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A B S T R A C T  
 

 

In this paper, a new comparative approach was proposed for reliable controller design. Scientists and 

engineers are often confronted with the analysis, design, and synthesis of real-life problems. The first 
step in such studies is the development of a 'mathematical model' which can be considered as a 

substitute for the real problem. The mathematical model is used here as a plant. Fractional integrals and 

derivatives have found wide application in the control of dynamical systems when the controlled 
system and the controller are described by a set of fractional order differential equations. Here the 

stability and robustness of fractional order system is checked at the different level and it is found that 

the stability region is large in the complex plane. This large stability region provides the more 
flexibility for system implementation in the control engineering. Generally, an analytically or 

experimentally approaches are used for designing the controller. If a fractional order controller design 

approach used for a given plant then the controlled parameter gives the better result. 

doi: 10.5829/ije.2018.31.02b.17 
 

 
1. INTRODUCTION1 
 

The technique model order reduction is used in all fields 

of electrical, chemical, aerospace, mechanical etc. In the 

large process control system and mechanical production 

houses, the model order reduction plays an important 

role to take the decision for the final product [1-3]. 

Generally, the work with large scale system is very 

complex and time-consuming [4]. To check the stability 

of the system first we make a mathematical model of the 

plant. If the original system model does not match the 

desired performance of the implementing system, then a 

controller is designed to fulfill the requirement of the 

industry. The designed controller may be a full order or 

it may be fractional order. The implementation of the 

controller depends on the plant. If a control system 

satisfies their stability conditions by the Routh-Hurwitz 

stability criteria [5] then any analytical or experimental 

approaches are used. On the other hand, if control 

system requires the stability region beyond the Routh-

Hurwitz criteria or it requires more flexibility [6-9] than 
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what an approach is useful? So to fulfill the stability 

condition beyond the Routh- Hurwitz criteria a 

fractional order approach [10, 11] is used here to design 

the controller. Here the comparative analysis provides 

the option to opt a controller design method for the 

given plant. 
 

 

2. PID CONTROLLER TRANSFER FUNCTION 
 
The block diagram for a PID controller is shown in 

Figure 1. The PID controller may be represented in 

mathematical form as follows: 

]
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tektu    
(1) 

With the given block diagram u(s) denote control signal 

and e(s) denotes the error signals of the system. Here 

k1represent the proportion gain and iT , dT  used for the 

integral and derivative time constants respectively. The 

transfer function )(sGc  of the corresponding PID 

controller is given as   
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Equation (2) can be rewritten as 

sk
s

k
ksGc 3
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Here k2and k3 used for integral gain and derivative gain 

values of the controller respectively. 

The objective is to derive a controller such that the 

performance of the augmented process matches with the 

desired performance of the model. In the computational 

system, the desired performance should be satisfied by 

the closed loop control system [12, 13]. To fulfill these 

entire requirements a PID controller is derived in form 

of full order and fractional order. 

 

 

3. FRACTIONAL ORDER SYSTEM FUNDAMENTALS 
 
3.1. Introduction to Fractional Calculus      The 

term “fractional-order calculus” is not new. It is a 

generalization of ordinary differentiation by non-integer 

derivatives. The theory of fractional-order derivatives 

was mainly developed in 19th century [14-17]. In the 

development of fractional order calculus, there appeared 

different definitions of fractional-order differentiation 

and integration [18, 19]. To reduce to a general form 

fractional calculus from integration and differentiation 

to the fractional order fundamental operator )(tfDt
 , 

where α and t are the limit and R   is the directive of 

operation. The continuous integration differential 

operator is [20]: 
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There are various definitions for fractional integration 
and differentiation. Some of the definitions spread out 
directly as of integer-order calculus.The deep-rooted 
descriptions include the Cauchy integral formula, the 
Grunwald–Letnikov (GL) definition and Riemann–
Liouville (RL) definitions are given [20] as: 
Definition 1: - Cauchy integral formula 

 
 

 

Figure 1. PID controller block diagram 

 




c

d
t

f

j
tfD 












1)(

)(

2

)1(
)(  

 (5) 

where, c is the smooth curve encircling the single value 

function f (t) 

Definition 2: - Grunwald–Letnikov (GL) definition: 
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Here the term in [.] represent the integer part. 

