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A B S T R A C T  
 

 

A multi-objective optimization (MOO) of two-element wing models with morphing flap by using 
computational fluid dynamics (CFD) techniques, artificial neural networks (ANN), and non-dominated 

sorting genetic algorithms (NSGA II), is performed in this paper. At first, the domain is solved 

numerically in various two-element wing models with morphing flap using CFD techniques and lift (L) 
and drag (D) coefficients in wings are calculated. Afterward, for modeling L and D using grouped 

method of data handling (GMDH) type artificial neural networks, numerical data of the preceding step 

will be applied. Eventually, for Pareto based multi-objective optimization of two-element wing models 
with morphing flap using NSGA II algorithm, the modeling, which is accomplished by GMDH will be 

applied. It is shown that the achieved Pareto solution includes important design information on such 

wings. 

doi: 10.5829/ije.2018.31.04a.19 

 

 
1. INTRODUCTION1 
 

Unmanned aerial vehicles (UAVs) with their various 

fields of usages such as: weather research, military, 

geographical, reconnaissance, communications and 

exploration, can be controlled by autonomous 

navigation systems or computer programs. The 

increases of the operating range, flight endurance, load 

carrying capacity; stability and maneuverability as well 

as the reduction of fuel consumption and noise whole 

together are attributed to the increase of UAVs 

aerodynamic efficiency, which has substantially 

important impact on our considerations [1, 2]. An 

influential scheme which causes the improvement of 

aerodynamic efficiency is the use of a high-lift system. 

Multi-element wing can be mentioned as one of the 

various types of this system. The flow field around a 

multi-element airfoil has a highly intricate physic 

because of the interaction between each of its 
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components, which is profoundly affected by the 

changes in the distance between these elements and by 

their overlap and deflection angles. One of the most 

significant designs for the enhancement of high aspect 

ratio wings for UAVs with lasting endurance is a two-

element airfoil. In addition, with respect to the changing 

flight condition the notion of morphing structure can be 

adapted to the form of a flying vehicle in order to 

enhance its efficiency. The energy consumption, boost 

the flight efficiency can be declined by utilizing this 

technology on the wings of UAVs, furthermore, the 

excess noise, which is generated by these aerial 

vehicles, can be eliminated too [3]. 

Kanazaki et al. [4] presented an optimum design for 

a three-element airfoil consisting of the main wing, slat 

and flap. In order to achieve maximum aerodynamic 

efficiency, Jeong et al. [5] used one of the response 

surface means called Kriging, which determines the 

relationship between and objective function and the 

design variable. 

They also performed analysis of variance (ANOVA) 
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to obtain the effects of each factor and their interactions 

on the output. Simpson et al. [6] compared the second-

order response surface models and Kriging model for 

optimizing the model of a simulated aerospike nozzle by 

means of the Computational Fluid Dynamics (CFD). 

The variance analysis results confirmed the abilities of 

the mentioned methods in estimating the optimal values. 

Landman and Britcher [7] designed and tested a three-

element airfoil equipped with separate flaps with the 

goal of finding the best flap position for achieving 

maximum lift force. They published the results of lift 

coefficient with respect to horizontal and vertical flap 

positions for 8º and 14º angles of attack. Vavalle and 

Qin [8] developed an optimization technique based on 

the response surface approach for a 2D airfoil 

(RAE2822) design for the transonic flow regime. The 

PARSEC method was used to model this airfoil and 

numerous experiments were performed to validate the 

approach. This research considers the response surface 

method to be a more effective technique than the other 

common numerical aerodynamic optimization methods. 

Xiong-feng et al. [9] proposed an optimization 

technique based on dynamic mesh for optimizing the 

wings of High Altitude Long Endurance (HALE) 

aircrafts. After parameterizing the airfoil, the proposed 

model was designed with the help of the design of 

experiments method and analyzed by means of CFD. 

Proclaiming that the commercial development of 

today’s aircrafts lacks an established technique for 

design optimization based on optimal cost and 

efficiency, Ross and Krossley [10] proposed the 

Taguchi method (one of the design of experiments 

approaches) as a suitable low-cost method. Secanell et 

al. [11] used a highly accurate computer program based 

on CFD solver for the aerodynamic shape optimization 

with the Spalart-Allmaras turbulence model and a 

sequential second-degree algorithm to achieve optimal 

UAV airfoils for different flight conditions. 

