the 

definition of privacy or anonymity that should be used 

for such data [4]. 

This paper considers a scenario in which an 

adversary attempts to re-identify a real-world entity in 

the graph based on its neighborhood. The main 

contributions of the paper include the following items: 

• A new anonymity measure is defined to quantify 

the privacy level of a given graph with respect to 

the anonymity model. 

• A mathematical model is proposed to capture a 

solution that minimizes the information loss of the 

anonymization process. 

• Four different variants of the base mathematical 

model are proposed by changing its objective 

function. 

• A set of experimental evaluations of the method on 

multiple synthetic and real-world networks are 

conducted. 

Notation: Let G=(V, E) be a simple graph, in which  𝑉 

denotes the set of vertices2 and 𝐸 the set of edges. The 

                                                           
2The terms vertex and node are assumed with the same meaning in this 

study. 
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vertices are referred to by 𝑣𝑖 ∈ 𝑉 and {Vi, Vj} is used to 

show an undirected edge between vertices 𝑣𝑖 and 𝑣𝑗. 

Assume 𝑛 = |𝑉| denotes the number of vertices. The 

degree of a vertex 𝑣𝑖 ∈ 𝑉 is denoted by 𝑑𝑒𝑔(𝑣𝑖) and the 

shortest path length between 𝑣𝑖 and 𝑣𝑗 is denoted by 

𝑑(𝑣𝑖 , 𝑣𝑗). The average of node degrees is also shown as 

𝐴𝑉𝐷. Additionally, 𝑁(𝑣) = {𝑢 ∈ 𝑉: {𝑢, 𝑣} ∈ 𝐸} shows 

neighbors of 𝑣. All notations and abbreviations are 

defined in Table 1. 
 

Roadmap: The remaining of the paper is organized as 

follows: Section 2 introduces a number of related 

works. Section 3 defines the anonymity measure that is 

used to quantify the privacy and proposes a model to 

satisfy the related requirement. Section 4 evaluates the 

proposed method on a number of synthetic and real-

world datasets and finally, Section 5 concludes the 

paper. 

 

 

2. RELATED WORK 
 
Currently, large amounts of private information are 

gathered in social networks. It is shown that trivial 

procedure of removing names or other primary 

identifiers cannot produce a suitable data for publication 

[5]. To address the problem, similar to traditional 

relational data anonymization, some procedures 

reported in literature [6-9], are proposed. For instance, 

perturbation-based approaches that randomly insert or 

delete edges of the graph are considered by Ying and 

Wu [10]. Hay et al. investigate the potential of structural 

queries on graphs for the re-identification of vertices 

and propose an anonymization method based on k-

anonymity. Liu et al. [11] introduced k-degree 

anonymity and Casas Roma et al. [5] presented an 

efficient algorithm to fulfill the requirement. Feder et al. 

[4] defined (k, l)-anonymity as a relaxed version of k-

anonymity. Based on the definition, a graph G = (V, E) 

is  called  (k, l)- anonymous  if for every   vertex 𝑣 ∈ 𝑉,  
 

 

TABLE 1. Abbreviations and notations used in the paper 

𝐴𝑉𝐷 Average Vertex Degree 

𝐴𝐵𝐶 Average Betweenness Centrality  

𝐴𝐶𝐶 Average Clustering Coefficient 

𝐴𝑃𝐿 Average Path Length 

𝐶 Cost matrix 

𝑁(𝑣) Neighbors of v 

d(vi, vj) The shortest path length between 𝑣𝑖 and 𝑣𝑗 

𝑑𝑒𝑔(𝑣) Degree of v 

𝑘 Privacy parameter of the model 

𝑛 Order of the graph|𝑉|, its number of vertices 

there exists a set of vertices 𝑈 ⊆ 𝑉 not containing 𝑣 

such that |𝑈| ≥ 𝑘 and for each 𝑢 ∈ 𝑈, the two vertices 

𝑢 and 𝑣 share at least 𝑙 neighbors. The authors devised a 

random matching algorithm for the special case of (k,1)-

anonymity that uses edge addition to produce an 

anonymous graph. In order to preserve the utility of the 

produced graph in terms of the number of added edges, 

the authors consider matching only between 

problemistic (called deficient) vertices in the original 

graph. However, Stokes and Torra showed that the 

original definition of (𝑘, 𝑙)-anonymity suffers from 

some real-world problems related to privacy of involved 

vertices and refined the definition. 

