
IJE TRANSACTIONS A: Basics  Vol. 31, No. 1, (January 2018)   144-156 
 

 

Please cite this article as: H. ZolfagharyAzizi, M. Naghashzadegan, V. Shokri, Comparison of the Hyperbolic Range of Two-fluid Models on 
Two-phase Gas-liquid Flows,International Journal of Engineering (IJE),IJE TRANSACTIONS A: Basics  Vol. 31, No. 1, (January 2018)   144-156 

 
International Journal of Engineering 

 

J o u r n a l  H o m e p a g e :  w w w . i j e . i r  
 

 

Comparison of the Hyperbolic Range of Two-fluid Models on Two-phase Gas-liquid 

Flows 
 

H. Zolfaghary Azizia, M. Naghashzadegana, V. Shokri*b 

 
aDepartment of Mechanical Engineering, University of Guilan, Rasht, Iran 
b Department of Mechanical Engineering, Sari Branch, Islamic Azad University, Sari, Iran 

 
 

P A P E R  I N F O  

 
 

Paper history: 
Received 28August2017 
Received in revised form 28September2017 
Accepted 29October2017 

 
 

Keywords:  
Two-Phase Flow 
Two-Fluid Model 
Numerical Simulation 
Hyperbolic Analysis 
 
 

 
A B S T R A C T  
 

 

In this paper, a numerical study is conducted in order to compare hyperbolic range of equations of 

isotherm two-fluid model governing on two-phase flow inside of pipe using conservative Shock 
capturing method. Differential equations of the two-fluid model are presented in two forms (i.e. form I 

and form II). In forms I and II, pressure correction terms are hydrodynamic and hydrostatic, 

respectively. In order to compare, the hyperbolic range of equations of two-fluid model is presented in 
two forms. One case (water Faucet Case) in the vertical configuration and two other cases (i.e. Large 

Relative Velocity Shock Tube Case and Toumi’s Shock Tube Case) in the horizontal configuration 

were used. The form I of two-fluid model had broader range of well-posing than form II of two-fluid 
model. The form I of two-fluid model has coefficient that proper selecting of this coefficient ensures 

hyperbolic roots of the characteristic equation, but in form II, roots of the characteristic equation did 

not have this capability. 

doi: 10.5829/ije.2018.31.01a.20 
 

 
1. INTRODUCTION1 
 

In two-phase flow of gas-liquid, the gas and liquid 

phases are simultaneously passing through a pipeline. 

Due to extensive application of gas-liquid two-phase 

flow in various engineering problems and their more 

different and complex behavior than the single-phase 

flow; it is vital to study such flows. In addition, 

existence of these flows in nuclear technology and 

particularly in nuclear steam generators, boilers, 

condensers, cooling systems, as well as in gas and oil 

pipelines has increased the importance of studying on 

these two-phase flows. In two-phase flows systems, it is 

highly essential to exactly determine maximum range 

that system can work safely. In order to analyze directly 

two-phase flows, selecting three-dimensional Navier-

Stokes equations as model has high computational cost 

[1]. Therefore, different models are presented in order to 

simplify these equations. Generally, there are three 

various mathematical models in order to simulate two-
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phase flow systems: Homogeneous Equilibrium Model 

[2], Drift Flux Model [3], and Two Fluid Model [3, 4].  

In this paper, we focussed on two-fluid model. The 

formulation of two-fluid model is based on two types of 

mass conservation and momentum equations for each 

phases. These equations were obtained by averaging 

conservation equations of single-phase flow and 

considering the effects of interface to this equation. In 

engineering applications including fluid motion, 

characteristics of this model are integrated on the cross-

section of the pipe to obtain a one dimensional two-fluid 

model. Two-fluid model equations are hyperbolic 

differential equations. When the first wave is formed at 

interface of two phases in flow within the tube, the flow 

conveys, it tends to vary from stratified flow pattern to 

the wave flow pattern during change in flow physics 

and mathematical nature of the field equations of two-

fluid model. Therefore, it tends to transfer form 

hyperbolic differential equations to elliptic differential 

equations system. The criteria that ensures to remain 

two-fluid model differential equations systems in 

hyperbolic range, is real values of the characteristic 

equation roots. Analysis of hyperbolic model is needed 
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in order to determine validity range of two-fluid the 

model. Complex roots of characteristic equation leads to 

an ill-posed initial value problem and failure to achieve 

converged and consistent results. Numerical approachs 

are divided into two categories in terms of pressure 

term: The first category of algorithms is based on 

pressure. Among them, Interphase Slip Algorithm [5] 

and Simple Algorithm can be referred [1, 6]. The 

second category of algorithms are algorithms based 

Riemann solver. Among these algorithms, Conservative 

Shock Capturing Method [7] and Flux Splitting 

Methods [8] can be referred. In this study, we focussed 

on this category. This category of approaches were 

developed form generalizing of solving methods of 

Shock flow to two-phase flow problems. Due to their 

capturing shock, these approaches are used in order to 

predict discontinuities in the interface of two phase 

flows. The second category of algorithms are considered 

as explicit numerical schemes. In order to calculate time 

step, they are dependent on maximum value of wave 

velocity. The maximum value of wave velocity for two-

fluid model is equal to maximum value of the roots of 

the characteristic equation of governing equations in 

solution field. Derivative by varying the terms of the 

two-fluid model, which generally are related to 

assumptions of pressure and pressure correction terms, 

the two-fluid model requires to new hyperbolic analysis 

and determining real roots of the characteristic equation. 

