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A B S T R A C T  
 

 

This article deals with the free in-plane vibration analysis of a frame with four arbitrary inclined 

members by differential transform method. Based on four differential equations and sixteen boundary 
and compatibility conditions, the related structural eigenvalue problem will be analytically formulated. 

The frequency parameters and mode shapes of the frame will be calculated for various values of the 

structural properties, such as joint angles, springs' stiffness and flexural rigidity of members. Finally, 
the obtained solution by the proposed method will be verified by authors' finite element program. 
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1. INTRODUCTION1 
 
Frames are important structural systems, which are 

widely used in civil, mechanical and electrical 

engineering [1]. Due to vast applications, the problem of 

vibrating frames has been extensively studied by 

researchers, so far. For instance, Filipich and Laura [1] 

dealt with the analysis of in-plane vibrations of the 

portal frames with end supports, which were elastically 

restrained against rotation and translation. Kounadis and 

Meskouris [2] studied the vibration of a rigid-jointed 

triangular frame, in which its joint mass was 

eccentrically located with respect to its theoretical 

position. In another study, Filipich et al. [3]determined 

the fundamental frequency of vibration of a frame 

elastically restrained against translation and rotation at 

the ends, carrying concentrated masses by using the 

Rayleigh-Ritz method. Filipich et al. [4] dealt with the 

analysis of the first symmetric mode of vibration of a 

generally restrained frame with non-prismatic members 

carrying concentrated masses.  

It is interesting to mention that Chang and Chang [5] 

studied free and forced out-of-plane vibrations of elastic 

plane frames. The structural torsional effect of the out-

of-plane vibration was examined in their investigation. 

                                                           
*Corresponding Author Email: rezaiee@um.ac.ir (M. Rezaiee-Pajand) 

In a comparison of the frequencies of in and out-of-

plane vibrations, it was revealed that the basic 

frequency of a plane frame corresponds to an out-of-

plane vibration mode. Lee [6] presented natural 

frequencies and mode shapes for the in-plane vibration 

of a triangular closed frame by employing Rayleigh-

Ritz method. Later, the natural frequencies and mode 

shapes of various frame structures were calculated by 

Lee and Ng [7]. In order to describe each member of the 

frame and the necessary continuity conditions due to the 

axial rigidity, they employed Rayleigh-Ritz technique 

and a different set of admissible functions. Their 

proposed scheme was illustrated for a portal frame, an 

H-frame and a T-frame. 

Aktas and Moses [8] dealt with the free vibration 

analysis of damaged frame structures. The reduced basis 

approach with a binomial series approximation was 

used to find the first three periods of the frames. 

Oguamanam et al. [9] considered the free vibration of a 

generalized two-member open frame with an arbitrary 

angle between beams and an attachment at the end of 

the second beam. Hamilton's principle was used to 

obtain the structural equations of motion. The frequency 

equation, mode shapes and orthoganality condition were 

employed. Sophianopoulos [10] dealt with the free 

vibration of an L-shaped frame considering the effect of 

joint flexibility. Lin and Ro [11] studied free vibration 
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of planar serial-frame structures. A hybrid analytical/ 

numerical scheme was proposed that permitted the 

efficient evaluation of the problem eigen solutions. 

Some natural frequencies and mode shapes were also 

found. Heppler et al. [12] examined the dynamics of a 

two-member open frame undergoing both in- and out-

of-plane motion. 

Mei [13] obtained a solution for the in-plane 

vibration problem of planar structures. Furthermore, 

Kaveh and Alizadeh Arvanaq [14] proposed a numerical 

method for the free vibration analysis of symmetric 

planar frames. More recently, Rezaiee-Pajand and 

Khajavi [15] presented a finite element formulation for 

the vibration analysis of plane frames. The strain 

gradient notation was utilized to determine the mass and 

stiffness matrices. Both Euler-Bernoulli- and 

Timoshenko- beam elements were investigated in their 

study. Sakar et al. [16] studied the free vibration and 

dynamic stability of multi-span frames by finite element 

method. In another event, Mei [17] used a wave 

vibration approach to analyze the free vibration of 

single-story multi-bay planar frame structures. 

Moreover, Yucel et al. [18] dealt with the coupled axial- 

flexural- torsional vibration of the Timoshenko frames. 

Ratazzi et al. [19] investigated the in-plane free 

vibration of an L-shaped frame with an internal hinge. 

