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A B S T R A C T  
 

 

Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their 

similarity is a core part of MTS analyzing process. Many of the research efforts in this context have 
focused on proposing novel similarity measures for the underlying data. However, with the countless 

techniques to estimate similarity between MTS, this field suffers from lack of comparative studies 

using quantitative and large scale evaluations.  In order to provide a comprehensive validation, an 
extensive evaluation of similarity measures for MTS data clustering is conducted. Effectivness of 

fourteen well-known similarity measures and their variants on 23 MTS datasets, coming from a wide 

variety of application domains, were evaluated experimentaly. In this paper, an overview of these 
different techniques is given and the empirical comparison regarding their effectiveness based on 

agglomerative clustering task is presented. Furthermore, the statistical significance tests were used to 

derive meaningful conclusions. It has been found that all similarity measures are equivalent, in terms 

of clustering F-measure, and there is no significant difference between similarity measures based on 

our datasets. The results provide a comparative background between similarity measures to find the 

most proper method in terms of performance and computation time in this field. 

doi: 10.5829/ije.2018.31.02b.08 
 

 
1. INTRODUCTION1 
 

In the last few years, multivariate time series (MTS) 

data have been appeared extensively in scientific 

domains [1, 2] that represent valuable information 

subject to analysis, clustering, classification, indexing, 

and interpretation [3-5]. Real-world applications include 

daily fluctuations of the stock market (financial data 

analysis[6]), electrocardiogram data mining (medical 

data processing [7]) and moving object identification 

(motion data analysis [8]). Even object shapes and 

handwriting data could be transformed to time series 

data for further analyzing. In addition, multivariate time 

series datasets are always embedded with additional 

information such as class labels, place and time of 

occurrence [9]. 

A key concept toward dealing with multivariate time 

series data is determining their pairwise similarity. In 

fact, an multivariate time series similarity (or 
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dissimilarity) measure is a core routine to many data 

mining [10], retrieval, clustering, and classification 

tasks [4, 5, 8]. Furthermore, deriving a distance, that 

correctly captures semantics and reflects underlying 

similarity of multivariate time series data, is not 

straightforward. Apart from challenges related to the 

high dimensionality of such data, calculation of 

similarity measure requires to be fast and efficient.  

The generalized framework for the task of time 

series mining encompasses: data preparation phase 

which includes sensing that explains the idea of time 

series data collection from different sources like human, 

ECG and stock data. Pre-processing step cleans the 

gathered data from missing values. Primary data 

representation referres to the methods that are used for 

representing stored information. Time series analysis is 

the most important part of the framework that includes 

similarity measures and analysis techniques. Similarity 

measure has the responsibility of calculating the 

similarity between time series data that plays an 

essential role for further analysis. Analysis section could 

include many techniques that categorize the time series 
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data in an automatic or semi-automatic way, here only 

two of the more common time series analysis techniques 

are listed, namely classification and clustering. The last 

part of the framework, but certainly not the least, is 

knowledge discovery which is totally dependent on the 

intended application and extracts applicable knowledge 

from the result of time series analysis phase for further 

investigation, such as discovery of relationship, 

characterization of data, time series-based prediction, 

traffic modelling, and even detecting abnormal 

activities. 

As a result, time series mining has been receiving 

much attention in the past decade, which resulted in a 

large number of studies, introducing approaches for 

querying, classifying, and clustering of time series. 

However, mining of time series data can be challenging 

due to the fact that single continuous data may result in 

countless different discrete time series representations. 

One of the key aspects for achieving effectiveness and 

efficiency when analyzing a time series is measuring the 

similarity of two time series. The similarity measure is a 

real-valued function which reflects the similarity 

between time series that could be the inverse of distance 

function over time series. By contrast, unlike the 

conventional straightforward distance definition, the 

definition of distance between time series should 

precisely quantify the similarity (dissimilarity) between 

time series which is desirable for retrieval, 

classification, clustering and other analyzing routines of 

time series. 

In the recent decade, researches on time series 

similarity measures have become popular. Many 

techniques have been proposed to measure the time 

series data similarity. Although literature covers a wide 

variety of such similarity measures, this work will focus 

on most cited techniques which emerge repeatedly 

throughout related works. For example, Euclidean 

distance (ED) [11], Dynamic Time Warping (DTW) 

[12, 13], Weighted DTW (WDTW) [2], Longest 

Common Subsequence (LCSS) [14], Edit Distance on 

Real sequences (EDR) [15], Edit Distance with Real 

Penalty (ERP) [16], Sequence Weighted Alignment 

model (SWALE) [17], Time Warp Edit Distance 

(TWED) [18], the Move-Split-Merge distance (MSM) 

[19], Hausdorff, Fréchet [20, 21], Symmetrized 

Segment-Path Distance (SSPD) [22], derivative DTW 

(DDTW) [23], and Complexity Invariant DTW 

(CIDTW) [24] are studied in this work. 

Few researchers have addressed the problem of 

finding the best similarity measure for time series 

analysis. Preliminary work was carried out by Ding et 

al. [25], who compared and discussed nine different 

similarity measures over 38 diverse fixed-length 

univariate time series datasets for the classification task.  

There exist some other extensive experimental works in 

time-series classification that examine a number of 

similarity measures for the time-series based on 1-

nearest neighbor classification task to compare their 

strength and weakness [26-29]. A key limitation of 

these works is that all of the comparative studies 

consider only univariate time series data. Another issue 

is that all of the cited researchers use classification task 

for comparing similarity measures.  