Definition 3: - Riemann-Liouville (RL) definition: 
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The following function given below is obtained by 

Laplace Transform of the GL and RL fractional 

differential-integral. The zero initial conditions and 

order  gives the following result: 
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 (8) 

 
3.2. Fractional Order System     The fractional-order 

system is the extension form of the traditional integer 

order systems. Fractional order system is gained from 

the fractional-order differential equations. A classic n-

term linear fractional order differential equation 

(FODE) is assumed by: 

Let considering the control function on which input 

signal is applied to FODE system Equation (9) as 

follows: 
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After Laplace transform of Equation (10), we get: 
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From Equation (11), we can obtain a fractional-order 

transfer function as 

nssssU
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In broad, for a dynamic system with single variable and 

fractional order transfer function of a system can be 

defined as: 

n

m

sasasa

sbsbsb
sG

n

y
m










...

...
)(

10

10

10

10

 

(13) 

Here )...1,0(),...1,0( niamib ii  are constant and 

)...1,0(),...1,0( niimii   are random real or rational 
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number and without lacking generality, can be 

prescribed as 01 ...  mm and 01 ...  mm . 

The incommensurable fractional order system Equation 

(13) can also be expressed incommensurable form by 

the multi-valued transfer function: 
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(14) 

Note that every fractional order system may be 

represented in the form of Equation (14) and domain of 

H(s) meaning is a Riemann sheets. 

 

 

4. STABILITY OF FRACTIONAL ORDER SYSTEM 
 
Stability is one of the most frequent terms used in 

literature when we deal with the dynamical systems and 

their behaviors. In mathematical vocabulary, stability 

theory addresses the convergence clarifications of 

differential or difference equations. A system (LTI) is 

said to be stable if the roots of characteristics 

polynomial had negative real part. In the case of 

fractional order system (LTI), the stability is not same 

as of integer one. Important point is that, for a fractional 

order system, the roots may lie on the right half of 

complex plane Figure 2. 

Theorem: - According to Matignon’s stability 

theorem the fractional order transfer function 
)(
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thi

 root of .0)( D  

If 0s , is a single root of D(s), the system cannot be 

stable. 

Above theorem stability region is shown in Figure 2, 

Indicate the wholes s plane where 0q . It shows the 

Routh-Hurwitz stability and 1q   tends to the negative 

real axis for 2q . 

As we know that only the poles play an important 

role in the stability of a system. So the stability 

assessment is done by denominator only and numerator 

does not affect the stability of an FOTF. 

 

 
Figure 2. Stable and unstable region of LTI fractional order 
system 

The stability of fractional order system can be 

analyzed in another way also. Let considering here, the 

characteristic equation of a general fractional order 

system as: 
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For
v

vi
i  , we can transform the Equation (15) into the 

σ-plane. 
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Here m

k

s  and m is the least common multiple of ѵ. 

For a given αi, if the absolute phase of all roots of 

transform Equation (16) is )arg(  , we can close 

the following points for the stability of fractional order 

systems. 

1. The stability condition is as  .)arg(
2 mm


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2. The oscillation condition is as   .
2

)arg(
m


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If any linear time invariant (LTI) fractional order system 

satisfy the above two points then the system is stable 

otherwise unstable. 
 

 

5. FRACTIONAL ORDER CONTROLLER DESIGN 
 

Maximum of the works in fractional order control 

systems are in hypothetical nature. Controller design 

and application in run-through is very small. In this 

paper, the core objective is to spread on the fractional 

order control (FOC) to examine the system control 

performance. The fractional-order PI
λ
D

μ
 controller was 

proposed as a broad view of the PID controller with 

integrator of real order λ and differentiator of real order 

μ. The transfer function of such kind the controller in 

Laplace domain has form: 
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Here KP is the proportional gain constant KI is the 

integral gain constant and KD is the derivative gain 

constant. If λ=1and   μ=1, we obtained a classical PID 

controller. If λ=0 and   μ=0, we obtained a PD
μ
 and PI

λ
 

controller respectively. These entire controllers are the 

case of PI
λ
D

μ
 controller, which provides flexibility with 

an opportunity to adjust the dynamic property of 

fractional order control system. Two steps are used here 

to design such controllers. 

