
IJE TRANSACTIONS B: Applications, Vol. 31, No. 2, (February 2018)   346-356 
 

  

Please cite this article as: M. Yadegari, R. Tavakkoli-Moghaddam, G. Ahmadi, Closed-loop Supply Chain Inventory-location Problem with 
Spare Parts in a Multi-Modal Repair Condition, International Journal of Engineering (IJE), IJE TRANSACTIONS B: Applications, Vol. 31, No. 2, 
(February 2018)    346-356 

 
International Journal of Engineering 

 

J o u r n a l  H o m e p a g e :  w w w . i j e . i r  
 

 

Closed-loop Supply Chain Inventory-location Problem with Spare Parts in a Multi-

Modal Repair Condition 
 

M. Yadegaria, R. Tavakkoli-Moghaddam*a,b, G. Ahmadia 
 
a School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran 
b LCFC, Arts et Métiers Paris Tech, Metz, France 

 
 

P A P E R  I N F O   

 
 

Paper history: 
Received 09 February 2017 
Received in revised form 19 August 2017 
Accepted 12 October 2018 

 
 

Keywords:  
Spare Parts 
Supply Chain 
Inventory-location Problem 
Particle Swarm Optimization 

 
 
 
 
 
 
 
 
 
 

 

A B S T R A C T  
 

 

In this paper, a closed-loop location-inventory problem for spare parts is presented. The proposed 

supply chain network includes two echelons, namely (1) distribution centers (DCs) and repairing 

centers (RCs) and (2) operational bases. Multiple types of spare part are distributed among operational 
bases from distribution centers in the forward supply chain and failed spare parts from operational 

bases are sent back to the repairing centers to receive multi-modal repair services in the reverse supply 

chain. The RCs have no limitation to repair failed items and all of them should be repaired by 
minimizing total repairing cost. The main purpose of the proposed model is to minimize the total cost 

of inventory and location-allocation decisions in the proposed network in order to deal with the 

uncertainty nature of demand in both forward and reverse supply chains. Thus, a mixed-integer 
nonlinear programming model is formulated for the location-allocation problem that tries to choose 

which DCs and RCs to be opened and to determine the repair service mode of each failed items with 

objective function of minimizing the total cost. Furthermore, the validation of the model is tested by 
GAMS software for small-sized problem, and particle swarm optimization (PSO) is proposed to solve 

large-sized problems in a reasonable time. Finally, several sensitivity analyses are presented to 

evaluate the proposed model. Furthermore, according to computational results, the proposed heuristic 
algorithm is more efficient in both CPU-time and quality of solution for medium and large size 

problems. 

doi: 10.5829/ije.2018.31.02b.20 
 

 
1. INTRODUCTION1 
 

Since the term of supply chain management (SCM) was 

introduced in 1982 [1], it has expanded in many aspects 

in the literature surveys and industries. The structure of 

a closed-loop supply chain has several activities for the 

forward flow of products and materials to the customer 

and also has some important ones in a reverse supply 

chain [2]. A classical form of the forward supply chain  

is a combination of processes to satisfy customers’ 

demands and includes all probable entities, such as 

suppliers, manufacturers, transporters, warehouses, 

retailers, and customers [3]. According to the American 

Reverse Logistics Executive Council, reverse logistics 

is defined as a procedure including planning, 
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implementation and controlling all products and 

information throughout two point of origin and 

destination in an effective cost [4]. The closed-loop 

supply chain is constructed when both the forward and 

reverse supply chains are considered.  

In this paper, a closed-loop location inventory 

supply chain network design problem is presented to 

minimize the total cost of the supply chain network. The 

considered network, which is depicted in Figure 1, 

consists of two types of flows. The forward one is the 

demand satisfaction flow to distribute the spare parts 

from distribution centers among operational bases. The 

second one is a reverse flow to send back the failed 

spare parts from the operational bases (i.e., consumption 

points) to the repairing centers (RCs). The failed parts 

are repaired in one of slow or fast service modes in the 

RCs. The considered closed-loop supply chain 

inventory-location is very complicated in many different  
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Figure 1. Proposed closed-loop supply chain network 

 

aspects: first, the original closed-loop supply chain 

inventory-location is known to be NP-hard, and second, 

considering multiple types for spare parts and repairing 

services beside service level constraint are caused 

complexity in the mathematical model. In order to 

handle uncertainty in input data and dealing with 

complexity of new constraints, the required computation 

time is increased. In this regard, the second aim of this 

paper is to propose an efficient and powerful 

evolutionary algorithm to solve the proposed 

mathematical model in a reasonable amount of time. 

The first aim of this paper is to develop a new 

mixed-integer non-linear mathematical model for a 

closed-loop supply chain inventory-location problem. 