Kim et al. [12] applied an adjoining-based design 

optimization method for a 2D multi-element high-lift 

configuration. They used the RANS-based Navier-

Stokes equations and the Spalart-Allmaras turbulence 

model to investigate the high Reynolds effects. In this 

research, the shape of the airfoil, the angle of attack and 

positions of the elements were chosen as the design 

variables and the three-element configuration producing 

the maximum lift was defined as the objective function. 

The results adequately agreed with the empirical data. 

Matteo et al. [13] performed extensive research on a 

proposed design including a hinge-less morphing flap 

with a flexible trailing edge and internally-actuated 

deformation with the aim of increasing the lift and 

aerodynamic efficiency. In a parametric study, Balaji et 

al. [14] determined the effects of 2D flap and slat in a 

high-lift flow on a three-element airfoil system by using 

the Spalart-Allmaras turbulence model and numerically 

solving the Navier-Stokes equations. Rogers et al. [15] 

evaluated the performances of four flow turbulence 

models, including the Baldwin-Barth, Spalart-Allmaras, 

K-w and the Durbin-Mansour models, in obtaining the 

flow over a three-element airfoil. Steinbuch et al. 

published the results of their studies on two-element 

airfoils, including the Heron-1, FT/EX, SA-14 and FX-

M2D, for subsonic laminar flows[3]. Dehghan menshadi 

and Jamalinasab [16] investigated the optimization 

process of a two element wing model using RSM 

method. They investigated the L over D (L/D) parameter 

as the objective function. 

Increasing in the lift (L) and drag (D) coefficient will 

be resulted by using two-element wing models with 

morphing flap; therefore, optimal design points should 

be identified by utilizing a multi-objective optimization. 

In this study, for two-element wings model with 

morphing flap, the multi-objective optimization will be 

used in the ensuing procedure: using CFD techniques, 

Artificial Neural Networks (ANN) modeling and NSGA 

II algorithm. Grouped Method of Data Handling 

(GDMH) type neural network can be used in order to 

transform the CFD discrete data into continuous 

function. The paramount goal of GDMH modeling is 

that; by using this modeling method a quadratic 

polynomial function in a feed forward network whose 

coefficients were obtained using regression technique 

[17]. Recently, neural networks for modeling various 

parameters in engineering issues [18-20] are exerted by 

many researchers. The NSGA II and GMDH modeling 

algorithm, which used in this paper, is one of the best 

and complete multi objective optimization algorithms. 

For the very first time, this algorithm proposed by Deb 

[21], that recently has been exerted abundantly for 

multi-objective optimization of engineering issues [22-

24]. 

A infantile of the followed process, which is used in 

this paper, is numerically solved in various two-element 

wing models with morphing flap using CFD techniques 

and lift and drag coefficients were calculated. 

Subsequently, to attain the polynomial models for the 

effects of the diverse parameters on L and D, GDMH 

neural networks are used. Afterward, the obtained 

polynomial models are used in a Pareto based multi-

objective optimization approach to find the best 

conceivable combination of L and D, which are known 

as Pareto front. Some imperative design principles are 

the corresponding variations of design variables, known 

as the Pareto set. 

 

 

2. MATHEMATICAL MODELING   
 
2.1. Geometry the schematic diagram of the two-

element wing section is portrayed in Figure 1; which 

contains a main airfoil and a flap, with an overall length 
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of 1 m. The flap is rigid and its angle using a hinge 

mechanism can be changed. In this investigated design, 

a morphing flap is used instead of the rigid flap. A 

morphing flap can be replaced horizontally and 

vertically in proportion to the main airfoil and curved 

using an internal mechanism. This mechanism, which is 

installed at the end section of the morphing flap, enables 

it to modify and adapt its shape. 
 
2.2. Wing Parameterization  The vertical and 

horizontal positions of the flap and its curvature were 

parametrically defined to optimize the position and 

curvature of the flap. Therefore, the parametric 

expression could be adequately flexible; moreover, the 

changes of position and curvature are able to be 

adequately considered in the defined range to 

accomplish an optimum design. Therefore, in this 

modeling of this airfoil, five variable parameters were 

applied. These five parameters are demonstrated in 

Figure 2. The position and curvature of the flap can be 

appropriately specified by using these five parameters. 

If the mechanism carefully examined; it would be 

perceivable that this mechanism is made up of many 

rigid sections. The mechanism can change angle in 

proportion to one another and that the angle among the 

lower and upper surfaces of each section of the 

mechanism is fixed. Therefore, the changes of the flap 

curvature with regard to the physics of the problem can 

be expressed well by the defined angle parameters. 