Step 1: - Design of KP 

Overshoot in percentage [Pr], settling time in second 

[Ts] and static error in percentage [Et] belongs to  

Proportional gain KP. In general, KP can be obtained by: 
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(18) 

Here Proportional gain KP is selected for minimum 

static error. 

Step 2: - Design of KD, μ, KI and λ  

To determine these values for Fractional-Order 

controller design, the following synthesis scheme is 

used here. 

Let the controller transfer function is C(s), plant transfer 

function is G(s) and a unity feedback is applied to the 

system. Phase margin of controlled system [21, 22] is: 

    )()(arg ggm jGjC
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Here jωg is the crossover frequency. Phase margin is an 

independent or constant phase. This can be 

accomplished by controller of the form: 
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Here Kplant is the gain of plant and τ is the time constant 

for the plant. 

Now from Equations (19) and (20) 
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Here for a given plant, we fix the gain margin. Put the 

gain value in Equation (21) one can find out the value of 

v. the other desired values k1 and k2 are obtained from 

Equation (20). 

Now using these constant in Equation (20), we can 

obtain a fractional I
λ
D

μ
 controller, which is a particular 

case of PI
λ
D

μ
 controller has the form 

1211
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If the value of KP is given then the full transfer function 

of fractional order controller is 

v
I

v
DP sKsKKsC   )1()(

 
    (23) 

If do a comparison with Equation(17), we can say
vandv   )1(

. 
 

 

6. CONTROLLER DESIGN USING ZIEGLER-NICHOLS 
SECOND METHOD 
 
In this method, we first set T= ∞and dT = 0. By using 

the proportional control action increase Kfrom 0 to a 

critical value crK at which the output exhibits sustained 

oscillations in the system.  

Thus, the critical gain
cK and the corresponding period

crP are determined by experiment. According to Ziegler-

Nichols method the values of the parameters
pK , iT and

dT can be obtained by the formulas shown in Table 1. 

The PID controllers tuned by the second method of 

Ziegler-Nichols rules give [15]. 
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Equation (25) shows that the PID controller has a pole 

at the origin and double zeros at
crP

s
4


. 

 
 
7. SENSITIVITY AND ROBUSTNESS ANALYSIS 
 
If the controller and plant transfer function is C(s) and 

P(s) respectively then the sensitivity function may be 

defined as: 

PC1

1  (26) 

Let the disturbance is subjected to open loop and closed 

loop system as shown in Figure 4. 

Tracking the signal for the loop shown in Figure 4, 

the exponential signal with output is  

)()(
)()(1

1
)( tysS

sCsP
ty olcl


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where, S(s) is the sensitivity function. 

To follow references closely and to reject the output 

disturbances, the sensitivity function must have a small 

magnitude at low frequencies; hence, its magnitude is to 

be less than some specified gain L [23] at some 

specified frequency 1 . 

 

 

 
Figure 3. Closed loop system for proportional controller 

 

 
TABLE 1.For critical gain and critical period 

Type of controller pK  
iT  

dT  

P 0.5 crK  ∞ 0 

PI 0.45 
crK  1/1.2 crP  0 

PID 0.6 
crK  0.5 

crP  0.125 
crP  
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Figure 4. Open and closed loop systems subject to the same 
disturbances 
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The robustness of the system occurs if the gain variation 

exists in the system and at the gain-crossover frequency 

the phase of the open-loop transfer function is to be (at 

least roughly) constant. 
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8. EXAMPLES 
 
Here we are conceding the general model [24] of DC 

motor as shown in Figure 5. The angular velocity )(t  

is controlled by the applied voltage 
aV . 

The mathematically model of the DC Motor is 

given as in Figure 6. The obtained transfer function of 

the DC Motor is 
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In most application the time constant of DC Motor is 

negligible therefore the simplified continuous 

mathematical model has the following form: 

 

 
Figure 5. General model of DC Motor 

 

 
Figure 6. Mathematical model of a DC Motor 
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where,
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m
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K
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
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also note that bm KK   

For the give DC Motor the physical parameter are as 
 6R  

1.0 bm KK  

msNK f  2.0  

22 /01.0 skgmJ   

With the help of given constant, obtained transfer 

function is 
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8.1. Controller Design by Ziegler-Nichols Method 
with Stability and Sensitivity Analysis    The first 

requirement is to find out the starting point for 
pK  and 

double zeros. 
Let start the tuning with considering the 

pK  only. 