The system was clamped at one end and elastically 

restrained at the other. Failla [20] presented the exact 

solution for frequency response analysis of Euler-

Bernoulli beams and plane frames with an arbitrary 

number of Kelvin-Voigt viscoelastic dampers. Typical 

external and internal dampers were considered, as 

grounded translational, tuned mass, rotational and 

translational dampers for bending and axial vibrations. 

The frequency response functions were obtained using 

generalized functions and Green's functions. Rezaiee-

Pajand et al., [21] dealt with the free vibration of a 

gabled frame with rotational springs. Moreover, 

Rezaiee-Pajand et al., [22]studied free vibration of a 

space frame coupled with a six-degree-of-freedom 

mass-spring. 

It is worth mentioning that there are only limited 

numbers of the solutions available on the frames free 

vibration analyses, which have elastically restrained 

ends and joints [23-25]. Grossi and Albarracin [25] took 

advantage of the calculus of variations to derive a more 

interestingly boundary value problem. They studied the 

dynamical behavior of two- and three-bar frames with 

inclined members, which the structural ends and 

intermediate joints were elastically restrained. Four 

issues were covered in their study. First, a brief 

description of textbooks and papers previously 

published was presented. Second, the variational 

formulation of the problem was given. Third, 

Hamilton's principle was rigorously stated, and the 

corresponding eigenvalue problem was obtained. 

Finally, the separation of variables was utilized for 

determination of the exact frequencies and mode shapes.  

It is well known that there are two basic tactics 

accessible for analyzing the dynamical systems; the 

equilibrium scheme and the energy technique. For 

implementing the equilibrium approach, only the 

knowledge of statics and Newton's law of motion are 

required. In fact, it is a very straightforward and simple 

strategy for the researchers. On the other hand, the 

energy way is based on the calculus of variations, which 

may not be as easy as the previous technique for all 

investigators. However, due to the numerical nature, the 

use of the energy scheme may be advantageous in some 

problems.  

According to the presented brief review, a lot of 

researches have been so far conducted on the free 

vibration of different frames. Due to immense 

applications, there will be more study on this subject in 

the coming future. To authors' best knowledge, the free 

vibration of a frame with four inclined members and 

elastic restraints has not been yet treated. Therefore, the 

main aim of this article is to fill this gap via two 

different methods, namely, differential transform 

method (DTM) and finite element approach. 

Differential transform method is a semi-analytical 

approach which takes advantage of Taylor's series in the 

solution process. Simplicity, high accuracy, 

computational stability and rapid convergence could be 

considered as main properties of DTM.  

In this article, the free vibration of a generalized 

frame is investigated. The studies frame has four 

inclined member. Moreover, the model's generality is 

increased by imposing fifteen springs. The studied 

model is plotted in Figure 1. The equilibrium approach 

will be employed to obtain the eigenvalue problem, by 

including four differential equations and sixteen 

boundary and compatibility conditions. Furthermore, 

authors' finite element program will be utilized to verify 

the outcomes. It should be mentioned that the effect of 

axial deformation is not considered in the analysis. This 

assumption is valid for most frames. However, for 

frames with low moment of inertia and low slenderness 

ratios, the effect of axial deformation may be 

appreciable [26, 27]. 
 

 

2. GOVERNING DIFFERENTIAL EQUATIONS 
 

For the generalized frame of Figure 1, the following 

differential equation of motion, governing the free 

bending vibration of each slender uniform member 

according to Euler-Bernoulli beam theory, can be 

written [28]: 

4
4

4
0 1,2,3,4i

i i

d u
u i

dx
    (1) 
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In the last relationship, ( , )iu x t  is the function of the 

transverse deformation of the ith member, and 
i  is the 

frequency parameter of the ith beam, which can be 

defined as: 
2

4 1,2,3,4i i
i

i i

A
i

E I

 
    (2) 

In this equation, 
i iE I , 

i  and 
iA  indicate the flexural 

stiffness, density and cross-sectional area of the ith 

beam, respectively. Besides,   is the circular frequency 

of the frame. It has the next relationship with 
i : 

2 1,2,3,4i i
i

i i

E I
i

A
 


   (3) 

In the next section, the pertinent boundary and 

compatibility conditions of the problem will be 

prescribed. 
 