Distinct designs are accessible by changing the 

variables and they can be simulated by CFD.  
Subsequent, utilizing the GDMH type neural 

networks, which is afterward used for Pareto based 

multi-objective optimization of two-element wings 

models with morphing flap, two polynomials can be 

brought about. 

 

 
Figure 1. Cross sectional geometry of the two-element wing 

[24, 25] 
 

 

 
Figure 2. Geometrical parameters determining the position 

and curvature of the flap 

2.3. Governing Equations        By exerting the 

continuity and momentum equations we can simulate 

and analyze the fluid flow behavior. The continuity 

equation is expressed as follows: 

𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑢𝑖)

𝜕𝑥𝑖
= 0  (1) 

Navier-Stokes equations constitute the momentum 

equations governing the fluid flow. In general form, 

these equations are expressed as follows: 

𝜌
𝐷𝑉

Dt
+ ∇P  = 𝜇∇2𝑢 + 𝐹  (2) 

 
2.4. Turbulence Modeling  A one-equation model, 

which solves a modeled transport equation for the 

kinematic eddy turbulent viscosity, is the Spalart-

Allmaras model. Aerospace applications involving wall-

bounded flows is one of the specific reasons, which led 

to the equation designed. Furthermore has been 

demonstrated that this equation can be used to give 

good results for boundary layers subjected to adverse 

pressure gradients. Consequently, for the modeling of 

flow turbulence [26] this model has been applied. The 

equation stated as follows: 

𝐷�̃�

𝐷𝑡
= 𝐶𝑏1[1 − 𝑓𝑡2]�̃��̃� +

1

𝜎
[∇. ((𝜈 + 𝜈)∇𝜈)] +

𝐶𝑏2(∇𝜈)2 − [𝐶𝑊1𝑓𝑤 −
𝐶𝑏1

𝑘2 𝑓𝑡2] (
�̃�

𝑑
)

2
+ 𝑓𝑡1 ∆𝑈2  

(3) 

 The kinematic eddy viscosity, νt is related to the eddy 

viscosity term v through the equation [27]: 

𝜈𝑡 = 𝜈𝑓𝜈1  (4) 

 

2.5. Boundary Conditions  For a flow with these 

characteristic: Reynolds number of 1M, density of 1.007 

Kg/m3 and viscosity of 1.726×10-5 N.s/m2, the flow 

velocity at the inlet was set at 17.14 m/s at an angle of 

attack of 5º as the velocity inlet. In addition, outlet flow 

at the downstream was defined as the pressure outlet. 

The flow regime is subsonic; also, we can factor in the 

regime as an incompressible flow. The use of the 

pressure based solver and the ‘Simple’ algorithm can be 

justified by the flow characteristics. 
 
2.6. Numerical Methods  Subsequent to completing 

the modeling steps, using the meshing subprogram, the 

generated region was irregularly meshed. The thickness 

of the layer of cells adhering to the wing wall was 

defined as to gratify the 𝑌+ size condition, to 

accomplish an appropriate mesh. The 2D flow was 

solved by considering meshes with 23373, 29694, 

42653, 6102 and 124073; in order to evaluate the mesh 

independency. In addition, the results were analyzed 

and compared. The 4thmesh configuration was used to 

analyze the flow around the airfoil at distinct angles of 

attack, because, the computational accuracy did not 
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substantially enhance the increasing number of elements 

above 61026. 
 
2.7. Validation       The achieved lift coefficient values 

from the wind tunnel tests for this airfoil have been 

published in credible papers [3]. In order to validate the 

obtained results, data were applied to be compared with 

the obtained results. The lift coefficient values for the 

considered wing section at a Reynolds of 1M and at 

distinct angles of attack and fixed flap can be shown by 

these results. Using the compared results, which are 

displayed in Figure 3 indicated that at a 5º angle of 

attack, the computational error for lift coefficient is 

approximated to be 1%. Also, the figure indicates that 

this coefficient in the worst case becomes less than 6% 

(i.e., at 11.6º angle of attack). The difference between 

these two subsequent values as 3.6E-7 was shown by 

the evaluation of the input and output flow rates. 

Furthermore, this evaluation proves the precision of the 

numerical method in solving the problem. 
 