Here the closed loop response is: 
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By the help of Routh-Hurwitz criteria, the value of PK  

for sustained oscillations is 5.62PK  

We set the value in MATLAB program with a hit 

and trial range. After putting the values in

)
1

1()( sT
sT

KsGc d
i

pZN  , we find out the controller 

transfer function
s

ss
sGcZN

18336.5234.37
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

Therefore, here the initial values are obtained. As the 

requirement of industry, we can set the value of 

maximum overshoot in programming. Generally, 

according to the better establishment of the system, the 

overshoot should be between10% to 40%. Using the 

MATLAB program, we vary the gain 120 to 30 with 

step size -0.2 and zeros as 7 to 0.3 with step size -0.2. 

Fine tuning gives the following results 

Gain (K) = 37.4and Zeros (a) = 7 

Maximum overshoot (m) =1.05 

The final close-loop transfer function of the system is: 

6.14689.41992.305.0

6.14689.41992.2
)(
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
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

sss
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 (34) 

The transfer function of open loop and closed loop 

system with sensitivity from Equation (27) is: 
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(36) 

Figure 7 shows the stability region and Figure 8 Shows 

the step response of the system. The Bode plot of open 

loop and closed loop system is shown in Figure 9. Here 

the designed controller is by Ziegler-Nichols Method. 

The specification of gain crossover frequency and phase 

margin are obtained. The phase of the given system is 

forced to be flat at 
cg  and hence to be almost constant 

within an interval around
cg . 

 

8. 2. Stability Check and Robust Controller Design 
by Fractional-Order Method    A robust controller is 

less sensitive to the parameter changes of the controlled 

system [25]. The uncertainty can be caused by non-

precise identification. The fractional order controllers 

are less sensitive to changes of controlled system 

parameters. 
The FOPDT system with parametric uncertainty can 

be represented as: 
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where,


,k and 

,k are the upper and lower limits of the 

given parameters. 

 

 
Figure 7. Pole location on Pole-Zero Map of GclZN(s) 

 

 
Figure 8. Unit step response of the closed loop GclZN(s) 
system 

 
Figure 9. Bode plots of open loop Gsol(s) and closed loop 

Gscl(s) system 
 

 

For maximum and minimum gain plot, the given system 

transfer function are shown respectively as: 

)1]([

][
)(1








ss

k
sGR


 (38) 

)1]([

][

)(2








ss

k

sGR



       (39) 

Consider the transfer function model of plant in given 

example is: 
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We are using here the technique proposed in section 4 

for fraction order controller design. According to this 

Step 1: - To design the KP 

For minimum static error the value of proportional gain 

KP=10, from Equation (40)  

Step 2: - Design of KD, μ, KI and λ 

The value of a time constant τ = 0.05 and gain of Plant 

KPlant = 0.08 respectively Equation (40). 

If we fix to gain margin ϕm>= 60
0
 for the given control 

system. Then we find out the value of v = 0.3 by 

Equation(21). The other desired value k1 = 12.5 and k2 = 

0.05 obtained from Equation (20). Now putting these 

values in Equation (22), we got  

Now add the value of KP = 10 from step 1into Equation 

(41), we got final transfer function of fractional order 

controller as: 

To make robust of the system an obtained controller 

transfer function is used with the transfer function 

3.0

7.0 5.12
625.0)(

s
ssCFO   (41) 

3.0

7.0 5.12
625.010)(

s
ssCFO   (42) 
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obtained for maximum and minimum gain as given in 

Equations (38) and (39).The open loop control system 

for controller and plant GR1(s) is: 

3.13.2

3.0

1
04.0

25.10625.0
)(

ss

ss
sG

olR



  (43) 

The close-loop transfer function of given control system 

with unity feedback is obtained as: 

