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In this paper, an atomistic based finite element model is developed to investigate the influence of
topological defects on mechanical properties of graphene. In general, plane stiffness matrix of the
hexagonal network structure of graphene is found. The effective elastic modulus of a carbon ring is
determined from the equivalence of molecular potential energy related to stretch and angular
deformation. A hexagonal carbon ring as a unit cell of the graphene sheet is modeled by four-node
elements. Applying three-node triangular elements, Stone-Wales (SW) defect which is an important
topological defect is also modeled. In this method, both pristine structure of graphene and graphene
with SW defect are considered and to get more real structure, an atomistic model of a small part of
graphite sheet around the defect site, is modeled in Gaussian software and new arrangement around
SW defect are obtained by minimizing its energy. Young’s modulus, shear modulus and Poisson’s
ratio of the pristine single-layered graphene sheet (SLGS) and the effect of topological defects on the
elastic properties of SLGS were examined. The numerical results from this new model showed good
agreement with data available in literature.
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NOMENCLATURE

K Stiffness u Potential constant of Lennard-Jones
J Jacobian operator fo Equilibrium distance

E Elasticity matrix rij Distance between interacting atoms i and j
B Strain-displacement matrix, U, Potential energy for stretching

d diameter Uy Potential energy for bending

t Thickness U, Potential energy for torsion

E Modulus of elasticity Kr Bond stretching constant

A Cross-sectional area Ko Bond bending constant

U Modified Morse potential energy k. Bond torsional constant

De Morse potential parameter | Moment of inertia

ks Morse potential parameter Greek Symbols

ko Morse potential parameter v Poisson's ratio

Uvaw Lennard—Jones ‘612" potential ) Morse potential parameter

1. INTRODUCTION

There has been great research on how to model
graphene, using molecular mechanics (MM) or

The remarkable properties and applications of carbon
materials such as nanotubes and graphene explain their
exclusive scientific and importance and have motivated
great research efforts in recent years [1]. Graphene was
under intensive research since it was discovery in 2004.

*Corresponding Author’s Email:mtahani@um.ac.ir (M. Tahani)

molecular dynamics (MD). Graphene sheets showed
several desirable physical properties, such as small size,
low density, high hardness, high strength and excellent
electrical and thermal properties [2].

Graphene sheets are often used in polymeric
materials to improve mechanical properties and gain
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physical functionalities such as electrical and thermal
conductivities [3]. Using these reinforcing agents to
prepare strong nanocomposites with admirable
inestimable mechanical properties needs to come to
understanding of the mechanical behavior of such
nanostructures. However, it is not easy to predict
directly the mechanical properties of nanostructures
because of their anisotropic properties, morphology and
existence of defects. Thus, it is desirable to carry out
analytical or numerical analyzes to understand how
graphene affect the mechanical behavior of composites
and how the morphology and topological defects
decrease idealistic physical properties.

Many researchers on SLGS have focused on their
material properties [4-9]. Most studies assumed
isotropic material properties for SLGS, except in some
literature [9]. However, high variability of Young's
modulus and Poisson's ratio, as well as the effective
thickness have been reported in the literature [10-17]. A
wide scattering of mechanical properties of SLGS can
be largely associated with the misgiving of its thickness
and lack of attention to topological defects. The
thickness of one graphene layer is assumed to be 0.34
nm in most published research papers [5, 6, 8, 9]. The
0.34 nm value provides in-plane Young’s modulus of
about 1 TPa [10]. During this study, we believed that
the mechanical behavior of SLGS was anisotropic and
also chirality- and size-dependent. An isotropic
mechanical properties for a sheet of graphene along
different load directions are attributed to the hexagonal
structure of the graphene [11]. Because of the difference
of bond’s angle in direction of armchair and zigzag in
the hexagonal structure of a graphite sheet, it shows
orthotropic mechanical properties. Topological defects
like SW defect are created during the synthesis and after
purification, so they changed the mechanical behavior
of graphene sheets. Therefore, all material properties of
a pristine SLGS and SLGS with SW defect need to be
properly estimated. It is difficult to measure directly the
mechanical properties of SLGS in the experiment,
because of problems in the tests at the nanoscale.