The model aims to (1) minimize the supply chain total 

cost, (2) determine which DCs and RCs can be opened, 

(3) properly allocate operational bases to DCs and RCs 

and (4) consider inventory decisions in the proposed 

network. Also, two different repairing modes in slow 

and fast servicing are proposed to repair the failed 

items, the demand of multiple types of spare parts are 

satisfied in the proposed closed-loop supply chain 

network, and using the service level constraint to 

determine each failed items should be repair in one 

repairing service mode to reduce supply chain total cost. 

The remainder of the paper is organized into seven 

sections. After the introduction, Section 2 presents the 

related literature on a closed-loop location-inventory 

spare part supply chain. In Section 3, the problem 

description and mathematical formulation are described 

to determine the location of distribution centers (DCs) 

and RCs by considering inventory decisions. The model 

validation and solution method is presented in Sections 

4 and 5, respectively. Section 6 presents the 

computational experiments and sensitivity analyses. 

Finally, conclusions and future research directions are 

drawn in Section 7. 
 

 

2. LITERATURE REVIEW 
 
In this section, the recent studies on a closed-loop 

location-inventory supply chain for spare parts are 

reviewed. Shen et al. [5] developed a nonlinear integer 

mathematical model to formulate a facility location 

problem considering inventory costs and a proper 

portion of transport costs. Their proposed model is 

solved using a Lagrangian relaxation algorithm. Also, 

two examples with 88 and 150 nodes are used to 

evaluate the algorithm. The results demonstrate that the 

number of selected facilities increases when fixed order 

costs are remarkably decreased. Daskin et al. [6] 

introduced a nonlinear integer programming model to 

formulate a location–inventory problem considering risk 

pooling (LRMP). Diabet et al. [7] introduced a multi-

echelon inventory–location model, in which both the 

location decisions and inventory policies are considered 

at warehouses and customers simultaneously.  

Gzara et al. [8] studied two network integrated 

inventory-location decisions and introduced two mixed-

integer nonlinear programming (MINLP) model related 

to two kind of target service levels and part-warehouse 

requirements. In results, the proposed approach was 

identified as the most efficient among other approaches 

in the surveys. Olsson [9] introduced a lateral 

transshipment mathematical model for a single-echelon 

inventory spare part network with two locations. In the 

studied spare part inventory system, a Poisson 

distribution is used to determine the demand of each 

location independently. Furthermore, the proposed 

model was solved by a doubly stochastic Poisson 

process technique. Also, the performance of the model 

is measured by a simulation approach. Tahirov et al. 

[10] presented a closed-loop supply chain model for 

products and spare parts and considered three cost 

structures related to the collection of used items in the 

reverse network. Firstly, the used items are accumulated 

from customer by a manufacturer. Secondly, 

accumulating procedure is determined by contracting 

between the manufacturer and customer or a third party. 

This model is performed for 12 numerical examples 

using Matlab software. Also, the results showed that the 

closed-loop supply chain and its inventory policy 

significantly are influenced by the costs of collection 

and transportation.  

Diabat et al. [11] introduced a mathematical model 

for a closed-loop inventory location network with single 

echelon to fulfill the uncertain demand of a single 

product. They proposed a nonlinear model with joint 

location-allocation and spare part inventory decisions. 

Furthermore, the model is solved by a Lagrangian 

relaxation algorithm. The numerical results illustrated 

that the number of facilities opened in the supply chain 

decreases when the inventory cost increases while it 

increases as the increasing of the transportation cost 

Samouei et al. [12] studied a multi-echelon network for 

spare part inventory. Moreover, backorder and quantity 

discount are considered in this network. They developed 

the mathematical model to minimize the total cost of 
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transportation, distribution, repairing, holding, 

purchasing, and backordering of the items over the 

planning horizon according to quantity discount that 

external supplier gives customers. Furthermore, the 

Fordyce and Webster algorithm is proposed to solve the 

model. Also, the efficiency of the proposed algorithm is 

evaluated by numerical examples. Ghomi-avili et al. 

[13] presented a closed-loop supply chain by 

considering completely disruption risk with several 

scenarios. They studied a resilience concept by two 

resilience factors (i.e., lateral transshipment and extra 

inventory) to formulate the problem as a mixed-integer 

programming. Finally, a sensitivity analysis is 

conducted to investigate the effects of resilience factors 

on the proposed network. Ahmadi Yazdi and Honarvar 

[14] proposed a closed-loop supply chain integrated 

pricing policy. They developed a mixed-integer linear 

model using a stochastic approach. The value of the 

stochastic solution (VSS) is used due to evaluate the 

precise of the proposed approach. Furthermore, the 

optimal values of sales price are computed based on 

forward and reverse logistics. 