 

Definition 1 (Definition 21 of Liu and Terzi [12]). 

G=(V, E) is (k, l)-anonymous if for any vertex 𝑣 ∈ 𝑉 

and for all subset 𝑆 ⊆ 𝑁(𝑣) of cardinality |𝑆| ≤ 𝑙 there 

are at least 𝑘 distinct vertices {𝑣𝑖}𝑖=1
𝑘  such that 𝑆 ⊆

𝑁(𝑣𝑖) for i∈{1,k}.  

According to Definition 1 and for the special case of 

𝑙 = 1 and 𝑘 ≥ 2, if an adversary identifies a (real) 

neighbor (𝑣𝑗) of a vertex 𝑣𝑖 in the graph, she would not 

be able to re-identify 𝑣𝑖 using 𝑣𝑗 with probability more 

than 1/𝑘. The adversary may use different background 

knowledge such as the degree of the vertex 𝑣𝑗 [5] to 

identify it in 𝐺 and then tries to cascade the knowledge 

to other nodes. Liu and Terzi [12] suggested cloning 

problemistic vertices, i.e., to insert a number of new 

vertices with the same neighborhood of the problemistic 

vertices. However, as stated by Liu and Terzi [12], these 

fake nodes cause the algorithm to lose its status as an 

anonymization method. Additionally, an adversary who 

knows about the anonymization algorithm can re-

identify the victim with probability greater than 1/𝑘. 

 

 
3. THE PROPOSED METHOD 

 
In this paper, we propose a general framework for the 

(𝑘, 𝑙)-anonymity problem. The solution uses only edge 

addition to anonymize the original graph and is 

formulated as a mixed integer program. According to 

definition 1, Section 3.1 defines a measure to quantify 

graph anonymity. Section 3.2 presents the general 

solution of the problem. Different variants of the model 

are then introduced in Section 3.3. Finally, Section 3.4 

describes the algorithm of the proposed method. 

 
3. 1. The Anonymity of The Original Graphs       In 

this section, we define the anonymity of a graph G=(V, 

E) based on definition 1. 

𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑡𝑦(𝐺, 𝑘) =

min
𝑖

|{𝑣𝑗:𝑣𝑗∈𝑁(𝑣𝑖),𝑑𝑒𝑔(𝑣𝑗)≥𝑘}|

𝑑𝑒𝑔(𝑣𝑖)

  
(1) 
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Equation (1) calculates the anonymity level of 𝐺 for 

different values of 𝑘. For each node 𝑣𝑖, the number of 

its neighbors with degrees greater than 𝑘 is calculated 

and is normalized by 𝑑𝑒𝑔(𝑣𝑖). The minimum of the 

values for all nodes is considered as the anonymity level 

for 𝐺. The larger the value, the better the graph is 

protected against such adversaries. 

 

3. 2. The Mathematical Model      The proposed 

solution attempts to minimize modifications to the 

original graph while preserving the privacy of nodes 

with respect to Definition 1. The solution as a mixed 

integer program contains the following parts: 

• Definition of sets: The indexes of vertices 𝑣𝑖 ∈ 𝑉 in 

the graph are saved in 𝐼, i.e., 𝐼 = {1,2, … , 𝑛}. 
• Fixed parameters and constants: Two parameters 𝑛 

and 𝑘 represent the number of vertices, and 𝑘 of the 

anonymization model, respectively. Additionally, 

the parameter 𝑐𝑖𝑗  denotes the cost of adding the 

edge 𝑒𝑖𝑗 ∉ 𝐸 that connects 𝑣𝑖 and 𝑣𝑗 both in 𝑉. The 

cost matrix 𝐶 = [𝑐𝑖𝑗] is symmetric, i.e., 𝑐𝑖𝑗 = 𝑐𝑗𝑖. It 

is equal to 0 for connected vertices in the original 

graph 𝐺, and a positive value for disjoint ones. In 

order to reduce the size of passed data to the solver, 

only upper triangular part of 𝐶 is passed to the 

solver. 

• Independent problem variables: The solution 

consists of vertices to be connected. The binary 

decision variable 𝑥𝑖𝑗  determines the connectivity of 

𝑣i and 𝑣j in the produced anonymized graph, where 

𝑥𝑖𝑗 = 1 if the related vertices are to be connected. 

In order to decrease the space complexity of the 

final model we only consider 𝑥𝑖𝑗  for 𝑗 > 𝑖, 𝑖, 𝑗 ∈ 𝐼. 