 

3. BOUNDARY CONDITIONS 
 

To find the solution, the related boundary and 

compatibility conditions of the structure should be 

specified. In general, the boundary conditions of a 

mechanical problem at a point are categorized as 

essential or natural, in which the displacements or the 

forces are known at that point, respectively. In this 

problem, the sixteen boundary and compatibility 

conditions are as follows: 

1. Compatibility conditions of slope at each intersecting 

joint have the next shapes: 

1 1 2

3 3 4

2 2 4 4

( ) (0)

( ) (0)

( ) ( )

u L u

u L u

u L u L

 

 

  

 (4) 

2. Compatibility of bending moment at the intersecting 

joints and end supports have the following form: 

1 1

2 1 2

3 3

4 3 4

5 2 4

0

0

0

0

0

R

R

R

R

R

M M

M M M

M M

M M M

M M M

 

  

 

  

   

 (5) 

 

 
Figure 1. The generalized frame 

The subsequent notations are utilized: 

5 5 2 2

(0)

( )

(0)

( )

i i i i

i i i i i

Ri Ri i

R R

M E I u

M E I u L

M K u

M K u L



 





 (6) 

with 1,2,3,4i  . 

It should be added that the remaining eight conditions 

are more complicated. Therefore, great emphasis is 

required for finding them. Each joint has two degrees of 

freedom, i.e., ih  and iv . By defining the projections of 

ih  and iv  as 
ih  and 

iv  on the horizontal and vertical 

axes, the following equations for each joint can be 

established: 

cos sin
1,3

sin cos

i i i i i

i i i i i

h h v
i

v h v

 

 

  


  
 (7) 

cos sin
2,4

sin cos

j j j j j

j j j j j

h h v
j

v h v

 

 

  


  

 (8) 

5 4 4 4 4

5 4 4 4 4

ˆcos sin

ˆsin cos

h h v

v h v

 

 

   

  

 (9) 

Employing Figure 2, the succeeding relations exist: 

1 2 3

4 1 2

3 4 4

AA'' BB'' CC''

DD'' A''A ' B''B'

ˆC''C' D''D' G'''G '

h h h

h v v

v v v

  

  

  

 (10) 

After some mathematical calculations, it can be shown 

that the following relations hold: 

 

 

 

2 1

4 3

4 2

1
B''B' cos

sin

1
D''D' cos

sin

1
G'''G ' cos

sin

h h

h h

h h










 

 

 

 
(11) 

In the last equalities, 
1 2    , 

3 4     and 

2 4    . 

 

 

 
Figure 2. Components of frame deformation 
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In order to find 
1 4h h , the next equations are written 

for the functions 1 4u u : 

1 1(0)u v  (12a) 

 1 1 2 1

1
( ) cos

sin
u L h h 


    (12b) 

 2 2 1

1
(0) cos

sin
u h h


    (12c) 

 2 2 4 2

1
( ) cos

sin
u L h h 


   (12d) 

3 3(0)u v  (12e) 

 3 3 4 3

1
( ) cos

sin
u L h h 


    (12f) 

 4 4 3

1
(0) cos

sin
u h h


    (12g) 

 4 4 2 4

1
( ) cos

sin
u L h h 


   (12h) 

Solving Equations (12b) and (12c) for 1h  and 2h , 

equations (12d) and (12h) for 2h  and 4h  and Equations 

(12f) and (12g) for 3h  and 4h , will give the coming 

results: 

2 1 1
1

(0) ( )cos

sin

u u L
h






  (13) 

2 1 1
2

(0)cos ( )

sin

u u L
h






  (14) 

4 4 2
2

( ) (0)cos

sin

u L u
h






  (15) 

2 2 4 4
4

( ) ( )cos

sin

u L u L
h






  (16) 

4 3 3
3

(0) ( )cos

sin

u u L
h






  (17) 

4 3 3
4

(0)cos ( )

sin

u u L
h






  (18) 

Equating the two expressions, obtained for 
2h  and 

4h , 

yields two conditions: 

2 1 1 4 4 2(0)cos ( ) ( ) (0)cos

sin sin

u u L u L u 

 

 
  (19) 

4 3 32 2 4 4 (0)cos ( )( ) ( )cos

sin sin

u u Lu L u L 

 


  (20) 

In order to find the remaining six conditions, the 

equilibrium of shear and axial forces in each member, as 

well as two end supports, should be considered. As it is 

shown in Figure 3, the shear forces are denoted by 
iV  

and the axial forces are indicated by 
iN . Moreover, 

springs' forces are denoted by 
HiF  and 

ViF . 