Unfortunately, even despite some works in the area, 

it is still unclear which similarity measure is more 

appropriate for the multivariate time series clustering 

task. However, with the multitude of competitive 

techniques, we believe that there is a strong need for a 

comprehensive comparison of similarity measures in 

multivariate time series data clustering context that has 

drawn the most attention from data mining researchers. 

Every newly proposed similarity measure has claimed a 

kind of superiority over some of the existing methods. 

On the other hand, their empirical evaluations have not 

been the same and perhaps adequate. This has not only 

confused newcomers and specialists, but also led to the 

use of a wrong methods based on incomplete and not 

generalized results. 

To address these problems, an empirical evaluation 

of similarity measures for multivariate time series 

clustering was performed. As for the considered 

measures, we decided to include nine elastic similarity 

measures, as these were found the state-of-the-art 

similarity measures. Apart from these nine, we chose 

three geometry-based and two differential-based 

similarity measures that were not considered in earlier 

studies.  The main contributions of this work can be 

summarized as follows: 1) an extensive summary and 

background of the considered similarity measures is 

presnted with basic formulations. 2) The time efficieny 

of 14 investigated similarity measures are compared 

over 23 highly diverse multivariate time series datasets. 

3) Similarity measures effectiveness and efficiency are 

evaluated  using agglomorative clustering technique. 4)  

Statistical significance tests are used to evaluate the 

superiority of given similarity measures. 
 

 

2. PRELIMINARIES 
 

Typically, a multivariate time series data is a temporal 

sequence which is sampled from a continuous signal. 

For simplicity and without any loss of generality, the 

multivariate time series data are considered discrete 

hereafter.  

Definition 1. Let X  be a set of multivariate 

instances along the time which forms a multivariate 

time series data. The multivariate time series dataset is 

defined as follow: 

 1,  ,  nX X 
X

X  (1) 

where kX  is a multivariate time series instance and nX   
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is the number of multivariate time series data in X  

dataset. 

Definition 2. Each multivariate time series data is 

formally defined as a sequence of pairs: 

     
 

,1 ,1 , , , ,, , , , , , , ,

1, ,

k kk k k k i k i k n k n

k

X x t x t x t

i n

   
 

  

 (2) 

where each ,
d

k ix R  is an instance in d -dimensional 

space, each ,k it R  is a temporal index at which the 

corresponding ,k ix  occurs and kn  is the number of 

samples in multivariate time series data kX . 

Definition 3. A piecewise linear multivariate time 

series is a set of line segments that are bounded between 

successive multivariate time series instances which is 

defined as: 

 ,1 , , 1, , , ,
kk k k i k nXs xs xs xs     (3) 

where each 2
,

d
k ixs R  is a line-segment , , 1k i k is s   of 

kXs  that is bounded between ,k ixs  and , 1k ixs  . 

As a basic measure to find the distance between 

multivariate time series data samples, the Euclidean 

metric [11] is used in the rest of this paper as follows:  

   
2

, , , ,

1

,  

d
dim dim

eucl k i l j k i l j

dim

d x x x x



   (4) 

where  , ,,eucl k i l jd x x  is the Euclidean distance between 

two d -dimensional time series samples sample ,k ix  and 

,l jx . 

Furthermore, the point-to-segment  distance is 

defined as a minimum Euclidean distance between 

sample points and given multivariate time series 

segment as revealed by: 

   

 

,      , ,, ,

, 2 , , ,, ,
min

,, , 1

proj proj
d x x x xseucl k i l jk i l j

d x xsp s k i l j d x xeucl k i l j

d x xeucl k i l j

      


 
 

   

if

otherwise

 (5) 

where ,
proj
k ix  is the orthogonal projection of multivariate 

time series data sample ,k ix  on the multivariate time 

series segment ,l jxs  and  2 , ,, p s k i l jd x xs  is the point-to-

segment distance between ,k ix  and ,l jxs . 

A similarity measure is a numerical description of 

the objects similarities. Usually the inverse of distance 

is considered as a relative definition for similarity 

measure, by taking large values for showing the low 

similarity and vice versa. In the time series analysis 

subject, close time series with the same shape and 

behavior are considered similar, regardless of having 

unequal samples and speed. Also, in this paper the 

distance function is defined as    1 2 1 2, : 0,D X X n n    

which can be included with following conditions [30]: 

1) non-negativity  1 2, 0D X X   

2) identity of indiscernible  1 2 1 2, 0D X X X X    

3) symmetry    1 2 2 1, ,D X X D X X  

4) triangle inequality      1 2 1 2 2 3, , ,D X X D X X D X X   

The first condition is inferred by the others. If (1) 

and (2) are satisfied, the distance function is positive-

definite. Conditions (1), (2) and (3) together define 

symmetric function. If all of these conditions are 

satisfied, the function is considered to be a metric. The 

following properties should be existing for the desired 

distance function in the task of time series analysis: 

 Measure the shape similarity of two time series 

 Measure the physical closeness between two time 

series 

 Compare time series with inconsistent temporal 

indexing 

 
 
3. MULTIVARIATE TIME SERIES SIMILARITY 
MEASURES 
 
In this section, common time series similarity measures 

developed in the literature are reviewed. The 

multivariate time series similarity measures compare 

overall shape of the time series by measuring closeness 

of time series. Similarity measures can be divided into 

four main categories as follows: 

 
3. 1. Lock-Step Measures       Methods in this 

category compare multivariate time series data samples 

one by one based on the temporal index. It means 

comparison of the 𝑖-th sample of one time series to the 

𝑖-th sample of another. This kind of measures are 

limited to multivariate time series with equal length that 

is not applicable for most of the cases. ED [11, 31] and 

correlation are two famous lock-step similarity 

measures. Figure 1 shows the intuition behind Lock-step 

measures. 