 
3. Modeling of L and D Using GMDH Type Neural 
Networks 
 
An extensively used and compete neural networks, 

which is available today, is the GDMH type neural 

network. The neural network’s neurons, in this means 

are formed by relating diverse pairs though a quadric 

polynomial. The network conveys the approximation 

function f̂  with output y


 for a set of inputs 

)),...,,(( 21 nxxxx   with the least value of error in 

comparison with the real output, by synthesizing the 

quadric polynomials, obtained from all neurons. 

 

 
Figure 3. Comparing the diagrams of lift coefficient vs. angle 

of attack obtained by the numerical method and via wind 

tunnel experiments [3] 

Consequently, for M data encompasses n inputs and one 

output, the real results are expressed as follows:  

)
in

x,...,
3i

x,
2i

x,
1i

x(f
i

y   (5) 

As a matter of fact, we are trying to accomplish a neural 

network of GDMH type, that the value of output for 

every input vector x, is predictable by such approach. 

Hence:  

)
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x,...,
3i

x,
2i

x,
1i

x(f̂
i

ŷ   (6) 

The considered GDMH type neural should have this 

ability to minimize the square of error between the real 

and the predicted values; in other words: 

min
2
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By means of a complex polynomial function the generic 

form of relation between the input and output variables 

can be expressed as follows: 
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The preceding relation is known as Ivakhnenko 

polynomial [28]. The ensuing relation is a quadric form 

of this polynomial which is used typically for many 

cases:  

2

5

2

43210),(ˆ jxaixajxixajxaixaajxixGy   (9) 

 Now, in order to find the polynomial models of 

L and D of two-element wing models with morphing 

flap with respect to their effective input parameters the 

GDMH is utilized. In this paper, for designing the 

number of input-output data in GDMH modeling, 

Response Surface Methodology (RSM) which is a sub 

method of Design of Experiments (DOE) is used [32, 

33]. There are a total number of 42 input-output CFD 

data considering five design variables and two objective 

functions. The following equations are GDMH 

polynomial relations, using to define L: 

 0.220.120.089-51.08- 18.970.15 22

1 Y  (10a) 

HHHY  0.080.07-.0306.516.780.07 22

2   (10b) 

 1

22

113 0.19-0.03-0.1842.7333.82-0.05 YYYY   (10c) 

VYVYVYY 2

22

224 0.160.060.13- 7.92-15.270.04   (10d) 

43

2

4

2

343 0.0054-0.0030.0040.380.28- 0.00052 YYYYYYL   (10e) 

Likewise, for D the GDMH is in the form of: 
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 0.007  0.00076.51.240.060.002 22

1 Y  (11a) 

HHHY  0.0070.00070.00011.10 0.060.002 22

2   (11b) 

 HHHY 0.00040.00050.0010.0070.3180.003 22

3   (11c) 

 1

22

114 0.00450.00170.001 0.1490.0943.33 YYYY   (11d) 

32

2

3

2

2325  0.028 0.040.0171.6070.30 -10.71 YYYYYYY   (11e) 

54

2

5

2

454 0.072 0.0730.0391.430.64- 10.92 YYYYYYD   (11f) 

The 42 existing data have been divided into two groups; 

32 data have been used to train, and the remaining 10 

data have been utilized in order to test the network. The 

capability of the models can be evaluated through 

statistical methods; in addition to observe the prediction 

ability of the neural network models. In order to reach 

this paramount goal, statistical parameter, which is 

called the absolute fraction of variance (R2) is used. The 

following relations define this parameter: 







n

1i
2

CFDi

2

CFDiANNi2

Y

)YY(
1R

 
(12) 

The high accuracy of the attained models in the 

prediction of the numerical CFD data can be indicated 

by the statistical values. 

In the next section for the multi-objective 

optimization of two-element wing models with 

morphing flap are applied. In this section for prediction 

of L and D, the GMDH neural network models are used. 

 

 

4. MULTI OBJECTIVE OPTIMIZATION OF TWO-
ELEMENT WING MODELS WITH MORPHING FLAP 
USING NSGA II ALGORITHM  
 
The GDMH modes obtained in section 4 are now 

exerted in a multi-objective optimization procedure 

using NSGA II algorithms [22, 23]. The optimal 

performance of two-element wing models with 

morphing flap was investigated. In all runs a population 

size of 60 has been chosen with crossover probability 

(Pc) and mutation probability (Pm) as 0.7 and 0.07, 

respectively. The L and D that should be optimized 

simultaneously with respect to the design variables are 

the two conflicting objective in this study. The multi-

objective optimization can be devised in the ensuing 

form: 









),,,,(

),,,,(

2

1





i

i

VHfDMinimize

VHfLMaximize  
(13) 

 

The Pareto front of the mentioned objective functions is 

displayed in Figure 4. Obviously, the points have no 

dominancy over one another. That means, there are not 

two points can be found where one of their objective 

functions is the same as the other one. In other words, 

one objective function evolves and other one 

exacerbates, as we moved from one point to another. 