The equilibrium of shear and axial forces at the left 

support gives the following relationships: 

1 1 1 1 1

1 1 1 1 1

cos sin 0

sin cos 0

H

V

N V F

N V F

 

 

  


  

 (21) 

where  

1 1 1

1 1 1

H H

V V

F K h

F K v

 


 
 (22) 

Solving Equation (21) for 
1N  and 

1V  gives the next 

equalities: 

1 1 1 1 1 1 1cos sinH VN K h K v      (23) 

and 

1 1 1 1 1 1 1sin cosH VV K h K v      (24) 

On the other hand, using the definition of the shear will 

lead to 
1 1 1 1(0)V E I u . The two values obtained for 

1V  

must be equal. Therefore, the eleventh condition has the 

subsequent appearance: 

1 1 1 1 1 1 1 1 1sin cos (0)H VK h K v E I u       (25) 

Similarly, for the other end, the following relations 

hold: 

3 3 3 1 1 3 3 3 3sin cos (0)H VK h K v E I u       (26) 

and  

3 3 3 3 3 3 3cos sinH VN K h K v      (27) 

Equation (26) is also a condition. At this stage, the 

equilibrium of shear and axial forces at the intersecting 

joints is considered. 

 

 
Figure 3. The equilibrium of forces in the frame 
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As a result, the succeeding systems of equations for 

nodes 2 and 4 are found: 

2 2 2 2 1 1 1 1 2

2 2 2 2 1 1 1 1 2

cos sin cos sin 0

sin cos sin cos 0

H

V

N V N V F

N V N V F

   

   

     


     

 (28) 

4 4 4 4 3 3 3 3 4

4 4 4 4 3 3 3 3 4

cos sin cos sin 0

sin cos sin cos 0

H

V

N V N V F

N V N V F

   

   

     


     

 (29) 

in which 

i i i iN N m h    (30) 

or 

2

i i i i i iN N A L h     (31) 

and 

2 2 2

2 2 2

4 4 4

4 4 4

1 1 1 1 1

3 3 3 3 3

( )

( )

H H

V V

H H

V V

F K h

F K v

F K h

F K v

V E I u L

V E I u L

 


 
  


 
  


 

 (32) 

Solving Equations (27) and (28), for 
2N , 

2V , 
4N  and 

4V , and substituting the values of 
2 2 2 2 (0)V E I u  and 

4 4 4 4 (0)V E I u , give the thirteenth and fourteenth 

conditions as follows: 

 

 

2 2 2 1 1 2 1 2

1 1 2 1 2

2 2 2 2 2 2

(0) cos sin sin cos

sin sin cos cos

sin cosH V

E I u N

V

K h K v

   

   

 

  

 

   

 (33) 

 

 

4 4 4 3 3 4 3 4

3 3 4 3 4

4 4 4 4 4 4

(0) cos sin sin cos

sin sin cos cos

sin cosH V

E I u N

V

K h K v

   

   

 

  

 

   

 (34) 

Finally, the equilibrium of shear and axial forces at joint 

5 results in the fifteenth and sixteenth conditions: 

2 2 2 2 4 4 4 4 5

2 2 2 2 4 4 4 4 5

cos sin cos sin 0

sin cos sin cos 0

H

V

N V N V F

N V N V F

   

   

       


       

 (35) 

where 

5 5 5

5 5 5

2 2 2 2 2

4 4 4 4 4

( )

( )

H H

V V

F K h

F K v

V E I u L

V E I u L

 


 


 
  

 (36) 

It is interesting to note that all the forces in Equation 

(35) are known. In fact, these two equations are similar 

to two conditions. Therefore, the sixteen boundary and 

compatibility conditions of the problem are found. It 

may be useful to summarize all of these conditions in 

the following lines, once again. 

4. SOLUTION BY DIFFERENTIAL TRANSFORM 
 
By definition, the differential transform of function 

( )f x  around point 0x  is given by [21, 29]: 

0

1 ( )
( )

!

k

k

x x

d f x
F k

k d x


 
  

 

 (37) 

in which the original function is demonstrated by ( )f x , 

and the transformed one is denoted by ( )F k . The 

inverse transform is defined as: 

0

0

( ) ( ) ( )k

k

f x x x F k




   (38) 

Combining Equations (37) and (38) results in: 

0

0

0

( ) ( )
( )

!

k k

k
k x x

x x d f x
f x

k d x



 

 
  

 
  (39) 

Equation (39) may be written as: 

0

0

0

( ) ( )
( )

!

k kN

k
k x x

x x d f x
f x

k d x 

 
  

 
  (40) 

where N  is selected such that the natural frequencies of 

the system converge.  