)()(1

)()(
)(1

sGsC

sGsC
sG

Plant

Plant
clR


  

or 

25.10625.004.0

25.10625.0
)(

3.03.13.2

3.0

1





ssss

ss
sG

clR
 (44) 

The open loop control system for controller and plant 

GR2(s) is: 

3.13.2

3.0

2
06.0

750.003750.06.0
)(

ss

ss
sG

olR



  (45) 

The close-loop transfer function of given control system 

with unity feedback is obtained as: 

750.06.003750.006.0

750.06.03750.0
)(

3.03.13.2

3.0

2





ssss

ss
sG

clR
 (46) 

The function is stable checked the denominator of 

GR1cl(s) and GR2cl(s), it is found that K=1, indicate the 

system is stable. Here Figures 10 and 11 shows that 

system controlled by fractional order controller has 

more stability region. Figure 12 Indicate that the 

complete designed system is stable. The closed loop 

response of the system for both plants is almost same. 

This means that due to the parameter variation there is 

no such effect on the stability and system has a robust 

performance as shown in Figure 13. 

 

 

9. CONCLUSIONS 
 

On behalf of the result shown in Table 2, some 

important point may be described for tuning of the 

controller. 
 

 
Figure 10. Pole position of a closed loop system GR1cl(s) 

 
Figure 11. Pole position of a closed loop system GR2cl(s) 

 
 

 
Figure 12. Step response of closed loop system GR1cl(s) and 
GR2cl(s) 
 

 

 
Figure 13. Simultaneously unit step response of all designed 
systems 
 

 

All basic ideas of fractional calculus, the stability of 

fractional order system, sensitivity, robustness and 

MATLAB function are presented here. The robustness 

and sensitivity analysis is investigated for the given 

real-time example. The main purpose of the paper is to 

draw attention to fractional order system stability and 

analysis over a conventional way. Here an integer order 

plant is controlled by full order controller and fractional 

order controller. It concludes here that the fractional 

order system has robustness and a large region for 
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stability which improves the performance of the system. 

In Table 2 all transient parameter of fractional order 

controller design system and conventional controller 

design are given. The conventional controller design has 

a better transient response over fractional order 

controller design system. But in the fractional order, the 

larger stability region provides more flexibility in the 

system. We believe that the comparative approach used 

in this paper is useful for selecting the method of 

controller design. 

 
 
TABLE 2. Comparison for performance specification of 

designed controllers 

Controller 

design 

Ziegler-

Nichols 

Method 

Fractional-

Order 

Method 

Fractional-

Order Method 

Models Full Model Full Model Full Model 

Specifications GclZN (s) GR1cl (s) GR2cl(s) 

Rise time (s) 0.0454 0.878 0.881 

Settling time (s) 0.55 13.2 14 

Peak amplitude 1.05 1.06 1.09 

Overshoot (%) 5 6 9 

At time (s) 0.26 1.87 2.32 
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هچكيد
 

 

دانشمندان و مهندسين با اناليز و طراحی مواردی از  در این مقاله روش مقایسه ای طراحی کنترلر پيشنهاد شده است.

مشكلات واقعی مورد حل مشكلات واقعی مواجه می شوند که در اولين گام تكامل و پيدایش مدل های ریاضی برای 

توجه قرار می گيرد. مدل های ریاضی همانند یک طرح و برنامه قابل اجراست. انتگرال تابع و مشتقات تابع کاربری 

ات بالا یا مشتقات جز را در وسيعی در کنترل سيستمهای دیناميكی دارد. موارد کنترل توسط معادلات دیفرانسيل درج

ار می گيرد. ناحيه پایداردر محدوده و صفحه رری و درجه سيستم مورد بررسی قدر این مرحله پایدا بر می گيرد. 

 یگيرد. ناحيه پایدار وسيع در یكارگيری کنترل مهندسی به سيستم انعطاف پذیری ميدهد. بطور کلمی پيجيده ای قرار 

درجه کنترل اجزا  طروق حل اناليز عددی و روش تحليل تجربی بكار گرفته می شود. اگر از روش طراحی کنترل و

 بكار گرفته شود سپس کنترل پارامترها نتایج بهتری می دهد.

doi: 10.5829/ije.2018.31.02b.17 

 

 

 