Four optimal points, whose corresponding design 

variables are designated by A, B, C and D, can be 

observed in this figure. 

Moreover, the illustrated points in Figure 4 have 

unique characteristics. By considering the points A and 

B it is observable that they demonstrate the least drag 

and the highest lift coefficient, respectively. As we 

follow the direction from point A to point B, drag 

seldom changes (increases around 8%), whereas the 

changes in lift is gigantically substantial (increases 

around 17.2%). This striking attribute makes the point 

B, which is known as the break point, very interesting 

for the design. Typically, finding a point at which both 

objective functions are abundantly gratified is ideal. We 

applied the mapping method [22] in order to find such a 

point. The values of both objective functions were 

assumed between 0 and 1, and the norm of these 

functions were calculated to reach this purpose. The 

ideal design point is constituted by the point with the 

highest norm value. Both objective functions of L and D 

can be sufficiently satisfied by the point C, which is the 

point that has been attained from this approach. 

By the CFD approach, the optimal points obtained 

from the Pareto front and neural networks must be 

validated. In a post numerical study, using CFD the 

design points of the obtained Pareto front were re-

evaluated. The validity of the implemented procedure in 

the course of modeling with neural networks and in the 

optimization process can be proved by this difference. 

In achieving the design objectives, the changes of the 

design variables interlocked with the Pareto front can be 

beneficial. Without the use of the multi-objective Pareto 

optimization process and CFD techniques presented in 

this paper, the mentioned useful relationships that 

indefeasible among the optimum design variables of 

two-element wing models with morphing flap, cannot 

be discovered.  

Ultimately, comparing the 42 primary data from the 

CFD simulations with the extracted Pareto front in this 

section not only is interesting but also is useful. The 

initial CFD data and the overlap of the Pareto front are 

shown in Figure 5. 

This fact that the Pareto front has acknowledged 

very precisely the best boundary of the CFD data with 

respect to the lowest drag and highest lift coefficient is 

indicated in Figure 5. Also, the validity of the modeling 

with neural networks and optimization process can be 

verified by this point. 
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Figure 4. Pareto optimal points for lift and drag for optimal 

design points 
 

 

 
Figure 5. Overlap graph of the obtained optimal Pareto front 

with the CFD simulation data 

 
 
5. CONCLUSION        
 
By the use of a synthesis of CFD, GDMH type ANN 

and NSGAII algorithm; multi-objective optimization of 

two-element wing models with morphing flap was 

successfully implemented in this paper. H, V, 𝛼, 𝛽 and 

𝜃 were the design variables, and the reduction in drag 

coefficient and increase in the lift simultaneously was 

the ultimate goal of this study. At the beginning, to 

solve the domain in several two-element wing models 

with morphing flap CFD techniques were used. 

Subsequent to the validating the results, for modeling of 

objective functions of L and D by means of the GDMH 

type ANN, the CFD data were applied. By employing 

various statistical parameters the significant precision of 

GDMH polynomials was demonstrated. Eventually, in 

order for the multi-objective optimization of two-

element wing models with morphing flap and the 

extraction of the Pareto front by means of the NSGAII 

algorithm, these polynomials were exerted. The Pareto 

front contained imperative design information, with 

regard to the two-element models with morphing flap, 

which could be acquired just by combining CFD, 

GMDH and the multi-objective optimization method. 
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چكيده
 

 

ست. در نجام شده اامانی در این مقاله با استفاده از الگوریتم ژنتیک چندهدفی، فرآیند بهینه سازی چندهدفی بال های دو ال

را و پسا برایب ابتدا ناحیۀ محاسباتی با استفاده از دینامیک سیالات محاسباتی حل شده است و در تمامی محاسبات ض

ه ی انجام شده عصبحاسبه شده اند. در مرحله بعد از داده های مرحله قبل جهت مدلسازی توابع هدف با استفاده از شبکم

 ست.رائه شده اااشد، است. در پایان نمدار پارتو که شامل اطلاعات بسیار مفیدی در مورد طراحی بال های دو المانی می ب
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