Next, the differential transform should be applied on 

the governing differential equations and boundary and 

compatibility conditions of the problem. It is customary 

to nondimensionalize the differential equations and 

boundary conditions for implementing DTM. 

Introducing /i ix L  , Equation (1) becomes [21]: 

4
4

4
0 1,2,3,4i

i i

i

d u
u i

d



    (41) 

in which i  is the dimensionless frequency parameter 

of each member: 

2 4
4 1,2,3,4i i i

i

i i

A L
i

E I

 
    (42) 

Furthermore, the boundary and compatibility conditions 

take new shapes by using the introduction of /i ix L  . 

Applying the differential transform on Equation (41), 

the differential transformed form of the governing 

differential equations is found as: 

4 ( )
( 4)

( 1)( 2)( 3)( 4)

i i
i

U K
U k

k k k k


 

   
 (43) 

in which 
iU  is the differential transformed of iu . 

Performing the differential transform to the boundary 

and compatibility conditions of the problem, the 

transformed conditions are found which are not 

presented here for the sake of brevity. 
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Substituting ( )iU k  into these transformed boundary and 

compatibility conditions leads to a system of algebraic 

equations. Setting the determinant of the coefficient 

matrix equal to zero gives the frequency equation of the 

frame. Finally, solving the resulting frequency equation 

yields the natural frequencies of the generalized frame 

under study. 

In another way, a finite element model for the 

system is constructed. According to the numerical 

experiences, the results found by the finite element 

method are in excellent agreement with the values 

obtained by DTM. This is a clear confirmation for the 

accuracy of authors' formulations.  

 

 

5. NUMERICAL RESULTS 
 
The frequency parameters and mode shapes of the frame 

are calculated for different values of the structural 

parameters in this section. The dimensionless frequency 

parameters of the structure, i.e., 
1 1L , corresponding to 

each mode will be shown in the related figure. 

Example 1 

As a first example, the portal frame with clamped (c-c) 

ends and simply-supported (ss-ss) ends are considered. 

Figure 4 shows this structure with clamped ends. The 

below properties of the frame are utilized: 

4 4 3 3 2 2 1 1

4 4 3 3 2 2 1 1

4 3 2 1

1 2 3 4

1 1 3 3

2 2 2 4 4 4 5 5 5

1 3

1 3

90, 0, 90, 0

0

clamped ends
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H V H V

R H V R H V R H V

R R
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E I E I E I E I

A A A A

L L L L

K K K K

K K K K K K K K K
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   

   

  

  

  

   

   

        

 


 

 

(44) 

Table 1 presents the first four dimensionless frequency 

parameters of the frames by DTM and FEM. Moreover, 

the results proposed by Filipich and Laura [1] are given 

in this table. Comparing the proposed values by DTM 

and FEM with Filipich and Laura [1] shows the 

accuracy of the solutions. The rapid convergence of 

DTM is observed. 

Furthermore, Table 1 suggests that decreasing the 

 

 
Figure 4. The structure under study in example 1 

stiffness of the end rotational springs, i.e., 
1RK  and 

3RK , 

from infinity to zero, which are associated to clamped 

ends and simply- supported ends, the dimensionless 

frequency parameters decrease. This is due to a decrease 

in stiffness of the structure. It is informative to point out 

that the natural frequencies of many frames, including 

portal frame are available in Chang [25]. This work 

considered the axial deformation. He showed that the 

axial deformation can be neglected. It is worthwhile to 

compare the natural frequencies of a portal frame with 

clamped ends obtained in this article and proposed by 

the present authors. Table 2 shows the first eight  s. 

The slender ratio of all members, i.e., 2( / )iAL I , is 

considered equal to 100 in Chang [25]. From Table 2, it 

is evident that axial deformation can be surely 

neglected. It is observed that maximum error percentage 

occurs in the eighth mode. This is just 1.45% which can 

be definitely neglected in frame analysis. It should be 

mentioned that for frame members with a slender ratio 

greater than 40, which happens for most frame 

structures, the axial deformation can be neglected. It is 

interesting to mention that two famous methods, which 

are widely used for frame analyses, are moment 

distribution, and slope deflection schemes. Both lead to 

the exact solutions, while neglecting shear and axial 

deformations. This is because they are the minor 

structural effects. It is worth mentioning that the fourth 

mode is missing in Chang [25]. 