Zarrinpoor et al. [15] presented a reliable 

hierarchical location-allocation mathematical model 

related to the facility disruption risk. Also, a multi-level 

multi-flow hierarchy is considered with the relations 

among different levels. Furthermore, an exact solution 

based on the Benders decomposition method is used to 

solve the model. Maleki et al. [16] developed a bi-

objective MILNLP model for remanufacturing facility 

considering decision variable for price of 

remanufactured products. There are different kinds of 

incoming nonconforming products with several 

workstations. These workstations are independent and 

have specified capacity. The M/M/1/K queening system 

is used in each remanufacturing workstation. The 

proposed mathematical model was solved using GAMS 

to obtain optimal solution with maximizing the total 

profit and minimizing the average length of queening at 

workstations. Panda et al. [17] presented a closed-loop 

supply chain considering the impact of corporate social 

responsibility (CSR) between manufacturer and 

customers through product recycling. Cárdenas-Barrón 

et al. [18] studied a supplier selection problem for multi-

product multi-period inventory lot sizing. Furthermore, 

the efficient reduce and optimize approach (ROA) is 

applied to solve the model. 150 benchmark examples 

are presented for different sizes. Also, the result of 

examples demonstrate the efficiency of the proposed 

heuristic algorithm against the CPLEX MLP solver. 

Namdar et al. [19] presented a capacitated 

distribution network design under disruption and 

proposed a scenario-based mixed-integer linear 

programing (MILP) model to cope with disruption risk 

and enhance reliability of the distribution network. 

These multiple strategies are: transshipment, facility 

location and fortification. The model was verified by 

executing several examples and eventually results 

showed that the transshipment strategy is most efficient 

strategy against fortification strategy to deal with the 

uncertainty nature of network. Yosefi et al. [20] studied 

two supply chain networks for the same product and 

opened a new distribution center to satisfy the additional 

demand, so they competed with each other to keep their 

market. Thus, a non-linear bi-level model is proposed to 

formulate these competition. Due to the NP-hard nature 

of the model, an ant colony algorithm is applied to 

obtain the best solution. According to another 

application of meta-heuristic algorithms in supply chain 

networks, Qi et al. [21] used modified binary-particle 

swarm optimization (MBPSO) algorithm to obtain the 

proper solution for a multi-level distribution network. 

This algorithm can obtain near-optimal solutions by 

parallel global search in high accuracy and fast 

convergence for the hybrid integer mathematical model 

with a weighted objective and multiple constraints. 

Kamali et al. [22] presented a closed-loop supply chain 

(CLSC) for some products with a continuous price 

decrease. In order to solve the mixed-integer linear 

programming model, several meta-heuristics are applied 

(i.e., artificial bee colony (ABS), particle swarm 

optimization (PSO), deferential evolution (DE) and 

genetic algorithm (GA)). In order to evaluate the 

proposed methods, the results of them are compared 

with the deterministic solution. Eventually, the artificial 

bee colony method reveals the high quality results for 

the proposed model with the lowest error value than 

other methods. 

According to the above discussion, the literature 

review demonstrates that there is a gap in a closed-loop 

supply chain inventory-location. Furthermore, there is a 

few studies in the context of multiple types of repairing 

services. Moreover, many parameters in the real world 

situation are tainted with uncertainty, which can impose 

a high degree of uncertainty on the designed network. 

In the real world, there are various types of spare 

parts which are used in different industries to conduct 

maintenance tasks (e.g., maintaining the production 

machines and aircrafts).  It commonly happens that 

some items should be replenishment or can be repaired, 

depending on their nature. 

Besides, solving complex the closed-loop supply 

chain inventory-location is one of the most challenging 

issues as they are known to be NP-hard. However, a few 

papers in the literature have developed evolutionary 

algorithms to deal with these models. To overcome 

these shortcomings and fulfill these gaps, we develop a 

mathematical model for an closed-loop supply chain 

inventory-location under uncertainty to investigate the 

integrated inventory and location decisions in a closed-

loop supply chain, an efficient algorithm, called partial 

swarm optimization (PSO) algorithm is also proposed to 
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solve the developed mathematical model and obtain 

near-optimal solutions in a reasonable amount of time. 

The main contributions of this paper, which 

differentiate our effort from related studies, are as 

follows: 

 Developing a new MINLP model for a closed-

loop supply chain inventory-location problem. 

 Considering two different repairing modes for 

repairing the failed items based on their 

importance or customer’s preferences. 

 As each machine or equipment consist of multiple 

spare parts, we considered multi types of spare 

parts in our proposed closed-loop supply chain 

network. 

 We use a service level constraint to allocate each 

failed item to proper repairing mode while the 

minimum service level should be satisfied and 

also, all the failed items needed to repair should 

be allocate to only one of the repairing modes 

which are obtained the minimum total cost. 
 
 
3. PROBLEM DESCRIPTION 
 

This paper considers a closed-loop network, in which 

multi-type of spare parts are shipped from a single 

supplier through regional distribution centers (DCs) to 

several operational bases under uncertain demands. 

Furthermore, the failed spare parts are collected from 

operational bases and are sent to the repair centers 

(RCs). We suppose that the failed spare parts can be 

repaired in a multi-modal repair condition, namely slow 

and fast. The repair time at the slow mode is more than 

the fast mode. In addition, the cost of fast repair is 

higher than that of the slow mode. The repaired spare 

parts are as good as new ones and can be sent to satisfy 

the demand at the operational bases. 