• Objective function: The objective is to minimize 

the aggregate cost of changes with respect to the 

original graph, i.e., 
min
𝑥𝑖𝑗

∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑖,𝑗∈𝐼,𝑖<𝑗 .  

• Constraints: The constraints fall into two 

categories: edge preserving constraints, and 

anonymization constraints. 

(a) Edge preserving constraints: None of the 

existing edges in the original graph can be 

removed, i.e., 𝑥𝑖𝑗 = 1, ∀𝑒𝑖𝑗 ∈ 𝐸. In order to 

speed up the calculation, the warm-start strategy 

is used in which 𝑥𝑖𝑗 = 1 for all of the connected 

vertices 𝑣𝑖 and 𝑣𝑗. 

(b) Anonymization constraints: These constraints 

enforce that the minimum degree of each vertex 

has to be at least 𝑘, i.e., 

∑ 𝑥𝑗𝑖𝑗<𝑖 + ∑ 𝑥𝑖𝑗𝑗>𝑖 ≥ 𝑘∀𝑖 ∈ 𝐼, deg(𝑣𝑖) < 𝑘.  

 

3. 3. The Variants      In this work, four different 

variants of the general mathematical model have been 

applied to the original graph. The difference between 

these variants is in the different cost functions that are 

supposed to be minimized in the objective function. 

Specifically, the following models are considered: 

• Model 1 (M1): In this model, it is assumed that all 

edges introduce the same level of destruction to the 

original graph 𝐺, i.e., 𝑐𝑖𝑗 = 1, ∀𝑖, 𝑗 ∈ 𝐼. Therefore, 

the model minimizes the total number of added 

edges and chooses a random edge when there are 

different candidates to be added to 𝐺. It is an 

implementation of the main objective reported in 

literature [4] that is used for comparison 

throughout the experiments in the paper.  

• Model 2 (M2): This model tries to add edges that 

minimize the total length (in the original graph) 

between connected vertices. This model assumes 

that connecting two closer vertices is less harmful 

to the utility, therefore it uses 𝑐𝑖𝑗 = 𝑑(𝑣𝑖 , 𝑣𝑗). 

• Model 3 (M3): It is interesting to add new edges 

that minimally change the average path length 

(𝐴𝑃𝐿) of G as an important property of the graph. 

This model tries to add edges that decrease 𝐴𝑃𝐿 

minimally. It is hard to calculate the amount of 

change in 𝐴𝑃𝐿 for a large number of sets of 

candidate edges since these edges reinforce the 

value for other edges. Therefore, the model 

approximates the total costs of a number of newly 

added edges by aggregating their individual effects 

on 𝐴𝑃𝐿. More precisely, if 𝑐𝑖𝑗  is the amount of 

change in the 𝐴𝑃𝐿 of the original graph by addition 

of 𝑒𝑖𝑗 to 𝐺, the total value of the change in the 𝐴𝑃𝐿 

for a set of new edges 𝐸′ ⊂ 𝑉 × 𝑉\𝐸 is 

approximated by ∑ 𝑐𝑖𝑗𝑒𝑖𝑗∈𝐸
′ . 

• Model 4 (M4): Inspired from [13], added edges in 

this model are chosen to connect similar vertices in 

terms of the overlap of their neighbors. This model 

assumes that the cost of connecting two disjoint 

vertices with very different neighbors is more than 

the cost of connecting two similar vertices with 

some more overlap in the neighborhoods. For this 

model 𝑐𝑖𝑗 = |𝑁(𝑣𝑖) ∪ 𝑁(𝑣𝑗)|/|𝑁(𝑣𝑖) ∩ 𝑁(𝑣𝑗)| is 

used.  

 

3. 4. The Algorithms      The algorithm of the 

proposed method is given in Algorithm 1. The function 

accepts the adjacency matrix 𝑀 of the graph 𝐺, selected 

variant of the model 𝑉𝑎𝑟, and the privacy parameter 𝑘 

as input and produces the anonymized graph 𝐺𝑘. In the 

first step, the Compute Cost function is called to 

compute 𝐶 (Line 1). Next, the optimization problem is 

solved to obtain the modified adjacency matrix 𝑀′ (Line 

2). In Line 3, the anonymized graph 𝐺𝑘 is generated 

based on 𝑀′. Finally, 𝐺𝑘 is returned (Line 4). Algorithm 

2 shows the ComputeCost function that takes the 
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adjacency matrix 𝑀 and the selected model variant 𝑉𝑎𝑟. 