 

3. 2. Elastic Measures       In the elastic measure 

category, the problem of aligning multivariate time 

series with different speed, different sampling rate, and 

inconsistent temporal scales is resolved by warping the 

temporal dimension. The basic idea of these methods is 

the Levenstein Distance (LD) [32], also known as edit 

distance, which is the smallest number of insertions, 

deletions, and substitutions needed to change one string 

to another. The elastic distance and warping path 

between two 2-d multivariate time series examples is 

given in Figure 2. 
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Figure 1. An illustration of a Lock-step measure (one-to-one 

mapping of MTS samples). 

 
 
3. 2. 1. DTW       The dynamic time warping, which 

shares many similarities with LD, was proposed in 1970 

and 1971 to align multivariate time series with time 

shift tolerances [12, 13]. DTW distance applies local 

scaling of the temporal dimension. It guarantees to keep 

the order of multivariate time series samples and also it 

is sensitive to noise. 

 
3. 2. 2. Constrained DTW       Constrained DTW is 

one of the most useful variants of DTW to speed up and 

control deviation from the diagonal path (one-to-one 

matching). cDTW similarity measure constrains 

temporal scaling with Sakoe-Chiba Band [33], which 

consider a sliding window for temporal deviation. The 

size of sliding windows greatly affects quality of 

calculated similarity measure. 

 
3. 2. 3. Weighted DTW       Weighted DTW technique 

weighs each multivariate time series sample according 

to the temporal deviation [2]. Actually, it is a penalty 

weight that is proportionate to the warping difference 

and it is a soft version of cut-off cDTW.  

 

 

 
Figure 2. An example of an elastic measure (one-to-many 

mapping of MTS samples). 

3. 2. 4. LCSS       LCSS measures the longest common 

subsequence between multivariate time series based on 

the concept of edit distance [14]. Original LCSS 

measure is increased with the matching concept 

between two sequences. LCSS distance is robust against 

noise by using the threshold value on the distances 

between time series samples [25]. 

 

3. 2. 5. EDR       EDR is another edit distance based 

similarity measure like LCSS that works by assigning a 

penalty to the gap between matched multivariate time 

series samples based on the length of the gap [15]. The 

method using a distance threshold to find a valid match 

between multivariate time series data samples. 

 

3. 2. 6. ERP       ERP is an edit-based measure that uses 

the merits of DTW and EDR, by considering a reference 

point for computing the distance where there is a gap in 

multivariate time series aligning [16]. The motivation 

for introducing the ERP is making EDR as a metric 

distance with a real penalty that defined by the distance 

to the reference point. 

 

3. 2. 7. SWALE       Morse and Patel proposed SWALE 

similarity measure based on edit distance that rewards 

matching and penalizes gaps [17]. In addition, the 

matching threshold is still used to find matching against 

noise. 

 

3. 2. 8. TWED       Marteau et al. [18] presented TWED 

metric distance that encompasses both LCSS and DTW 

characteristics. They redefine edit distance operations 

for measuring similarity. The originality of TWED lies 

in the way to control the stiffness, which is a 

multiplicative penalty that penalizes the deviation in the 

temporal dimension, unlike the constrained DTW that 

limits the deviation in the temporal dimension. 

 

3. 2. 9. MSM       Stefan et al. introduced the MSM 

metric that conceptually is an edit-based approach [19]. 

In this method, the similarity is estimated by presenting 

a set of new operations. Move, split and merge defined 

as three MSM operations with an associated cost. The 

Move operation is equivalent to substitute operation in 

the edit-based distance. Split and merge operations are 

different from insertion and deletion, however, it is 

achievable by combining MSM operations. The 

operation cost is not the same and they depend on the 

value of adjacent multivariate time series samples. 

 

3. 3. Geometry-based Measures       This kind of 

measures uses the shape as a geometric feature of the 

multivariate time series.  

 

3. 3. 1. Hausdorff       The Hausdorff distance shows 

the spatial similarity between two multivariate time 
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series that measures how multivariate time series are far 

from each other [34]. If every sample of either 

multivariate time series is close to some other 

multivariate time series samples, then the Hausdorff 

distance will be low. Conventional Hausdorff distance 

considers not only the sampling point, but also every 

point of the sequences, thus it is a costly measure. The 

simple version of it, was proposed based on point to 

segment distance. Finally, the largest mismatched 

distance is selected that determines the value of 

unidirectional Hausdorff distance. Hausdorff can 

tolerate point disturbances, but it is sensitive to noise. 

 

3. 3. 2. Frechet       The Fréchet method considers the 

data samples with their orders along the continuous 

sequences [21]. Imagine a dog and dog’s owner walking 

on two paths with keeping continuity from the start 

point to the end point. The shortest leash which is 

needed to connect the dog and its owner is the Fréchet 

distance between two traversed paths (time series). The 

free space is defined to simplify the computation of the 

Fréchet distance. That is a set of two time series points 

whose pair distance is less than a threshold. By finding 

the minimum value of the threshold, the Fréchet 

distance is achieved. The shortest distance that needs to 

connect is the Frechet distance between two 

multivariate time series. Eiter et al. [20] presented the 

discrete Fréchet (disFréchet) distance to approximate 

the exact Fréchet distance efficiently based on the 

recursive model. This method has reduced the 

complexity of discrete Fréchet distance. 

 

3. 3. 3. SSPD       The Symmetric Segment Path 

Distance (SSPD) is dependent on the point-to-segment 

distance like the Hausdorff [22]. The SSPD distance 

computes the minimum point-to-segment distance for 

every point of the first multivariate time series in all 

segments of the other one. Afterward, the average of the 

computed distance of every multivariate time series 

sample is reported as SSPD distance. 