𝑄𝑖𝑝𝑙  is defined as the demand at operational base i

for spare part p on a day l . It is assumed that the daily 

demands of each kind of spare parts for particular day 𝑙 
at the bases are independent with a normal distribution 

(i.e., 𝑄𝑖𝑝𝑙~𝑁(𝜇𝑖𝑝, 𝜎𝑖𝑝
2 )). The rate of failed spare parts of 

the forward supply chain at base i  of spare part p  on a 

day l is similarly defined by 
ipl

q , which are independent 

random variables with a normal distribution (i.e., 

𝑞𝑖𝑝𝑙~𝑁(𝜆𝑖𝑝 , 𝛿𝑖𝑝
2 )). Although, the expected number of 

daily failed spare parts is a fixed ratio of the daily 

demands of bases as .
ipp    (where  0,1  ), we 

assume that all the failed spare parts are repairable and 

each of failed item are assigned to one of two service 

repair modes (i.e., slow and fast repairs). 

In this model, the inventory costs are integrated to 

the location mathematical model by considering an 

economic order quantity (EOQ) approximation for the 

spare parts at DCs and the failed spare parts awaiting 

repair at RCs. The safety stock cost is computed based 

on fixed lead time. Furthermore, the model is 

formulated to determine the location of DCs and RCs, 

assignment of bases to DCs in the forward supply chain, 

assignment of operational bases to RCs in the reverse 

supply chain and to minimize the inventory costs for the 

proposed closed-loop supply chain. The indices, 

parameters and variables are defined in Table 1.  

 
TABLE 1. Indices, parameters and variables 

Indices 

I Set of operational bases, indexed by i 

J 
Set of potential regional distribution centers, indexed by j 
(where j and k are aliases) 

K Set of potential repair centers, indexed by k 

P Set of spare part items, indexed by p 

Parameters 

j
f  Fixed annual cost of a distribution center at location j 

k
l  Fixed annual cost of a repair center at location k 

ij
d  Cost per unit shipped from distribution center j to base i 

ij
d   

Cost per repaired unit shipped from distribution center j to 

base i 

ik
d  Cost per unit shipped from base i to repair center k 

  Number of days per year 

  Transportation cost weight 

  Inventory cost weight 

  Ratio of expected average repairable spare parts daily arrive 
in repair center 

SL Service level 

z


 Standard normal deviate with  p z z   

j
F  Fixed order cost from DC 𝑗 to supplier 

j
g  Fixed shipping cost from DC 𝑗 to supplier 

p
L  lead time of spare part p from external supplier to DC 

r
L  Repairing time needed for repairing each failed item by the 

repairing mode 𝑟 at the RCs 

r
C  Unit repairing cost of each failed item by the repairing  

mode 𝑟 

p
h  Holding cost of safety stock of spare part p at distribution 

centers 

p
h  Holding cost of safety stock of spare part p at repair centers 

𝑉  Priority of each kind of spare part 

𝑛𝑝  Number of multi type of spare parts 

Decision Variable 

pr
I  A binary variable, equal to 1 if spare part p is repaired by 

repairing mode r  

j
x  

A binary variable, equal to 1 if location j is selected as a 
distribution center; otherwise, 0 

k
w  

A binary variable, equal to 1 if location k is selected as a 

Repair center; otherwise, 0 

ij
y  

A binary variable, equal to 1 if  the base  i served by 
distribution center located at site  j; otherwise, 0 

ik
z  

A binary variable, equal to 1 if the repairable item at the 

base  i are serviced by the repair center located at site  k; 
otherwise, 0 
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Model Assumptions: 
1) The distribution network is uncapacitated. 

2) Demand is uncertain with a normal 

distribution. 

3) Each operational bases has independent normal 

distribution demand. 

4) All of the failed spare parts can be repaired in 

slow or fast repairing mode. 

Min x  + 
j j k k

j J k K

f l w
 

    

Forward supply chain:  

  + a   

 . . .   

ip ij j ij

j J i I p P

ip ij ij

j J i I p P

d y

d y

  

   

  

  









 2 . . .
j j ip ij p

j J i I p P

F g y h   
  

  

2 2
. . . . .

p ip p ij

j J i I p P

z L h y


 
  

  
 

 

Reverse supply chain:  

+ . . .d .z  
ip ik ik

i I p P k K

   
  

 
 
 


2 2 2.
. .  . . .r pr

ip ip ik

k K i I p P r R

L I
z h z

np
  

   


 
  

 

.I . . .
pr pr ip

i I p P r R

C   
  


 

(1) 

The proposed mathematical model minimizes the total 

cost of the closed-loop spare parts inventory-location; 

the first two terms of objective function depicts the 

fixed location cost of DCs and RCs. The next fourth line 

shows the total cost of the forward supply chain, which 

is contained the delivery cost of spare parts to the 

operational bases from, in which DCs are assigned to 

them, the delivery cost of sending the failed items to the 

RCs from operational bases, total expected inventory 

costs that purpose a, g and F are related to the location 

of each DC and the last term of forward supply chain 

represent the total expected safety stock inventory cost 

based on risk pooling of the uncertainty of demand. 