Recently, continuum-based models for SLGS have
been developed using the harmonic energy potential.
Effects of various defects on the mechanical behavior of
graphene sheets were studied using molecular methods
by Tserpes et al. [18]. Molecular mechanics/dynamics
and ab-initio methods are suitable for checking defects
but they were limited in scale and computationally
expensive. Continuum models reduce computational
cost significantly, while continuum mechanics models
did not develop well to predict the effects of defects on
mechanical properties of CNT and SLGS.

Researches ~ comprising the  SW  defects
accomplished by Tserpes et al. [19, 20] using the finite
element method (FEM) do not contain the deformation
of the original nanotube structure around the nucleation

site, which may not be true in generalas atoms rearrange
to minimize their energy. They applied finite element
method to analyze the nanotube structure and the
modified Morse interatomic potential to simulate the
non-linear force field of the C—C bonds. Xiao et al. [2,
21] used the modified Morse potential to investigate the
mechanical response of defective carbon nanotubes and
graphene sheets. An interaction mechanics approach,
the SW defect formation was incorporated into their
model. Consequently, they studied the effect and
interaction of multiple defects on an SWCNT.

We propose a new continuum-atomistic model to
study the effect of SW (5-7-7-5) defect on elastic
properties of SLGS. The deformations caused by the
formation of the SW defect is considered. The hexagons
far away from the defect are modeled by an atomistic
based FEM established from six four-node elements.
The positions of atoms near the defect are determined
by atomistic calculations coupled with the atomistic-
based continuum model. It was found that SLGS show
anisotropic behavior and they were really affected by
topological defects.

2. SIMULATION METHOD

A single layer of the lattice structure, as shown in
Figure 1, can be thought of as an unraveled single wall
carbon nanotube (CNT).

An SLGS can be considered as a thin homogeneous
layer which is made-up of covalently bonded carbon
atoms and is organized in identical hexagonal carbon
rings which are bonded to each other forming a lattice
structure. The discrete elements of the graphene
structure provide convenience for analysis by the finite
element method (see Figure 2). It is assumed that SLGS
is often under in-plane (2D) stress because the in-plane
dimensions of the sheet are enough large compared with
the graphene sheet’s effective thickness.

2. 1. Stiffness Matrix of SLGS A displacement-based
finite element approach for modeling the graphene
structure and deriving the stiffness matrix of hexagonal
carbon ring is presented. The area covered by carbon
ring could be broken down into isosceles trapezoidal
elements allowing the structure to be mapped to a
square element in r-s coordinate as shown in Figure 3
[22].

Figure 1. Rolling-up a graphene sheet to forma CNT
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Figure 2. An unraveled partial lattice structure of graphene
sheet and the equilateral hexagons or carbon rings.

Armchair

1

(-1,1)B A1)

( 0(' Fr o 1,-hC F(l,-1)
-a, 0} a, 0)

Figure 3. An isosceles trapezoid from the hexagonal carbon
ring in x-y space, with its mapped structure in an alternate r-s
coordinates.

Using strain-displacement relations from elasticity, the
stiffness matrix of six possible trapezoids located in
hexagon ABCDEF marked as ABCF, BCDA, CDEB,
DEFC, EFAD and FABE (see Figure 4) is derived.