 
3. 4. Differentia-based MeasuresTW       The first 

order difference of multivariate time series is the basis 

of similarity measures in this category. 

 

3. 4. 1. DDTW       Gorecki and Luczak introduced a 

derivative based distance that is a weighted combination 

of the DTW distance of raw multivariate time series 

with the first-order multivariate time series differences 

[23]. The weighting parameter could highly affect the 

method efficiency. 

 

3. 4. 2. CIDTW       Batista et al. [24] presented the 

CIDTW similarity measure as a weighting method to 

compensate the complexity difference of two comparing 

multivariate time series with the summation squares of 

the first-order difference. This weight is a multiplicative 

complexity-based value that weighs the DTW distance. 

A summary of the mentioned similarity measures is 

shown in Table 1. The first column shows the category 

of similarity measures, the second column is the method 

name with references. Mathematic definitions are 

presented in the third column. In the fourth and fifth 

columns, distance type and time complexity are given, 

respectively.  

 
TABLE 1. A summary of multivariate time series similarity measures 

Method [Ref]  , 1 2D X Xmethod  Time Complexity 

DTW [13] 

 
    

  
  

0 if   0 and  01 2

if   0 or  01 2

,1 2

, min  ,  otherwise1, 2, 1 2

, 1 2

n n

n n

D rest X rest XDTW

d x x D rest X Xeucl i j DTW

D X rest XDTW

 

  




 



 

 .1 2O n n  

WDTW [2] 
 

    
  

  

0 if   0 and  01 2

if   0 or  01 2

,1 2

, min  ,  otherwise1, 2, 1 2

, 1 2

n n

n n

D rest X rest XDTW

w x x D rest X Xi j DTW

D X rest XDTW

 

  




 



,  
 

 
 

, ,1, 2, 1, 2,
/2

1

wmaxw x x d x xi j eucl i j
g i j m

e

 
   



 

 .1 2O n n  

LCSS [14] 

 

 

, 1 2
1  

min , 1 2

LCSS X X

n n
 ,         

  
  

0 if   0 or  01 2

, , 1 if   ,1 2 1 2 1, 2,

, 1 2
max  otherwise

, 1 2

n n

LCSS X X LCSS rest X rest X d x xeucl i j

LCSS rest X X

LCSS X rest X

 

  





 ٍ 
 .1 2O n n  

EDR [15]       
  

  

if   02 1

if   01 2

, ,1 2 1, 2,

min  ,  1 otherwise1 2

,  11 2

n n

n n

D rest X rest X subcost x xEDR EDR i j

D rest X XEDR

D X rest XEDR





 




 


,    0 if   ,1, 2,
,1, 2,

1 otherwise

d x xeucl i j
subcost x xEDR i j

 
 


 ٍ
 

 .1 2O n n  
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ERP [16] 

 

 

      
    

    

2

1

, if   02, 1

1

, if   01, 2

1

, ,1 2 1, 2,

min  ,  , otherwise1 2 1,

,  ,1 2 2,

n

d gap x neucl j

j

n

d x gap neucl i

i

D rest X rest X d x xERP eucl i j

D rest X X d x gapERP eucl i

D X rest X d gap xERP eucl j









 





 





 

 .1 2O n n  

SWALE [17]       
  

  

if   02 1

if   01 2

, if   ,1 2 1, 2,

, 1 2
max otherwise

, 1 2

n g nc

n g nc

D rest X rest X r d x xSWALE m eucl i j

D rest X X gSWALE c

D X rest X gSWALE c

 

 

 

 




 ٍ  .1 2O n n  

TWED [18] 

      
    

    

0 if   0 and  01 2

if   01

02

, ,1 2 1, 2,

min  ,  , otherwise1 2 1, 1,  1

,  ,1 2 2, 2,  1

n n

n

n

D rest X rest X cost x xTWED match i j

D rest X X cost x xTWED delete i i

D X rest X cost x xTWED delete j j

 

 

 

 



 

  

, 

     , 2 * * , ,1, 2, 1, 2, 1, 1 2, 1cost x x i j d x x d x xmatch i j eucl i j eucl i j     

   , ,, ,  1 , ,cost x x d x xdelete k i k i eucl k i k j     

 .1 2O n n  

MSM [19] 

 

    

    

      

  

, if   1 and  11,1 2,1 1 2

,  , , if   1 and  11 2 1, 1, 1 2,1 1 2

,  , , if   1 and  11 2 2, 1,1 2, 1 1 2

, ,1 2 1, 2,

min ,  ,1 2 1,

d x x n neucl

D rest X X cost x x x n nMSM MSM i i

D X rest X cost x x x n nMSM MSM j j

D rest X rest X d x xMSM eucl i j

D rest X X cost xMSM MSM i

 

  

  



  

    

, otherwise1, 1 2,

,  , ,1 2 2, 1, 2, 1

x xi j

D X rest X cost x x xMSM MSM j i j




 

  

, 

   

 

if    or 2 1 3 2 1 3

,, , , 1 21 2 3
min otherwise

,1 3

c x x x x x x

d x xcost x x x c euclMSM
c

d x xeucl

   


  
 



 

 .1 2O n n  

Hausdorff [34] 

  

  

2, 21, 1

1, 12, 2

max min ,2 1, 2,

max
 

max min ,2 2, 2,

ji

ji

d x xsp s i j
xs Xsx X

d x xsp s i j
xs Xsx X

  
   

     


   
  
    

  .1 2O n n  

disFréchet [20] 

 

  