Safety stock is commonly set to be proportional to 

standard deviation of the demand occurring throughout 

the lead time. Reducing in variability of demand can be 

achieved by reducing in safety stock. The aggregating 

demand from all bases is smaller than the sum of the 

variances demand of those bases. Therefore, the amount 

of safety stock which is needed for pooled demand is 

usually less than the sum of safety stock of each base’s 

demand. As a result, using the risk pooling strategy 

reduces the variability in demand, and in consequence 

reducing supply chain cost, especially inventory costs 

[11, 23-25]. The last three lines represent the costs of 

reverse supply chain; the seventh term represents the 

total expected inventory cost at the RCs assigned to the 

bases. The eighth term shows the total expected safety 

stock inventory cost based on risk pooling related to 

uncertainty in failed items. 

1        I     
ij

j J

y i


    
(2) 

0        ,  
ij j

y x i I j J      (3) 

1        
ik

k K

z i I


    
(4) 

0         , K
ik k

z w i I k       (5) 

0       K
k ik

i I

w y k


     
(6) 

. . .   Cap   ,        
ip pr r

i I p P

I r R k K  
 

     
(7) 

 1. . . .v .

  
. . .v

ip pr p
ri I p P r R

ip p

i I p P

I
L

SL

  

  

  

 






 (8) 

1        pr

r R

I p P



  
  

(9) 

 0,1        I,   J
ij

y i j      (10) 

 0,1        , K
ik

z i I k      (11) 

 0,1         I
i

x i    (12) 

 0,1       K
k

w k    (13) 

 0,1       ,
pr

I p P r R     (14) 

Constraint (1) represents that each operational base’s 

demand is assigned to a DC
j
. Constraint (2) shows that 

assignment to DCs occur if a DC is opened at location j. 

Constraint (3) ensures that failed items from bases are 

assigned to RC k . Constraint (4) represents that the 

failed items can be repaired only in repair centers. 

Constraint (5) represents that each RC can be opened 

when the DC has been opened at location and the bases 

are assigned to this DC. Constraint (6) represents the 
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number of assigned failed items to each repair mood is 

limited with capacity of repair mood. Constraint (7) 

represents that assigning failed item to repairing mood 

should be satisfied target service level. Constraint (8) 

ensures that each kind of failed spare part assigned to 

one of the repair mood. Finally, constraints (9) to (13) 

represent binary decision variables. 

 

 

4. MODEL VALIDATION 
 
In order to validate the presented mathematical model, a 

set of small and medium-scale test problems are solved 

based on the objective function using random generated 

data, which are shown in Table 2. The model is solved 

by General Algebraic Modeling System (GAMS) 

software – version 27.7.1. This software employs the 

language compiler several solvers within high 

performance to solve optimization problems. 
 
 

TABLE 2. Parameter values 

Parameters Value 


 360 


 

0.01 

  0.1 


 0.2 

z
  

1.96 

SL 0.95 

ip


 
~ Uniform (200,500) 

ip


 
~ Uniform (0.5,1) 

j
f

 
~ Uniform(6.5×106,1.5×107) 

k
l

 
~ Uniform(6.5×106,1.5×107) 

ij
d

 
~ Uniform(6.5×109,1.5×1010) 

ij
d 

 
~ Uniform(6.5×109,1.5×1010) 

ik
d

 
~ Uniform(6.5×109,1.5×1010) 

j
F

 
~ Uniform(1×104,4.5×104) 

j
g

 
~ Uniform(1×104,4.5×104) 

j
a

 
~ Uniform (5×104,2×106) 

p
h

 
~ Uniform(1000.2500) 

p
h

 
~ Uniform(50,150) 

p
L

 
~ Uniform (100,150) 

r
L

 
{5,10} 

C repair {1500,1000} 

Cap r ~ Uniform (100,300) 

As can been seen, Table 3 presents the optimal 

values of the objective functions (OFV) and CPU time 

for different test problems. The results reveal that the 

CPU time of the problem increases due to the 

complexity of the problem. Since the number of 

operational bases I  and the variety of spare part types 

P increase, CPU time remarkably increase.  

As it reveals, the comparison between dataset S4 and 

S5 demonstrates that changing the number of spare part 

types from 10 to 30 highly increase CPU time. Also, 

comparing the dataset S7 and S8, illustrates that the 

required CPU time is significantly increased up to 

17022.17 seconds when the number of operational bases 

changed from 50 to 100. These numerical results show 

that the impact of these two parameters i.e., I  and P  

on CPU time and OFV are more than the impact of the 

number of DCs and RCs. 