For example, the stiffness of trapezoid Kagcris found
through the displacement based finite element analysis
by the following equation:

+1+1
K ascr = _[ _[ BTEBdet (3 )tdrds o
-1-1

where,J is the Jacobian operator, E is the elasticity
matrix which is derived directly from the stress-strain
relations and Hook’s law, B is the strain-displacement
matrix, BT is the transpose of the strain-displacement
matrix, r-s are coordinates which are shown in Figure 3
and t is the thickness of the element. The stiffness of
other trapezoids is obtained by applying correct rotation
matriX. These six distinct trapezoids of the carbon ring
cover the hexagon’s area three times. Thus, the (12x12)
global stiffness matrix of the hexagon ABCDEF is one-
third of the sum of the six (8x8) local stiffness matrix of
the trapezoidal components.

D E
Figure 4. The hexagon ABCDEF withthree equally links
between CF, BE and AD.

2. 2. Continuum-Atomistic Model for Stone-Wales
Defect A graphene sheet is a hexagonal lattice of
carbon atoms which hexagonal elements have expanded
in a planar shape and if rolled in cylindrical shell carbon
nanotube is formed.Thus, a carbon nanotube with a
large diameter and high aspect ratio act locally such as
graphene. Therefore, if we ignore the effect of curvature
for the CNTs, they will be comparable [23].

It is proved that defects can growth at purification or
during processing like chemical functionalization [24].
Research has shown that even a few defects in the
atomic lattice will result in some degradation of their
mechanical properties [24, 25]. Whereas theoretical
calculations are typically performed on perfect
structures, it is nearly impossible to obtain perfect
SLGS samples. Ebbesen et al. [26] classified the defects
into three groups: (a) topological defects, (b)
rehybridization defects and (c) incomplete bonding.

The SW defect is one of the most important
topological defects in CNTs and graphene sheets. Such
defect is produced by 90° rotation of a C—C bond
(Figures 5(a) and (b)) [12, 24, 25]. Four hexagonal cells
comprising these atoms transform into one pair of
pentagonal cells and another pair of heptagonal cells.
Although energy is needed to create the SW defect but
the SLGS with SW defect is stable. This means that the
transition to the perfect structure does not occur
spontaneously by relaxation. An isolated SW defect
affects the geometry of the SLGS only locally in its
neighborhood. This means that the induced perturbation
is not enough strong to cause a global instability.

(b)
Figure 5. Schematic of the SW formation in the hexagonal
lattice of SLGS. (a) Pristine lattice and (b) SW-defected lattice
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However, the defect does have a significant
degrading influence on the mechanicalproperties of the
graphene sheets [27].

In this paper, the effect of 5-7-7-5 defects on
Young’s modulus, shear modulus, and Poisson’s ratio of
graphene sheet of various sizes is considered. The
rotated bond before and after the transformation is
shown in Figure 5(a) and (b), respectively.

The atoms can be divided into two groups, those
atoms around the defect and those atoms away from the
defect. Atoms which are away from defect undergo
relatively uniform deformation since the effect of bond
rotation has no effect on them. Therefore, the positions
of these atoms (far away from the defect) can be
determined regularly from the hexagonal structure of
pristine graphene. The structure of a perfect plate and its
SW defect is optimized by Gaussian quantum package
version 03 [28] to find the exact position of atoms after
producing this defect. The model contains 102 atoms
with 502 electrons. The degree of freedom for each
atom is three and there is no constraint on the atoms
(Figure 5(a) and (b)). Such an approach involves both
continuum and atomistic calculations and is therefore
called a continuum-atomistic model [29].

Similar to the hexagonal element, the stiffness
matrix of heptagonal and pentagonal elements are
obtained based on the finite element approach. As
mentioned before the area of SW defect covered by four
5-7-7-5 rings that could be broken down into isosceles
trapezoidal, rectangular and triangular elements as
shown in Figure 6. The trapezoidal, rectangular and
triangular elements located in heptagon and pentagon
mark as OCGP, OPJN, CDFG, MNJK, DEF, MKL for
heptagonal elements, and ABCN, HIJG and NCO, GJP
for pentagonal elements (see Figure 6(b)).