Based on the selected model variant, a different cost 

matrix 𝐶 has to be computed as output. If M1 is chosen, 

𝑐𝑖𝑗  will be equal to 0 when 𝑣𝑖 is connected to 𝑣𝑗 in the 

original graph 𝐺, otherwise it is set to 1, i.e., 𝑐𝑖𝑗 = 1 −

𝑀[𝑖, 𝑗]. This is computed in Line 1. For the case of M4 

(Line 2), the cost matrix can be computed efficiently 

using bitwise operators or and and for the union and 

intersection functions, respectively. The size function 

also computes the number of 1st of its operand (Line 3). 

It is notable that a very small value 𝜖 is added to the 

denominator to prevent arithmetic errors. The other two 

options for 𝑉𝑎𝑟, i.e., M2 and M3 are considered in 

Lines 4-16. In Line 5, the graph-theoretic shortest 

distance between all nodes are computed using the 

Floyd-Warshall algorithm [14]. For M2, the computed 

distances 𝑑𝑖𝑗  minus 1 are returned3 as 𝑐𝑖𝑗(Line 6). For 

M3, the function calculates the average value of shortest 

paths and saves it in 𝐴𝑃𝐿 (Line 8). Then, in the 

following steps for each 𝑖, 𝑗, the value of 𝑐𝑖𝑗  is 

calculated. If 𝑣𝑖 is connected to 𝑣𝑗(𝑖 ≠ 𝑗), 𝑐𝑖𝑗  is set to 0 

(Line 11). Otherwise, these vertices are connected 

temporarily (Line 14) and the new 𝐴𝑃𝐿 is computed 

(Line 15) and saved in 𝐴𝑃𝐿′ (Line 16). The difference 

between 𝐴𝑃𝐿 and 𝐴𝑃𝐿′ is stored in 𝑐𝑖𝑗  (Line 17). 

Finally, the cost function 𝐶 is returned (Line 18). 

 
 

ALGORITHM 1. Generating the anonymized graph 𝐺𝑘  

Input:𝑀 (adjacency matrix of 𝐺), 𝑉𝑎𝑟 (model variant),𝑘 

(privacy parameter) 

Output: Anonymized graph 𝐺𝑘 

Function 𝐺𝑘=AnonymizeGraph(𝑀,𝑉𝑎𝑟, 𝑘) 

1 𝐶=ComputeCost(𝑀,𝑉𝑎𝑟)   // Algorithm 2 

2 Solve the optimization problem introduced in Section 

3.2 to obtain 𝑀′ = [𝑥𝑖𝑗] 

3 𝐺𝑘 = graph(𝑀′) 

4 Return 𝐺𝑘 

END Function 

 
ALGORITHM 2. Computation of the cost matrix 

Input:𝑀 (adjacency matrix of 𝐺), 𝑉𝑎𝑟 (model variant) 

Output: The cost matrix 𝐶 

Function𝐶=ComputeCost(𝑀,𝑉𝑎𝑟) 

1 If𝑉𝑎𝑟 ==M1 Return Ones(𝑛, 𝑛)-𝑀 

2 Elseif𝑉𝑎𝑟 ==M4 

3  Return 𝐶 = [𝑐𝑖𝑗] where 

𝑐𝑖𝑗=Size(Or(𝑀[𝑖, : ],𝑀[𝑗, : ])) / 

(𝜖+Size(And((𝑀[𝑖, : ], 𝑀[𝑗, : ]))) ∀𝑖, 𝑗 ∈ 𝐼 
4 Else  // M2 or M3 

5  𝐷 = [𝑑𝑖𝑗] =Floyd-Warshall(𝑀) 

6  If 𝑉𝑎𝑟 ==M2 Return𝐷 − 1 

7  Else  // M3 

8   𝐴𝑃𝐿 =average(𝐷) 

                                                           
3If 𝑣𝑖 is connected to 𝑣𝑗  (𝑖 ≠ 𝑗) then 𝑑𝑖𝑗 = 1. So, 𝑐𝑖𝑗 = 𝑑𝑖𝑗 − 1 = 0 is 

considered. 