Due to the nature of spare part inventory, the 

number of spare part types used in industries and 

warehouses is usually more than hundreds. Thus, we 

perform our model for large-sized problems; however, 

GAMS is unable to reach the feasible solution through 

48 hours of the model runtime because of the 

complexity and NP-hard nature of the proposed model. 

Since, the meta-heuristics are able to overcome these 

complexity of problems, we propose the partial swarm 

optimization (PSO) algorithm to solve the defined 

nonlinear model under high complexity in reasonable 

runtime. 
 
 
5. SOLUTION APPROACH 
 
In this section, a brief survey on the proposed meta-

heuristic algorithm is conducted.  

 

 

 
TABLE 3. Numerical results of GAMS for small and 

medium-scale problems 

 Problem Dimension Output 

No. I J K P    OFV (Rial) CPU time (sec) 

S0 5×5×5×5 4.5909×1011 0.05 

S1 10×8×8×5 9.1896×1011 0.14 

S2 10×8×8×10 1.8436×1012 0.33 

S3 20×12×12×10 3.5956×1012 1.82 

S4 30×12×12×10 5.4015×1012 4.76 

S5 30×12×12×30 1.6662×1013 79.54 

S6 50×25×25×30 2.8350×1013 625.53 

S7 50×25×25×60 5.9373×1013 824.22 

S8 100×25×25×60 1.1929×1014 17022.17 
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In the following sub-section, PSO is performed using 

Matlab R2015a for large-scale test problems of our 

model to obtain near-optimal solutions in reasonable 

runtime. Also, the same small and medium-scale test 

problems are solved using PSO and GAMS to compare 

their results and the gap between them. The 

computational results of this algorithm are shown in 

Sub-section 5.2. 

 

5. 1. General Description of PSO   Particle swarm 

optimization (PSO) is an evolutionary computational 

technique based on social behavior. It was introduced 

by Kennedy and Eberhart in 1995 [26]. Swarm in PSO 

is the similar to the population in the genetic algorithm 

(GA) that generates random solutions. The random 

solutions in PSO and GA are particles and 

chromosomes, respectively. Unlike the GA, the 

potential solutions (i.e., particles) are by their own 

randomized velocity in PSO. So, it flows in solution 

space. 

It is initialized with the initial population defined as 

a set of particles. Each particle has a randomized 

velocity that is moved through the solution space. Based 

on the position of each particle in solution space, the 

fitness value is computed and the best one which is 

related to the best position is selected [27]. The general 

form of PSO is described as follows: 

 

 

11 1 1

22 2
           +

k k k

k

v a v b r p x

b r p x

      

  

 (15) 

1 1k k kx c x d v      
(16) 

where   is a symbol that denotes the vector 

multiplication in each iteration. The velocity and 

position vectors are updated based on their current 

values using momentum factor  a .
1

( )p is the own 

previous best position and 
2

( )p is the best position in 

the swarm. Also, kx  is a particle position that is updated 

within its current value and the velocity that computed 

from Equation (15). c  and d  are the coefficients. 

Also, 1r  and 
2

r  are the random numbers between [0, 

1]. The original steps of executing the PSO algorithm 

are shown if Figure 2 is also described briefly as 

follows:  

Step 1: The initial population of particles are randomly 

generated. Each particle has its own position and 

velocity in solution space of the problem. 

Step 2: Each particle is evaluated using fitness function.  

Step 3: Evaluation value of the position of each particle 

is compared with the best fitness value reached by the 

best position called 𝑝 𝑏𝑒𝑠𝑡. If the current value has a 

better value than 𝑝 𝑏𝑒𝑠𝑡, then the current value is set as 

the 𝑝 𝑏𝑒𝑠𝑡, and the best position is equal to the current 

position of article in problem search space. 

Step 4: The fitness value of the particle’s evaluation is 

compared with the population’s overall best value 

which obtains by all particles called  𝑔 𝑏𝑒𝑠𝑡 (i.e., global 

best). If the current value has better value than 𝑔 𝑏𝑒𝑠𝑡 

then the current value set as the𝑔 𝑏𝑒𝑠𝑡. 

1 1 1 2 2 21 . r  ( ) r  ( )k k k kv a v b p x b p x     
  

(17) 

1 1. .k k kx c x d v  
  (18) 

Step 5: This loop to Step 2 is repeated to meet 

maximum number of iterations (or other stopping 

criteria, such as value of fitness, maximum desired run 

time) to obtain global solution with the best fitness 

value can be obtained in solution space. 

PSO has been used in wide range of applications. It 

is most popular because of its few parameters and 

ability to find the global optimum solution with the high 

probability and also fast convergence rate [27-30]. 

 

5. 2. Computational Results    A set of large-scale 

random datasets as shown in Table 4 are examined using 

a PSO algorithm. Because the GAMS runtime for our 

model takes more hours for large-scale problems, PSO 

is used to obtain near-optimal solutions in less runtime. 