(b)
Figure 6. (a) The hexagons that are broken down into six
trapezoid elements. (b) 5-7-7-5 rings that are broken down
into isosceles trapezoidal, rectangular and triangular elements

The stiffness K of triangular elementsis found
through the formal approach of the FEM from Equation
(1) as follows:

Et T
K]= B'EB
(K] 44Q1-v?)
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The pair (Xi, y;) is the triangular node’s coordinate. The
Latin indices such as i, j and k vary from 1 to 3, E is the
modulus of elasticity of the material, t is constant
thickness, A is uniform cross-sectional area and v is
Poisson’s ratio. The stiffness of other isosceles
trapezoidal and rectangular elements are obtained by
applying Equation (1).

3. ANALYTICAL
PROPERTIES

MODEL TO DETERMINE

As it is seen from Equations (1) and (2), the stiffness
matrix of an element is obtained by integrating certain
properties, but in fact, there are two unknowns as elastic
and geometric parameters that should be determined; E
and t. Thus, two parameters E and t are still unknown
for all three types of elements hexagonal, heptagonal
and pentagonal. As mentioned earlier, six atoms are
arranged in identical hexagonal carbon rings which are
bonded together by six covalent bonds and six possible
van der Waals (vdW) non-bonding interactions. For
heptagonal and pentagonal elements this occurs for 7 or
5 atoms, respectively (see Figure 6).

In this analytical model, we take into account all
bonded and non-bonded interactions for the elements.
The two other unknowns are determined by equating
energy of the considered carbon ring with those of
hexagon ABCDEF in Figure 6 which has three equally
weighted links between CF, BE and AD. Similarly
equating energy is applied to determine Young’s
modulus and thickness for the heptagonal and
pentagonal elements. For equating strain energy, carbon
ring may be subjected to the predefined deformations
along two perpendicular armchair and zigzag directions
(see Figure 2), which are standard tests [3]. The tensile
tests in directions 1 and 2 and shear test are applied to
determine equivalent E and t for hexagonal, heptagonal
and pentagonal elements (see Figure 7).

In this paper, we use the modified Morse potential
for bonded interactions and Lennard—Jones ‘‘6—12’
potential for non-bonded vdW interactions [19, 20].
According to the modified Morse potential, the potential
energy of the C-C bond is expressed as:
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U =D, [(1— e*"‘(A”)2 —1} + %kH(Aﬁ)z[l +ks(AO)Y] A3)

where

ANO=60-0,, Ar=r—r,,

ks =0.754rad™, 5=2.625x10"m™,

6, = 2.094rad, k) =0.9x10® Nm/rad?,
D, =6.03105x1072°Nnm, r, =0.139nm

4)

and the general Lennard—Jones ‘‘6—12°" potential is
commonly expressed as:

BEGI

Y 12 6
vgw — kvdW :4% 156[&] _42[';0]
dr;i K fij fii
ij ij 1 ]

where u is the depth, ro indicates the equilibrium
distance of two atoms that make the potential equal to
zero, rijis the distance between interacting atoms i and j.
In this study, we use the potential constants

u =3.825x10"*nNnm and r, =0.14nm .

Some potential functions have been suggested to
describe the interatomic covalent bond of carbon atoms

as follows [30, 31]:
1 1
Ur =2ke (0%, Ug == ks (A0)%,

1
U, =U,+U,, :EkT(Aqﬁ)Z

Uygw =4

®)

(6)

where, U, Uy, U, and U, are energies that are related

to the bond stretching, angle variation, dihedral and out-
of-plane torsion, respectively. Also, k, kg and k. are the
bond stretching, bond angle bending and torsional
resistance force constants, respectively; while Ar, A6
and A¢ represent bond stretching increment and bond
angle and twisting bond angle variation, respectively.
Therefore, in small strains and for in-plane tension and
shear loading here, we can simplify the potential
energies and just the bond stretching and angle variation
are applied.These constants were obtained from
modified Morse potential for C-C bonds [32].