 

  

 

    
  

, if   1 and  11,1 2,1 1 2

,1 2
max if   1 and  11 2

,1, 2,1

,1 2
max if   1 and  11 2

,1,1 2,

,1 2

min ,1 2
 max

 

d x x n neucl

D rest X XdisFréchet
n n

d x xeucl i

D X rest XdisFréchet
n n

d x xeucl j

D rest X rest XdisFréchet

D rest X XdisFréchet

 


 






 


 

 

  

 

otherwise,1 2

,1, 2,

D X rest XdisFréchet

d x xeucl i j

 
 








 
 .1 2O n n  

SSPD [22] 
 

 
 

 
1 2

2 1

1 1
min , min ,2 1, 2, 2 2, 1,

2 21, , 1 1, , 11 2
1 1

n n

d x xs d x xsp s i j p s i j
n nj n j n

i i


     

 

    .1 2O n n  

DDTW [23]       cos , sin , 1 2 1 2D X X D diff X diff XDTW DTW      .1 2O n n  

CIDTW [24]  

 

 

 

 

1
max

  2
,1 2

1
min

  2

complexity X

complexity X
D X XDTW

complexity X

complexity X










,     
2

complexity X diff X    .1 2O n n  
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4. EVALUATION FRAMEWORK 
 
4. 1. Computation Time       The time required to 

compute the distance matrix for all multivariate time 

series datasets is calculated as a criterion to compare the 

computation cost between different similarity measures. 

 

4. 2. Clustering Scheme       The selected clustering 

techniques and the clustering evaluation are examined 

in this section. We will study different clustering 

methods obtained with the same algorithm but with 

mentioned measures to evaluate considered similarity 

measures. The choice of clustering technique is limited 

by the characteristics of multivariate time series data. K-

means algorithm and spectral clustering cannot be used 

for multivariate time series data [22]. Dbscan and k-

medoid clustering can be used, but they are not 

efficient. As a matter of fact, these algorithms are based 

on the nearest neighbor and required to be metric [22]. 

Most of the studied similarity measures are not metrics. 

To cluster the multivariate time series datasets, we 

will focus on hierarchical cluster analysis (HCA). 

Indeed, the HCA does not need the metric similarity 

measure. Also, the HCA does not need any extra 

parameters and only need the similarity matrix, thus it 

can cluster multivariate time series with different length. 

The agglomerative HCA with seven different linkage 

options was used in our experiments [35, 36].  

A clustering algorithm aims to group a set of objects 

in such a way that objects in the same group are more 

similar to each other than to those in other clusters. In 

order to evaluate the quality of clustering F -measure 

criterion was used. Since the labels returned by a 

clustering run are arbitrary and the ground-truth label 

for datasets is available, the F -measure criterion was 

used as follows [37]: 

 
*

*

*

*1,  , 
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where iC  is the i -th ground truth class, *
jC  is the j -th 

cluster, N  is the number of multivariate time series in 

dataset, 
iCN  is the number of multivariate time series in 

iC , Ck  is the number of ground truth class in C  and 

*C
k  is the number of clusters in *C . 

In this study, Ck  and *C
k  are assumed to be always 

equal. As the characteristics of used multivariate time 

series datasets, that will be discussed in section 4.4, the 

number of clusters is known and will be used directly. 
 

4. 3. Parameter Tuning       Several investigated 

similarity measures have one or more controlling 

parameters that choosing these parameters directly 

affects the measures productivity. 

TABLE 2. Parameter grid for the considered similarity 

measures (recall that 1n  and 2n  corresponds to the length of 

the input multivariate time series) 

Measure Parameter Min Max Steps 

cDTW 
Windows - 

  1 2n n  25%max( , )1 2n n  5 

WDTW 
Curvature - 

g  0  1  5 

LCSS 
Threshold - 

 ٍ 
2%  ( )

k
std xX  ( )

k
std xX  5 

EDR 
Threshold - 

 ٍ 
2%  ( )

k
std xX  ( )

k
std xX  5 

ERP 
Penalty - 

gap  0  3. ( )
k

std xX  3 

SWALE Reward - rm  50   ( )
k

std xX  - 

SWALE Penalty - gc  0  rm  5 

SWALE 
Threshold – 

 ٍ 
2%  ( )

k
std xX  ( )

k
std xX  5 

TWED Stiffness -   510  010  5 

TWED Penalty -   0  ( )
k

std xX  5 

MSM Cost - c . 2 1 0 1 2 3 4 510 ,1  0 ,1  0 ,1  0 ,1  0 ,1  0 ,1  0 ,1 { }0   

DDTW Ratio -   1  / 2  5 

 
 

In this experiment, the grid search within a suitable 

range of parameters was used that can be chosen 

according to the given specification in the introducing 

papers of each measure, as described in Table 2. 

For each similarity measure, we analyze the  F -

measure for 14 different clustering variations. The 

parameter with the best F -measure for the highest 

number of clustering variations was s selected as the 

similarity measure parameter and the other similarity 

measure parameters were discarded. Finally, the 

selected parameter was used to evaluate final F -

measure. 

 
4. 4. Datasets       Experiments were performed using 

23 publicly-available labeled multivariate time series 

datasets with varying properties that are presented 

briefly in Table 3. They include synthetic, as well as 

real-world datasets. There are some criteria to 

characterize the datasets such as the number of time 

series, average length of time series and average shape 

complexity [38] as mentioned in Table 3.  

The shape complexity can be calculated as follows: 
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where, 
kX  is the shape complexity of time series kX  

and 
, k ixsl is the length of multivariate time series 

segment , k ixs . 