The numerical results are demonstrated in Table 4. An 

important result obtained from this table is that the 

behavior of the OFV and CPU time of large-scale 

problems solved by PSO is the same as the results of 

GAMS.  

Comparison of S9 and S10 shows a dramatic increase 

in the OFV because of increasing in the number of 

operational I  bases and spare part types P . Also, the 

CPU time in order to obtain near-optimal solutions is 

increased when the number of I  and P  are 

increasing. As a variety of spare part types increases, in 

comparison of problems S11 and S12, both the OFV and 

CPU time increase as well.  

As expected, the results obtained by PSO for large- 

scale problems reveal that the impact of the number of 

I  indices is much more than P , K  and J . 

 

 
TABLE 4. Numerical results of PSO for large-scale problems 

 Problem Dimension Output  

No. I J K P    OFV (Rial) CPU time (Sec.) 

S9 100×45×45×100 4.3915×1016 1074.22 

S10 300×45×45×700 7.9549×1020 2573.78 

S11 300×45×45×900 1.8945×1021 2892.59 

S12 300×45×45×1100 9.2395×1021 3204.51 
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Initializing the position and velocity of population

Fitness evaluation of each particle 

For each Particle:
Setting the P Best fitness value of each particle = current fitness

Setting the P Best position of each particle=current position

Resetting global best fitness value=The P Best fitness value 

Updating the position and velocity of each particle

Fitness evaluation of each particle

Resetting the P Best fitness value= current fitness 

Is the current fitness value 
better than P Best fittness?

Is the current fitness value 
better than Global Best fittness?

Resetting the Global Best fitness value= current fitness 

Is meeting the stopping criteria?

Stop

No

No

Yes

No

Yes

Yes

 
Figure 2. Flochart of PSO 

 

 

The PSO algorithm is evaluated and the results are 

reported in Table 5. The results illustrate that the PSO 

algorithm can obtain good OFVs in reasonable CPU 

time. According to the results, there is no considerable 

gap between optimal OFVs which are achieved form 

GAMS and the function values which are obtained from 

PSO. Thus, this algorithm is reliable to perform for 

large-scale problems. 

 

 

6. SENSITIVITY ANALYSIS 
 

In this section, several sensitivity analyses to validate 

the proposed model are conducted based on the different 

parameter values of transportation cost weight (β) and 

inventory cost weight (θ). We obtained the optimal 

objective function value (OFV) and CPU time for 

different values of β and θ for dataset problem S5 (i.e., 

( 30 12 12 30I J K P       )). Table 6 presents the 

change of the OFV (i.e., total cost of supply chain) and 

CPU time when the weight of inventory and 

transportation is changed. As it reveals, when the value 

of θ and β increases, there is an increase in the OFV; 

however, the CPU time has no a constant behavior. 

Figure 3 illustrates linear enhancement in the OFV 

Vs. β variation. Furthermore, in Figure 4, an increasing 

trend can be seen in the total cost of the whole supply 

chain (i.e., OFV) by increasing the inventory cost (θ).  

As shown in Table 4 and Figure 4, the linear 

increment is demonstrated in the total supply chain cost 

by increasing θ and β. However, the model is more 

sensitive when the weight of the inventory cost 

increases. 

 

 
TABLE 5. Comparison of GAMS and PSO results for small 

and medium-scale problems 

 GAMS outputs  PSO output 

No OFV (Rial) 

CPU 

time 

(Sec) 

GAP 

(%) 
OFV (Rial) 

CPU 

time 

(Sec) 

S0 4.5909×1011 00.05 2.49 4.7083×1011 3.27 

S1 9.1896×1011 00.14 1.26 9.3073×1011 5.18 

S2 1.8436×1012 00.33 4.18 1.9241×1012 10.07 

S3 3.5956×1012 1.72 6.12 3.8301×1012 28.77 

S4 5.4015×1012 4.76 2.31 5.5291×1012 35.05 

S5 1.6662×1013 79.54 3.13 1.7201×1013 21.35 

S6 2.8350×1013 639.53 5.54 3.0012×1013 58.92 

S7 5.9373×1013 824.22 5.78 6.3012×1013 69.52 

S8 1.1929×1014 17022.1 6.26 1.2726×1014 104.52 

S9 - - - 4.3915×1016 1074.2 

 

 
TABLE 6. Sensitivity analysis of θ and β 

Value of  

θ and β 

Sensitivity analysis for β Sensitivity analysis for θ 

OFV (Rial) CPU time OFV (Rial) CPU time 

0.01 1.6662×1013 79.5 5.5762×1012 56.6 

0.5 2.2800×1013 28.4 3.6703×1013 63.5 

1 2.6553×1013 146.3 5.1719×1013 79.7 

1.5 3.0306×1013 32.1 6.3242×1013 64.4 

2 3.4058×1013 83.9 7.2956×1013 34.4 

2.5 3.7811×1013 133.8 8.1515×1013 43.0 

3 4.1564×1013 97.4 8.9252×1013 35.6 
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Figure 3. Variation of β vs. the OFV 

 

 

 
Figure 4. Variation of θ vs. the OFV 

 
 

 
Figure 5. Variation of θ and β vs. the OFV 

 

 
Furthermore, the ascending trend of the OFV in 

variation of θ is more than β. Thus, θ has more influence 

in increasing the total cost of the supply chain. For a 

large amount of θ and β, there is a monotonous increase 

in the OFV, and also a greater increase in the OFV can 

be seen for the value of 0.01 to 0.5 of both θ and β. It is 

more efficient for the decision maker in order to 

determine the appropriate value of θ and β. 