We assume a circular section for each bond with

diameter d and set A =zd?/4, | =zd*/64 . By equating
atomistic potential energy from Equations (3) and (5)
with strain energy of interactions in a continuum from
Equation (6), based on the standard test we obtain d and
E, where d is the diameter of each bond or thickness t of
hexagonal, heptagonal or pentagonal elements (see
Figure 7).

4. RESULTS AND DISCUSSIONS

The elastic properties of pristine and defective SLGS
are obtained using the new continuum-atomistic model.
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Figure 7.1llustration of the hexagonal carbon ring under (a)
in-plane tension and (b) shear loading

Figure 8 shows graphene sheet with a constant width
(w) and different lengths (/). The finite hexagonal
element has 12 degrees of freedom which is used to
simulate the SLGS and a total number of elements that
we use is about 140-300 hexagons (see Figure 8).

Compared to other finite element approaches the
computational cost of the present method is reduced and
this is done by a written finite element code. Tserpes
and Papanikos [20] used the 3D elastic beam elements
for modeling the C—C bonds and at least the number of
elements that they were used was six times higher.
Figures 9-11 display variations of the elastic properties
of defect-free and defective SLGS that are obtained by
this new continuum-atomistic model against their
length. These results confirm that topological defects
affect the elastic properties of SLGS and decrease their
properties. Young’s modulus of defect-free SLGS is
obtained about 1 TPa. However, Young’s modulus of
the SLGS with just one SW defect is found about 0.95
to 0.97 TPa. This confirms the accuracy of the method
and shows that SW defect decreases the tensile modulus
and play an important role in tension.

)
Figure 8. The geometry of graphene sheet with constant w and
different |
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The shear modulus of zigzag and armchair SLGS are
also estimated. It is observed that the SLGS shear
modulus, based on the arrangement, is about 0.08-0.21
TPa.

Also, it is mentioned that the shear modulus of the
SLGS with just one SW defect is of the same order of
defect-free one that was reported to be 0.08-0.20 TPa.
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Figure 9. Variation of the elastic modulus of pristine and
defective armchair graphene sheet for various values of their
length (w =4.92nm )
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Figure 10. Variation of shear modulus of pristine and
defective armchair graphene sheet for various values of their
length (w =4.92nm )
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Figure 11. Variation of Poisson’s ratio of pristine and
defective armchair graphene sheet for various values of their
length (w =4.92nm )

The Poisson’s ratio of the SLGS with different chirality
is also found. It is observed that when the SLGS get the
larger size the results tend to graphene’s properties. It
can be seen that our results from both defect-free SLGS
and defective SLGS are fairly close to the commonly
accepted values.

The elastic properties of pristine and defective
zigzag and armchair SLGS are shown in Tables 1 and 2,
respectively. The results available in the literature
related to the graphene without defects and defective are
also compared to evaluate the accuracy of the new
continuum-atomistic model.

Talukdar et al. [12] showed that the inclusion of SW
defects in SWCNT, generally degrade their mechanical
properties. Due to the cut-off function in the Brenner’s
bond order potential, it may fail to reveal the exact
failure mechanism of the CNTs. Tserpes and Papanikos
[19, 20] applied the FEM to defected single walled
zigzag, armchair and chiral nanotubes subjected to axial
tension.