9   Foreach 𝑖, 𝑗 ∈ 𝐼 
10    If𝑀[𝑖, 𝑗] == 1 

11     𝑐𝑖𝑗 = 0 

12    Else 

13     𝑀′ = 𝑀 

14     𝑀′[𝑖, 𝑗] = 𝑀′[𝑗, 𝑖] = 1 

15     𝐷′ = Floyd-Warshall(𝑀′) 

16     𝐴𝑃𝐿′=average(𝐷′) 

17     𝑐𝑖𝑗 = 𝐴𝑃𝐿 − 𝐴𝑃𝐿′ 

18   Return 𝐶 

End Function 
 

 

4. EXPERIMENTAL EVALUATIONS 
 

In this section, different experiments are conducted to 

evaluate the efficacy of the proposed method. In all 

experiments, a PC with Intel Core 2 Duo 3.6 GHz CPU, 

16 GB of main memory and Windows 10 operating 

system is used. The CPLEX optimization engine is used 

to solve the mathematical problem. Section 4.1 

introduces the datasets. Section 4.2 evaluates the risk of 

the original datasets based on Equation (1). Section 4.3 

reports the usefulness of the anonymized graphs based 

on different utility measures. At the end of this section, 

execution times are reported in Section 4.4. 
 

4. 1. The Graph Datasets      The proposed method is 

applied to two synthetic and two real-world datasets to 

observe its performance in different situations. The 

synthetic datasets are summarized as follows:   

• SF50 and SF500: Two scale-free datasets based on 

Barabasi’s model. These graphs are connected 

graphs where vertex degrees are drawn from a 

power-law distribution similar to real-world social 

networks. The datasets are generated using the tool 

introduced in [15]. 

• RA82: A random network based on Erdos-Renyi 

model in which vertices are connected based on 

probability 𝑝 = 0.03.  

Additionally, three real-world datasets are tested to 

assess our method in different topologies. The first two 

datasets are also used in [13].  

• PolBooks: A network of books about US politics 

sold by Amazon.com. Edges in the network show 

the frequent purchasing of buyers. The data is 

compiled by V. Krebs (www.orgnet.com).  

• Football: the network of American football games 

between Division IA colleges during regular season 

Fall 2000, as compiled by Girvan and Newman 

[16].  

• Dwt1005: An undirected graph from Everstine’s 

collection that is included in the Harwell-Boeing 

database4. 

                                                           
4https://math.nist.gov/MatrixMarket/data/Harwell-

Boeing/dwt/dwt_1005.html 
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Structural properties of the graphs are given in Table 2. 

For each graph, the Average Path Length (APL), the 

Average Clustering Coefficient (ACC), and the Average 

Betweenness Centrality (ABC) are reported. The APL is 

a concept in the network topology that is defined as the 

average number of steps along the shortest paths for all 

possible pairs of network nodes. It is a measure of the 

efficiency of information or mass transport on a 

network5. The ACC is the average of local clustering 

coefficients of graph nodes. The measure for a node 

quantifies how close its neighbors are to being a clique 

and determines whether a graph is a small-world 

network [17]. Moreover, ABC is the average of 

betweenness centrality of all nodes. The measure for 

each node captures the number of shortest paths in the 

graph passing through the node6. 

 
4. 2. The Anonymity Measure      Table 3 shows the 

measure for the synthetic and real-world graphs 

introduced in section 3.1. The results confirm that the 

anonymity of graph diminishes very fast when 𝑘 

increases. For instance, for 𝑘 = 4 in Polbooks, there is 

at least one node 𝑣 for which the degree of half of its 

neighbors is lower than 4. Therefore, if an adversary 

identifies one of the neighbors randomly, the probability 

to limit𝒗 in a group with lower than 4 members is more 

than 0.5.  
 

 
TABLE 2. Structural properties of Synthetic and Real-world 

graphs 

Dataset Vertices Edges APL ACC ABC 

SF50 50 96 2.8433 0.1178 45.1600 

SF500 500 996 3.8837 0.0331 719.4880 

RA82 82 94 5.7350 0.0000 191.7683 

Polbooks 105 441 3.0788 0.4875 108.0952 

Football 115 613 2.5082 0.4032 85.9652 

Dwt1005 1005 3808 13.2600 0.9098 6154.5174 

 

 
TABLE 3. Anonymity of different datasets based on Equation 

(1) 

 𝒌 = 𝟑 4 5 6 7 8 9 10 11 12 13 

SF50 1.00 0.40 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

SF500 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

RA82 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Polbooks 1.00 0.67 0.50 0.50 0.25 0.00 0.00 0.00 0.00 0.00 0.00 

Football 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.67 0.60 0.36 0.00 

Dwt1005 1.00 1.00 0.67 0.33 0.17 0.00 0.00 0.00 0.00 0.00 0.00 

                                                           
5 https://en.wikipedia.org/wiki/Average_path_length 
6 https://en.wikipedia.org/wiki/Betweenness_centrality 

Generally, the results show the importance of 

considering the anonymization process, especially for 

𝒌 ≥ 𝟒 with respect to Definition 1 for different datasets. 