4. 4. Statistical Significance       The non-parametric 

rank-based test is an accepted statistic for comparing the 

performance of  cln  clustering with different similarity 

measures over nX  datasets [39, 40]. A null hypothesis 

assumes that the average performance rank of cln  

similarity measures on nX  multivariate time series 

datasets are the same (not significantly different). There 

is an alternative hypothesis against the null hypothesis 

which assumes at least one measure’s mean rank is 

different. The M  is a nX  by cln  matrix that includes 

the F -measure value of clustering results. At the first 

stage, the performance rank of each similarity measure 

was evaluated for each dataset separately and make the 

 

 

 
TABLE 3. Datasets characterization 

Dataset [ref] Size #Class kX  Source Type 

ASL-10 [14] 699 10 0.03 Australian 
Sign 

Language 

Real 

ASL-35[41] 700 35 0.02 Real 

VMT [42] 1500 15 0.87 Vehicle Real 

SM [42] 2500 50 0.25 Vehicle Synthetic 

CROSS [43] 1900 19 0.81 Vehicle Real 

I5 [43] 806 8 1.00 Vehicle Real 

I5SIM1 [43] 800 8 0.81 Vehicle Synthetic 

I5SIM2 [43] 1600 8 0.60 Vehicle Synthetic 

I5SIM3 [43] 1600 16 0.60 Vehicle Synthetic 

LABOMNI [43] 209 15 0.49 Human Real 

FT [44] 3102 2 0.61 Fish Real 

HC-digit [45] 198 9 0.47 Hand 

written 

Real 

HC [45] 1363 35 0.47 Real 

CAL1 [46] 400 2 0.88 Human Synthetic 

CAL2 [46] 670 3 0.88 Human Synthetic 

CAL3 [46] 900 4 0.88 Human Synthetic 

CAL4 [46] 1210 5 0.79 Human Synthetic 

CAL5 [46] 1130 8 0.75 Human Synthetic 

CAL6 [46] 380 3 0.76 Human Synthetic 

CAL7 [46] 220 3 0.95 Human Synthetic 

CAL8 [46] 120 18 0.85 Human Synthetic 

CAL9 [46] 300 4 0.66 Human Synthetic 

SIGNATURE 

[47] 
1600 40 0.20 Human Real 

matrix R , where the ijr  element shows the rank of the 

thj  similarity measure on the thi  dataset. The rank of 

measures with the equal F -measure were averaged. 

The average rank of each measure was denoted as 
1

j ij

i

R r
n

 
X

. Under the null hypothesis, the ranks of all 

similarity measures were equal, the Friedman statistics 

[48] FF  can be approximated by F-distribution with 

 1cln   and   1 1cln n X  degree of freedom as follow: 
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where FF  is the Friedman statistics value. 

If the null hypothesis is rejected based on the test 

results, the further family-wise comparisons will be 

needed. The Holland [49] post-hoc method was used to 

compensate multiple family-wise comparisons. 

 

 

5. RESULTS 
 
In this section, the effectiveness of 14 similarity 

measures include: DTW, cDTW, WDTW, LCSS, EDR, 

ERP, SWALE, TWED, MSM, Hausdorff, disFréchet, 

SSPD, DDTW, and the CIDTW are evaluated over 23 

publicly-available datasets. The computational time and 

the results of the clustering technique using each of 

mentioned similarity measures are compared.  

All distances have been implemented in MATLAB 

and Mex and are available in the time series analysis 

package available on github
2
. The entire simulation was 

conducted on a CORE-I7 computer with 16GB of RAM 

running for over a month. 

5. 1. Time Complexity       The time required to 

compute the distance matrix for all multivariate time 

series datasets was calculated as a criterion to compare 

the computation cost between different similarity 

measures. In Figure 3, the total time needed to compute 

the considered similarity measures for all multivariate 

time series datasets is shown. 

It should be mentioned that all considered similarity 

measures, except cDTW technique, run in o  1 2. n n  but 

this is slightly confounded when considering parameter 

options. WDTW is the similarity measure that requires 

the most computation time. The cDTW measure shows 

the lowest total time, it is predictable because it has a 

lower complexity than other competitors. 

 

 

                                                           
2
 https://github.com/amirsalarpour/Time-Series-Similarity 
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TABLE 4. The F -measure for all considered similarity measures and multivariate time series datasets. The last row is the average 

rank of each measure across all datasets. The best performances are bolded 

Dataset 
Similarity measures 

DTW cDTW WDTW LCSS EDR ERP SWALE TWED MSM Hausdorff disFréchet SSPD DDTW CIDTW 

ASL-10 0.946 0.946 0.947 0.944 0.947 0.946 0.947 0.947 0.919 0.900 0.830 0.911 0.889 0.947 

ASL-35 0.938 0.962 0.953 0.914 0.943 0.930 0.962 0.943 0.927 0.812 0.863 0.927 0.925 0.937 

VMT 0.950 0.950 0.963 0.942 0.910 0.882 0.956 0.940 0.930 0.950 0.950 0.945 0.961 0.951 

SM 0.979 0.978 0.979 0.979 0.972 0.962 0.962 0.977 0.976 0.969 0.955 0.977 0.978 0.974 

CROSS 0.866 0.866 0.869 0.973 0.832 0.816 0.970 0.995 0.971 0.994 0.994 0.991 0.867 0.869 

I5 0.807 0.863 0.807 0.953 0.936 0.834 0.943 0.906 0.900 0.717 0.730 0.982 0.863 0.902 

I5SIM1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 1.000 

I5SIM2 0.895 0.895 0.895 1.000 0.940 0.711 1.000 0.895 0.895 1.000 1.000 1.000 0.895 0.895 

I5SIM3 0.906 0.906 0.906 0.999 0.924 0.916 1.000 0.899 0.954 0.856 0.835 0.855 0.936 0.906 

LABOMNI 0.880 0.880 0.880 0.879 0.820 0.824 0.921 0.846 0.868 0.860 0.954 0.863 0.886 0.880 

FT 0.995 0.995 0.995 0.995 0.938 0.995 0.995 0.924 0.908 0.991 0.991 0.995 0.991 0.991 

HC-digit 0.842 0.876 0.893 0.927 0.884 0.905 0.927 0.930 0.925 0.898 0.916 0.916 0.894 0.925 