To investigate the versatile portal frame further, a 

more complicated portal frame is analyzed. It is 

assumed that the symmetric spring conditions exist, i.e., 

1 2 3 4 1H H H HK K K K T    ,
1 2 3 4 2V V V VK K K K T    and 

1 2 3 4R R R RK K K K R    .The values of the first four 

dimensionless frequency parameters obtained by DTM 

and FEM are inserted in Table 3 for various amounts of 

1T , 
2T  and R . This table clearly indicates the fast 

convergence of DTM for this example. Furthermore, 

this table is advantageous for analyzing the effect of 

horizontal, vertical and rotational springs on the natural 

frequencies of the frame. From Table 3, it is observed 

that increasing the stiffness of horizontal springs, i.e., 
1T

, has the most influence on dimensionless frequency 

parameters; next R  and then 
2T . On the other hand, for 

the second mode, this order is 
2T , 

1T  and R . Finally, in 

the higher modes, i.e., the third and fourth modes, 
1T  is 

more influential. In these modes, 
2T  has more effect on 

natural frequencies than R . Generally speaking, these 

outcomes clearly indicate that the natural frequencies of 

the frame are most sensitive to horizontal springs. On 

the contrary, the rotational springs have less effect on 

the natural frequencies of the portal frame. Figure 5 

demonstrates the first four mode shapes of the frame for 

1 2 100T T R   . 
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TABLE 1.The values of the first four dimensionless frequency parameters for portal frames with clamped and simply-supported 

ends 

support Mode # 
DTM FEM 

[1] 
N=10 N=15 N=20 NE=16 NE=32 NE=64 

c-c 

1 1.7941 1.7901 1.7901 1.7901 1.7901 1.7902 1.7901 

2 3.6804 3.5555 3.5563 3.5566 3.5563 3.5563 3.5564 

3  4.5547 4.5418 4.5838 3.5418 4.5418 4.5419 

4  4.7168 4.7301 4.7322 4.7302 4.7301  

ss-ss 

1 1.2095 1.2095 1.2095 1.2095 1.2095 1.2095 1.2095 

2 3.1196 3.1413 3.1415 3.1417 3.1415 3.1416 3.1416 

3  3.8565 3.8542 3.8551 3.8543 3.8543 3.8543 

4  4.2979 4.2976 4.2984 4.2977 4.2975  

 

 
TABLE 2. The values of the first eight dimensionless frequency parameters for portal frames with clamped ends 

 Mode # 

 1 2 3 4 5 6 7 8 

Present study 1.790 3.556 4.542 4.7300 6.723 7.430 7.992 9.849 

Chang [25] 1.790 3.553 4.541 - 6.693 7.413 7.956 9.716 

Error Percentage 0 0.08% 0.02% - 0.44% 0.22% 0.45% 1.35% 

 

 

 

 

 

 
Figure 5. The first four frequency parameters and mode 

shapes of frame studied in example 1 

Example 2 

This example is devoted to a gabled frame with clamped 

ends and simply-supported ends. The properties of the 

frame can be expressed as: 
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

 

 

(45) 

Presented in Table 4 are the first four dimensionless 

frequency parameters of the studied system with the 

clamped ends and simply-supported ends. Once again, it 

can be seen from Table 4 that the values of the gabled 

frame with simply-supported ends are smaller than 

those of the gabled frame with clamped ends. 

Furthermore, this difference is more considerable in the 

fundamental mode. 

Example 3 

A two-member frame with clamped ends will be studied 

in this section. The properties of the system have the 

next appearance: 

 
(46) 
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TABLE 3. The values of the first four dimensionless 