TABLE 1. Comparison of average values of elastic properties
of defect-free SLGS with those available in literature

Sources E (TPa) (T%a) v
Present (Armchair) 1.0225 0.088 0.235
Present (Zigzag) 0.992 0.210 0.176
Lee et al. [10] (Experiment) 1.000 - -
Shokrieh et al. [13] (MM) 1.040 - -

Bu et al. [14](Atomistic) 1.240 - -

Tsai et al. [15] (MD) 0.912 0.358 0.261

Ni et al. [11] (MD) 1.091 - -
Sakhaee Pour. [8](Armchair) 1.042 0.228 1.285
Sakhaee Pour. [8] (Zigzag) 1.040 0.213 1.441
f’ncgégg etal. [9] (Amber 1.305 0208 0568
;‘fégs etal. [9] (Morse 1.668 0213 0574
g?,{ﬁ)a”m”os etal. [16] 1.367 0280  0.603
Kudin et al. [4](ab initio) 1.029 - 0.149
Reddy et al. [7] (Armchair) 1.095-1.125 - 0.445-0.498
Reddy et al. [7] (Zigzag) 1.106-1.201 - 0.442-0.465
T 2 o W
'tl)'ianI(leiI;c;a;r [12] (Tight- 1131 ) )

Lier et al [17] (ab initio) 111 - -
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TABLE 2. Comparison of average values of elastic properties
of defective SLGS with those available in literature

Sources E (TPa) G (TPa)
Present (Armchair) 0.97 0.08
Present (Zigzag) 0.95 0.20
Talukdar et al. [12] (Bond order 135 B
potential), MD simulation '

Talukdar et al. [12] (Tight-binding 087 B
potential), MD simulation '

Xiao et al. [2](Atomistic simulation) 1.13 -

They concluded that the differences between the
theoretical predictions and experimental measurements
of Young’s modulus may depend on number of defects.
Xiao et al. [2, 21] studied the influence of single and
multiple defects on mechanical properties of carbon
nanotubes and graphene sheets. Their results showed
that increasing the number of defects along the hoop
direction can change Young’s modulus of SWCNT
dramatically, particularly when the defect distance is
smaller than 2 nm.

The assessment of the accuracy of the present results
are obtained by comparing them with those obtained by
published experimental works and numerical models.
The comparisons confirm that Young’s modulus and
shear modulus in both directions change with the
influence of SW defect. This model predicts that
Young’s modulus decreases approximately 4 to 5% for
defective SLGS relative to defect-free SLGS in zigzag
and armchair directions, respectively. Also, shear
modulus decreases 4 to 9% for defective SLGS relative
to defect-free SLGS in zigzag and armchair directions,
respectively. It is also found that defective and defect-
free SLGS show anisotropic behavior and they are
really affected by topological defects. In our view, use
of this method has two basic advantages which make
this method very efficient and reliable. First, the present
atomistic based finite element model has simplified
formulas while considering four-node elements and
three-node triangular elements to model SW defect.
Second, in atomistic view, anew arrangement of atoms
around SW defect are obtained by minimizing its energy
which was ignored in previous studies and these bring
the results of our model closer to reality.

5. CONCLUSIONS

By incorporating the atomistic simulation into a finite
element model, the mechanical responses of defected
graphene sheet under tension and shear loading are
investigated in this paper. The present approach predicts
Young’s modulus, shear modulus and Poisson’s ratios
of graphene sheets with or without SW defect. SLGS
subjected to uniaxial tension and shear load are
simulated. The results reported that Young’s modulus

and shear modulus in both directions change with the
influence of defects. It is found that defective and
defect-free SLGS show anisotropic behavior and they
are really affected by topological defects.

The most important innovation in this finite element
method is that the area of carbon ring is covered by six
isosceles trapezoidal elements and total number of
elements is drastically reduced compared with other
finite element approaches. Another novelty in this
model is that the new arrangement of the atoms after the
rotation of the carbon bond is considered by Gaussian
software and these new coordinates are used in the finite
element model. An atomistic approach is used to model
the formation of a 5-7-7-5 SW defect in SLGS which
could give the local deformation and reconfiguration.
The proposed method is possible for different forms and
density of SW defects and other topological defects like
a vacancy.Using this new method, modeling SLGS and
CNT is much simpler and computationally more
efficient than molecular dynamics model. Even other
nanostructures like Boron-Nitride nanotube could also
be simulated by this model.
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