HC 0.920 0.931 0.920 0.974 0.974 0.922 0.974 0.936 0.921 0.949 0.958 0.878 0.941 0.965 

CAL1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

CAL2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

CAL3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

CAL4 0.924 0.927 0.919 0.972 0.963 0.924 0.934 0.943 0.938 0.895 0.957 0.909 0.927 1.000 

CAL5 0.944 0.944 0.944 0.930 0.941 0.944 0.964 0.965 0.962 0.940 0.950 0.950 0.950 0.946 

CAL6 0.996 0.996 0.996 0.984 0.984 0.996 0.981 0.984 0.984 0.974 0.974 0.982 0.982 0.996 

CAL7 0.920 0.920 0.920 0.931 0.931 0.920 0.931 0.920 0.923 0.901 0.926 0.920 0.920 0.984 

CAL8 0.771 0.771 0.771 0.900 0.906 0.771 0.924 0.873 0.859 0.800 0.802 0.748 0.771 0.854 

CAL9 0.955 0.955 0.955 0.943 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.996 

SIGNATURE 0.976 0.957 0.970 0.954 0.968 0.908 0.974 0.968 0.953 0.941 0.954 0.956 0.958 0.954 

Average Rank 8.09 7.48 7.17 6.26 7.24 9.52 4.54 6.65 8.15 9.67 7.93 8.13 8.11 6.04 

 

 

 
Figure 3. Total computation time in seconds for all considered 

similarity measures 

DTW, LCSS, EDR, and SWALE measures all 

having the same order of time complexity, are the 

fastest computed methods after cDTW. All differential 

based and elastic measures need to compute the ED 

between a pair of multivariate time series samples and 

the only difference is their cost function. Hausdorff and 

SSPD measures were also computed in the same way, 

hence it explains why they have almost the same 

computation time.  

 

5. 2. Analysis of Clustering       The performances of 

considered similarity measures on each multivariate 

time series dataset are presented in Table 4. Every 

column includes the F -measure value of the best 
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clustering variant among different similarity measure 

parameters and different HCA options. The best 

performance over each multivariate time series dataset 

was bolded. The last row contains the average rank of 

each measure across all datasets that is the average 

position after sorting the F -measure for a given dataset 

in descending order. 

It is observable that the SWALE perform as the best 

similarity measure based on average rank. It should be 

noted, the SWALE technique uses three different 

contrlling techniques in a same measure to produce the 

similairty. It gains from collaborating the distance 

threshold, penalty and reward options in calculating the 

similarity and need three parameters to set. Although, 

the SWALE technique has more parameters, that need 

to be optimised, but if the proper values are chosen, it 

colud be well similarity measure between time series. 

Figure 4 presents the behavior of SWALE, as the 

best measure based on average rank, versus each 

competitor based on the number of datasets, where 

SWALE produces respectively better performance, 

equal performance, and worse performance compared to 

each of them. The goal of this experiment was to 

compare the competitive performance of SWALE based 

on clustering compared to other similarity measures. As 

can be seen from Figure 4, the LCSS measure has the 

lowest number of datasets that works worse than 

SWALE. On the opposite side, the TWED technique 

has the highest number of datasets where its 

performance is better than SWALE. 

To provide a more intuitive illustration of the 

performance of the similarity measures compared to the 

SWALE as the best performer on our datasets based on 

the average rank, the pairwise comparison conducted 

through the scatter plot was used. In a scatter plot, the 

F -measure of the SWALE was used as the y  

coordinate of a dot and the F -measure of the similarity 

measure under comparison was used as  x  coordinates of 

a dot, where each dot represents a particular dataset. 

 

 
Figure 4. The number of datasets which SWALE produced 

better, equal, or worse performance compared to other 

similarity measures 

Each scatter plot has the label “SWALE versus A”, a 

plot above the line indicates that SWALE is a better 

performer than A. The further a dot is from the line, the 

greater the margin of F -measure improvement.  

The more dots on one side of the line indicates that 

the better one similarity measure is compared to the 

other. The performance of SWALE against its elastic 

competitors is shown in Figure 5. It can be observed in 

Figure 5 (c) that the effectiveness of SWALE is slightly 

better than that of LCSS.  

 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

  

(g) (h) 

Figure 5. Pairwise comparison of SWALE against elastic 

similarity measures. (a) SWALE vs DTW, (b) SWALE vs 

cDTW, (c) SWALE vs WDTW, (d) SWALE vs LCSS, (e) 

SWALE vs EDR, (f) SWALE vs ERP, (g) SWALE vs TWED, 

and (h) SWALE vs MSM 
 

 

   

(a) (b) (c) 

  

(d) (e) 

Figure 6. Pairwise comparison of SWALE against geometry-

based and differential-based similarity measures. (a) SWALE 

vs Hausdorff, (b) SWALE vs disFréchet, (c) SWALE vs 

SSPD, (d) SWALE vs DDTW, and (e) SWALE vs CIDTW 
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As can be seen in Figure 5, except part (c), the SWALE 

measure is clearly superior over DTW, cDTW, EDR, 

ERP, TWED, and MSM measures. 