 
4. 3. The Utility of Anonymized Graphs      This 

section reports the amount of error introduced in the 

anonymized graph after applying the proposed method. 

The performance measures are based on the 

𝐴𝑉𝐷, 𝐴𝑃𝐿, 𝐴𝐶𝐶, and 𝐴𝐵𝐶 that are defined in Section 

4.1. For example, Δ𝐴𝑃𝐿 = |𝐴𝑃𝐿2 − 𝐴𝑃𝐿1| where  

𝐴𝑃𝐿1 and 𝐴𝑃𝐿2 are the 𝐴𝑃𝐿 of the original and 

anonymized graphs, respectively. Other measures are 

defined similarly. The lower the value, the better the 

anonymization procedure and the anonymized graph is 

more similar to the original one. Figures 1-4 show these 

quantities for different datasets and models. The results 

confirm for all models that when 𝑘 increases, all error 

measures increase. For instance, 𝛥𝐴𝑃𝐿 = 0.1241 in 

SF50 for 𝑘 = 3 and M1, while the value increases to 

𝛥𝐴𝑃𝐿 = 0.4604 for 𝑘 = 5. Similarly, 𝛥𝐴𝑉𝐷 = 0.572 

in SF500 for 𝑘 = 3 and M3, while the error reaches 

𝛥𝐴𝑉𝐷 = 6.86 for 𝑘 = 10. Figure 1 shows that M1 is 

always successful to reach the best 𝛥𝐴𝑉𝐷, since the 

measure is minimized when the number of added edges 

is minimized, which is the main task of M1 [4]. The 

results in Figure 2 indicate that in most cases, M3 

achieves the best 𝛥𝐴𝑃𝐿. This is rational since the 

weights in M3 represent the cost related to 𝐴𝑃𝐿, 

therefore edges with smaller costs have more priority to 

be added to the solution of the model. For instance, in 

Dwt1005, 𝛥𝐴𝑃𝐿 = 9.5045 for M1 and 𝑘 = 10, while 

the quantity is 𝛥𝐴𝑃𝐿 = 1.1955 for M3 which means a 

significant improvement in compare with literature [4]. 

Figure 3 shows that in all cases except for the Polbooks 

and Dwt1005, M1 produces a more useful graph in 

terms of Δ𝐴𝐶𝐶. This confirms that 𝐴𝐶𝐶 is more 

sensitive to the number of added edges than the way 

they are added. Finally, Figure 4 validates again the 

claim, i.e., a model with the minimum number of added 

edges does not necessarily result in the best utility for 

the anonymized graph. For SF50, in 𝑘 ≤ 6, M3 usually 

produces the lowest errors, while for 𝑘 > 6, M4 

achieves the most useful datasets in terms of 𝛥𝐴𝐵𝐶. 

Interestingly, M3 is also the winner in Polbooks, 

Football and Dwt1005 graphs. However, for RA82, M2 

has the best performancein all cases. This may be 

related to the structure of RA82, which is a very sparse 

graph (its initial density is lower than 0.03) while other 

graphs are at least twice denser than RA82. As the 

figure illustrates, RA82 is more sensitive than the other 

three graphs in terms of 𝛥𝐴𝐵𝐶. Similar comparison 

based on these measures confirm that RA82 is more 

sensitive to the anonymization procedure. For instance, 

𝛥𝐴𝑃𝐿 values of RA82 are about three times more than 

the values for other datasets. Generally speaking, the 

denser the original graph, the lower utility will be lost 
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during anonymization for the proposed method which is 

based on edge addition. Therefore, it is suggested to 

social network owners to allow their network grows to a 

minimum threshold (for example in terms of its 

density), and then attempt to apply anonymization 

procedure on it. 

 

4. 4. Execution Time       In this section, the running 

time of experiments are reported. The main time-

consuming tasks consist of solving the optimization 

problem and computing the cost matrix. Other 

computations in each separate experiment require less 

than 2 seconds and are ignored.  