frequency parameters for portal frames with different amounts 

of 1T , 2T  and R  

Mode 

# 1T  2T  R  

DTM 
FEM 

N=10 N=15 N=20 

1 

10 10 10 1.8773 1.8764 1.8764 1.8764 

100 10 10 1.9058 1.9058 1.9058 1.9059 

10 100 10 1.8773 1.8764 1.8764 1.8765 

10 10 100 1.8874 1.8863 1.8863 1.8863 

100 100 100 3.2887 3.2047 3.2053 3.2054 

2 

10 10 10 1.9056 1.9056 1.9056 1.9056 

100 10 10 2.3374 2.3375 2.3375 2.3376 

10 100 10 2.5923 2.5959 2.5959 2.5959 

10 10 100 1.9075 1.9075 1.9075 1.9076 

100 100 100 3.3308 3.2996 3.3296 3.3296 

3 

10 10 10 2.3212 2.3212 2.3212 2.3212 

100 10 10 3.1945 3.1513 3.1517 3.1518 

10 100 10 2.9191 2.8887 2.8886 2.8887 

10 10 100 2.4218 2.4219 2.4219 2.4219 

100 100 100 3.6563 3.6566 3.6566 3.6567 

4 

10 10 10 2.5960 2.5995 2.5996 2.5996 

100 10 10 3.6364 3.6174 3.6181 3.6181 

10 100 10 3.2988 3.2972 3.2972 3.2973 

10 10 100 2.7086 2.7134 2.7134 2.7134 

100 100 100 3.8530 3.8191 3.8199 3.8200 

 

 
TABLE 4. The values of the first four dimensionless 

frequency parameters for a gabled frame with clamped and 

simply-supported ends 

support Mode 1 Mode 2 Mode 3 Mode 4 

c-c 1.14374 1.49562 2.03554 2.22608 

ss-ss 0.77266 1.26502 1.90396 2.2129 

 

 

Figure 6 presents the first four mode shapes of the 

frame. In order to investigate the effect of flexural 

rigidity of members, this frame with a far stiffer 

member than the other is considered. The properties of 

the system for this case are as follows: 
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4 3 2 1

1 2 3 4

1 1 1 3 3 3

2 2 2 4 4 4 5 5 5

/ 10000, / 10000, / 1

/ 100, / 100, / 1

30, 30, 30, 30

0

R H V R H V

R H V R H V R H V

E I E I E I E I E I E I

A A A A A A

L L L L

K K K K K K

K K K K K K K K K

     

   

  

  

  

   

     

        

 
(47) 

The first four mode shapes of the frame are plotted in 

Figure 7.  

 

 

 

 
Figure 6. The first four frequency parameters and mode 

shapes of frame studied in example 3 with properties 

expressed in Equation (46) 
 

 

 

 

 

 
Figure 7. The first four frequency parameters and mode 

shapes of frame studied in example 3 with properties 

expressed in Equation (47) 
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It is clear that the stiffer member is just excited in the 

third mode, which may be due to the high stiffness of 

the member.  

Example 4 

In this example, a general frame with un-symmetric 

geometry is studied. The properties of the frame are 

given in the following equations: 

 
(48) 

The first four mode shapes of the system are plotted in 

Figure 8. 

 

 

 

 

 
Figure 8. The first four frequency parameters and mode 

shapes of frame studied in example 4 

 
 
6. CONCLUSIONS 

 

The aim of this paper was to derive the frequency 

parameters and mode shapes of a generally restrained 

frame with four inclined members by using DTM. The 

intersecting joints of the system were also elastically 

restrained against rotation, horizontal and vertical 

translations. The frequency parameters and mode shapes 

were calculated for a wide range of the structural 

parameters, such as joint angles, springs' stiffness, 

length and flexural stiffness of the members. In order to 

verify the values obtained by the precise formulation, a 

finite element program was developed by the authors. 

All numerical experiences clearly demonstrated that the 

values found by the FEM method were very close to 

those of obtained by DTM. These actions confirmed 

that the suggested formulations were all accurate. In 

addition to the mention issues, the free vibration of the 

portal frame was also investigated, as a special case. 
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چكيده
 

 

کار تبدیل دیفرانسیلی جویی از راهی یک قاب با چهار عضو کج با بهرهاین مقاله به واکاوی نوسان آزاد درون صفحه

ی وابسته به شکل ی مقدار ویژهی دیفرانسیل و شانزده شرط مرزی و سازگاری، مسألهی چهار معادلهپردازد. بر پایهمی

های های حالت )مود( سازه برای مقدارهای گوناگون مشخصههای بسامدی و شکلسازی خواهد شد. عاملتحلیلی رابطه

های پیوند، سختی فنرها و سفتی خمشی عضوها حساب خواهد شد. سرانجام، پاسخ پیشنهادی با ی گرهسازه، مانند زاویه

 د شد.خواه ی جزءهای محدود نویسندگان راستی آزماییجواب برنامه

doi: 10.5829/ije.2018.31.04a.04 

 

  