 

 
7. CONCLUSION  
 

In this paper, a closed-loop location inventory supply 

chain network design problem is studied within multi 

types of products to optimize the distribution and repair 

centers (RCs) location and to allocate each failed items 

to slow or fast repair service mode by minimizing the 

total supply chain cost and service level constraint. 

The problem was formulated as a mixed-integer 

nonlinear location allocation model. In the forward 

supply chain, new products are distributed to 

operational bases through distribution centers (DCs) and 

the failed items are collected by using the reverse 

supply chain. Also, the failed items are repaired in 

repair centers (RCs), which are allocated in the location 

of DCs. The importance of the proposed formulation is 

allocation of each failed spare part to suitable repairing 

mode while service level is satisfied  

The proposed model was solved using GAMS 

software for several small and medium-scale problems. 

Because of complexity and NP-hard nature of large-

scale problems, GAMS software cannot solve large-

scale ones within 24 hours. Therefore, particle swarm 

optimization (PSO) was proposed as an efficient meta-

heuristic algorithm to solve large-scale problems in 

reasonable runtime. Moreover, several sensitivity 

analyses were conducted for different values of β and θ 

and illustrated the change of the objective function 

value (OFV) based on different values of these 

parameters. The results show that any changes in β and 

θ can influence the total cost. Also, these analyses 

demonstrate that the total cost is more sensitive to the 

weight of the inventory cost more than the 

transportation cost. Therefore, it is important to 

determine the accurate value of them for reducing 

supply chain total cost. Therefore, future research can 

consider the reliability of each repaired item. Also, the 

model can be developed by considering robust 

optimization to deal with uncertainty of repairing 

demand in a reverse supply chain to make model more 

flexible. Another extension is to consider some 

limitations on the depot space or capacity. Moreover, 

the development of meta-heuristics can be conducted to 

compare with each other and select the most efficient 

one. 
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هچكيد
 

 

-موجودی برای انتقال قطعات یدکی در یک شبکه زنجیره تامین بسته دوسطحی شامل ایستگاه -در این مقاله، مساله مکان یابی

انواع مختلفی از قطعات یدکی از طریق  ،در این زنجیره تامین گیرد.های عملیاتی و مراکز تعمیر و توزیع مورد بررسی قرار می

همچنین قطعات معیوب از طریق  شوند.ها منتقل میگویی به نیاز این ایستگاه های عملیاتی، برای پاسخمراکز توزیع به ایستگاه

این قطعات در مراکز تعمیر به دو روش خدمات  یابند.آوری شده و به مراکز تعمیر انتقال میشبکه زنجیره تامین معکوس جمع

گونه محدودیتی برای پذیرش قطعات یدکی معیوب به  ین مراکز هیچدر ا ،علاوهه ب .ندشومیتعمیراتی سریع و آهسته بررسی 

دو روش تعمیراتی وجود ندارد و تمامی قطعات معیوب با کمترین هزینه تعمیر خواهند شد. هدف مساله، انتخاب تعدادی از 

 قطعات یدکی و پاسخ های کاندید برای احداث مراکز توزیع و مراکز تعمیر به منظور برآورده ساختن تقاضای احتمالیسایت

گویی به تقاضای احتمالی تعمیر قطعات یدکی و همچنین انتخاب یکی از دو روش تعمیری )سریع یا آهسته( برای تعمیر 

ستفاده از نرم افزار بهینه سازی باشد. به منظور بررسی صحت مدل ارایه شده، چندین نمونه عددی با اقطعات یدکی معیوب می

GAMS به دلیل پیچیدگی مساله و نیاز به زمان اجرای بسیار طولانی برای رسیدن به جواب بهینه در  ،نشود. همچنیحل می

شود. در نهایت، چندین تحلیل حساسیت برای  می پیشنهاد  (PSO)سازی ازدحام ذراتمسایل با ابعاد بزرگ، الگوریتم بهینه

از لحاظ کیفیت  PSOحاسبات انجام شده الگوریتم فراابتکاری همچنین، طبق نتایج م گردد.بررسی کارایی و رفتار مدل ارایه می

 باشد.های متوسط و بزرگ بسیار کارا میجواب و مدت زمان محاسبات برای مسایل با اندازه

doi: 10.5829/ije.2018.31.02b.20 

 

 

 
 

 