 
 

 
Figure 1. The value of ∆𝐴𝑉𝐷 for different datasets and models in 𝑘 = 2. . .10 

 

 
 

 
Figure 2. The value of ∆𝐴𝑃𝐿 for different datasets and models in 𝑘 = 2. . .10 
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Figure 3. The value of ∆𝐴𝐶𝐶 for different datasets and models in 𝑘 = 2. . .10 

 

 
Figure 4. The value of ∆𝐴𝐵𝐶 for different datasets and models in 𝑘 = 2. . .10 

 
 
Table 4 shows the time required to solve the problem 

for each dataset and model. The results confirm that in 

most cases, the problem can be solved in a reasonable 

time. There may be some cases in which the engine 

requires a considerable time to produce the optimal 

solution. It is notable that graph anonymization task is 

usually considered as an offline procedure. If solving 

time matters, the optimization engine can be tuned to 

stop if a near to optimal solution is achieved using  the  

gap>07. 

The other time-consuming task is the Compute Cost 

function in which the cost matrix 𝐶 is computed. This 

task is independent of the privacy parameter 𝑘. Table 5 

shows the execution time of the function for different 

datasets and model variants. 

                                                           
7The parameter controls the relative termination tolerance. All 

experiments in this paper use gap=0 to find the exact optimal solution 
of the optimization problem. 
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TABLE 4. The average solve time (in second) for each dataset 

and model variant 

Dataset M1 M2 M3 M4 

SF50 0.23 0.23 0.28 0.22 

SF500 3.25 2.85 3.09 339.89 

RA82 0.27 0.26 0.26 161.55 

Polbooks 0.24 0.25 0.25 0.24 

Football 0.21 0.20 0.20 0.20 

Dwt1005 6.38 6.25 5.74 5.47 
 

 

 
TABLE 5. Execution time of the Compute Cost function (in 

second) for each dataset and model variant  

Dataset M1 M2 M3 M4 

SF50 <0.01 <0.01 0.05 0.01 

SF500 <0.01 0.01 368.85 1.31 

RA82 <0.01 <0.01 0.26 0.02 

Polbooks <0.01 0.01 0.71 0.02 

Football <0.01 0.01 0.89 0.03 

Dwt1005 <0.01 0.04 6641.12 13.45 

 

 

These running times are almost negligible with respect 

to the solving time of the optimization problem except 

for the case of M3. In this case, it is required to call 

Floyd-Warshall multiple times, so the execution time 

gets considerable especially for large graphs.  

 

 

5. CONCLUSIONS 
 

This paper realizes a procedure for graph 

anonymization. The adversary is assumed to be able to 

identify a neighbor of a victim node. Regarding this 

attack model, an anonymity measure is defined. It is 

shown that the measure decreases sharply when the 

anonymity parameter increases slightly. A general 

mathematical model is proposed to increase the 

anonymity measure using edge addition. Four different 

variants of the general model are proposed. The 

procedures are evaluated on different synthetic and real-

world graphs. The results show that trying to minimize 

the number of added edges is not usually a good 

objective to produce a useful anonymized graph. 

Additionally, the results show that highly sparse graphs 

are very sensitive to different utility measures. 

Evaluating the proposed method for other general graph 

utility measures is considered to be accomplished as a 

future work. Moreover, it is interesting to devise some 

heuristics to anonymize larger social networks [18] 

without using mixed integer programming approach. 
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 چکیده
 

 

های اجتماعی با توجه به استفاده گسترده از این اطلاعات برای های شبکههای اخیر، نگرانی کاربران از انتشار دادهدر سال

اهداف پژوهشی افزایش یافته است. در این مقاله به خطر افشای شناسه یک گره در شبکه با فرض اینکه مهاجم اطلاعات 

نامی یک گراف شبکه بر اساس این شود. ابتدا سطح بیهای بلافصل آن گره را در اختیار دارد، پرداخته میکی از همسایهی

شود. استفاده از روش فوق بر روی تعدادی شده و در ادامه یک مدل ریاضی برای حل این خطر ارائه میبندی خطر فرمول

تواند در کاربردهای مختلف نتایج دهنده عمومیت روش فوق است که میهای مصنوعی و واقعی نشاناز مجموعه داده

 دست آورد.سازی شده بهنامهای بیمناسبی را بر حسب سودمندی داده

doi: 10.5829/ije.2018.31.10a.03 
 

 
 