Figure 6 depicts the performance of SWALE against 

its geometry-based and differential-based competitors. 

As shown in Figure 6 (a)-(c) SWALE measure is clearly 

superior to Hausdorff, disFréchet, and SSPD similarity 

measures on tested datasets.  

It can be observed in Figure 6 (c) that the 

effectiveness of SWALE is slightly better than that of 

LCSS. As can be seen from Figure 6, except the part (c), 

the SWALE measure is clearly superior to DTW, 

cDTW, EDR, ERP, TWED, and MSM measures. From 

Figure 6 (d), it can be seen that SWALE is a better 

performer than DDTW measure. Figure 6 (e) shows 

SWALE measure largely outperforms the CIDTW 

meaure. 

 

5. 3. Analysis of Statistical Significance       The 

Friedman (Iman-Davenport) test results, with having 14 

similarity measures and 23 datasets, is equal to 2.5743 

according to F-distribution. Hence, the null hypothesis 

is rejected based on the F-distribution with 13 and 

13*22 degree of freedom and with p-value 0.0022 at a 

high confidence level. 

Demsar [39] recommends grouping classifiers into 

cliques, within which there is no significant difference 

in rank. This allows the average ranks and groups of not 

significantly different classifiers to be plotted on an 

order line in a graph referred to as a critical difference 

diagram. In this way, Figure 7 shows the critical 

statistical difference diagram for 14 similarity measures 

over the 23 datasets.  

As shown in Figure 7 there is no similarity measure 

that significantly outperforms the others. There are four 

cliques within which no significant difference is 

observed. The top clique contains all but ERP and 

Hausdorff. It means there is no significantly difference 

between similarity measures (other than ERP and 

Hausdorff) for the clustering task based on our 

multivariate time series datasets. These results do not 

lend any support to each of similarity measure over 

other multivariate time series similarity measures. 

 

 

 

 
Figure 7. The average ranks for 14 similarity measures over 

23 datasets 

 

5. CONCLUSIONS 
 
In this paper, 14 similarity measures on 23 publicly 

available datasets with different characteristics for 

multivariate time series data were extensively evaluated. 

The computation time and clustering performance were 

evaluated and discussed in detail. Clustering 

performance was assessed in terms of F -measure and 

statistical significance. Our main findings are as 

follows: 

- The WDTW and cDTW methods spend the most 

and the least computation time, respectively.  

- Between geometry-based similarity measures, the 

Hausdorff distance shows the lowest computation 

time and disFréchet illustrates the highest time 

complexity.  

- The SWALE measure, was originally proposed by 

Morse and Patel, consistently performs better than 

all considered measures. 

- The SWALE technique obtained the best average 

rank among all similarity methods (4.54), followed 

by TWED with an average rank of 6.04. Also, 

Hausdorff distance showed the worst F -measure in 

nearly all datasets and showed the weakest average 

rank (9.67). 

- Finally, we conclude that there was no specific 

similarity measure that statistically significantly 

outperformed the other techniques based on our 

datasets.  

The large-scale-based experimental evaluation of 

multiple approaches is necessary for any mature 

research field, because it opens up your view to select 

the most appropriate one. Besides getting an idea to use 

relevant similarity measure, it provides the unified 

framework to compare and analyze multivariate time 

series data. Adding alternative measures and using more 

datasets may lead to more comprehensive results. Also, 

the application of similarity measures for a specific 

goal, such as pattern extraction, prediction, vehicle 

analysis could be investigated. 
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هچكيد
 

 

شود و چگونگی های متفاوتی از علوم به وفور یافت میهای زمانی چند متغیره در زندگی روزمره و زمینههای سریداده

های زمانی است. حجم زیادی های اصلی روند آنالیز سریهای زمانی یکی از بخشگیری شباهت بین این نوع سریاندازه

های ر روی ارایه معیار های شباهت جدید متمرکز شده است. با وجود ارائه روشاز تحقیقات انجام شده در این زمینه ب

ای با استفاده از ارزیابی های زمانی، این زمینه همچنان از فقدان یک مطالعه مقایسهبسیار برای محاسبه شباهت بین سری

ای، ارزیابی گسترده ای بر روی  برد. بدین منظور و برای فراهم کردن یک سنجش مقایسهکمی در مقیاس مناسب رنج می

معیار شباهت معتبر )به همراه تنوعات  14ایم. بدین منظور، های زمانی انجام دادهمعیار های شباهت برای خوشه بندی سری

دیتاست سری زمانی چند متغیره )مربوط به کاربردهای مختلف( انجام شده است.  23آنها( و بررسی اثرگذاری آنها بر روی 

بندی سلسه مراتبی ارائه شده است. مقاله، مقایسه تجربی در خصوص اثر بخشی معیارهای شباهت مبتنی بر خوشهدر این 

علاوه بر این، آزمون آماری معناداری نیز برای سنجش معناداری بین بازدهی معیارهای شباهت، بکار گرفته شد. نتایج 

ایج خوشه بندی عملکردی یکسان داشته و از لحاظ آماری و حاصل نشان داد که معیارهای شباهت بررسی شده بر اساس نت

مبتنی بر آزمون غیرپارامتری اختلاف معناداری ندارند. نتایج بدست آمده یک دید مقایسه ای بین معیارهای شباهت و برای 

 یافتن روش مناسب بر اساس بازدهی و پیچیدگی زمانی فراهم می کند.

doi: 10.5829/ije.2018.31.02b.08 

 
 

 

 