In the two-fluid model, there is a difference between 

pressure of each phase and pressure of the same phase at 

the interface. The pressure difference between pressure 

of each phase and pressure of the same phase at the 

interface is called “term correction pressure”. 

In order to determine the roots of the characteristic 

equation, they performed hyperbolic analysis of two-

fluid model using density perturbation method and 

obtained the approximate values of the roots of the 

characteristic equation for the two-fluid model 

equations governing the solution field. After them, other 

researchers used these assumptions of pressure and the 

roots of the characteristic equation presented to 

numerically model of two-phase flows in various fields 

[9-11]. 

Issa and Kempf [1] used the two-fluid model in 

order to Simulation of slug flow in horizontal and nearly 

horizontal pipes with the two-fluid model.  

In order to solve two-fluid equations governing on 

the solution field, Issa and Kempf [1] used a Staggered 

mesh using finite volume numerical method. Because of 

this numerical method is unconditional stable, there is 

no sensitivity to find the roots of the characteristic 

equation. Therefore, for calculating time step, they 

considered characteristic value as the maximum velocity 

of the gas (𝜆𝑚𝑎𝑥
𝑛 = 𝑢𝑔,𝑚𝑎𝑥

𝑛 ). Also, they considered 

value of Courant Friedrichs Levy Number equal to 0.5. 

After them, other researchers used these assumptions of 

pressure and the roots of the characteristic equation in 

order to numerical modeling of two-phase flows in 

various fields [6, 12-14]. Omgba-Essama [2], used two-

fluid model in order to numerical modelling of two-

phase flows. In this two-fluid model, assumptions of 

pressure and pressure correction term presented by Issa 

and Kempf [1] were used. In this study, numerical 

modelling was performed through Flux Splitting 

Methods that is based on Riemann solver. In this study, 

it was stated that obtaining the roots of the characteristic 

equation through accurate analytical method is very 

difficult. Therefore, four real characteristic values for 

the roots of the characteristic equation was presented 

using the perturbation method around a small parameter. 

It should be noted that eigenvalues obtained using 

approximate method are valid only for a small 

perturbations and it ensures governing hyperbolic two-

fluid equations. 

Hanyang and Liejin [15] used a transient two-fluid 

model in order to evaluate the interfacial instability and 

the initiation of slug regime in gas-liquid two-phase 

flows at the horizontal channel. 

They used a staggered mesh based on the finite 

volume method in order to calculate pressure term. 

Also, they used maximum velocity of the gas phase in 

each time step and set Courant Friedrichs Levy Number 

equal to 0.5. 

Figueiredo et al. [16] investigated accuracy of the 

Flux-Corrected Transport numerical method applied to 

transient two-phase flow simulations in gas pipelines. 

The governing equation presented are based on pressure 

assumptions presented by Issa and Kempf [1]. In 

Numerical analysis, they used the maximum 

characteristic value presented by Omgba-Essama [2]. 

Bueno et al. [17] perform numerical simulation of 

stratified Two-Phase Flow in a Nearly Horizontal Gas-

Liquid Pipeline With a Leak. In their research, they 

used pressure assumptions presented by Issa and Kempf 

[1]. Also, they used the roots of characteristic equation 

presented by Omgba-Essama [2]. 

According to literature, it was found that two models 

(i.e. hydrostatic model and hydrodynamic model) were 

used to express pressure correction term for simulating 

gas-liquid two-phase flows using two-fluid model. The 

use of each of these models requires a unique 

hyperbolic analysis and determination of the roots of the 

characteristic equation for each of the models. The roots 

of the characteristic equation affect directly both on the 

nature of mathematical models and accuracy of 

numerical algorithms of the solution. The roots of the 

characteristic equation for hydrodynamic model are 

presented by Evje and Flåtten [8]. Furthermore, the 

roots of the characteristic equation for hydrostatic 

model are presented by Essama [2]. 

According to reviews, no reference has compared 

between the hyperbolic ranges of the two-fluid model. 
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Therefore, in the present paper, effects of the roots of 

the characteristic equation on the hyperbolic range of 

the two-fluid model were investigated by choosing three 

valid cases of two-phase flow (i.e. water faucet case, 

large relative velocity shock tube case, and Toumi’s 

shock tube case) with different initial conditions for the 

variables of flow (i.e. velocity, volume fraction of 

phases, and pressure). 

 
 
2. GOVERNING EQUATIONS 
 
The spatial average form of two-fluid model is very 

practical for complex engineering applications. 

Averaged two-fluid model is obtained from integrating 

three-dimensional two-fluid model in terms of position 

on the cross-section and using suitable average values 

[3]. Momentum and energy transferred between each 

phase and the wall, as well as dynamic interaction 

between phases at the interface appear source terms and 

empirical relations are used to calculate them [4]. 

The average form of two-fluid model equations 

governing on the solution field is demonstrated as 

following [8]. In this study, the flow is considered as 

isotherm. Conservation of mass and momentum 

equations for gas and liquid phases are stated as 

follows: 

Mass conservation equation for gas: 

𝜕

𝜕𝑡
(𝜌𝑔𝑅𝑔) +

𝜕

𝜕𝑥
(𝜌𝑔𝑅𝑔𝑢𝑔) = 0  (1) 

Mass conservation equation for liquid: 

𝜕

𝜕𝑡
(𝜌𝑙𝑅𝑙) +

𝜕

𝜕𝑥
(𝜌𝑙𝑅𝑙𝑢𝑙) = 0  (2) 

Momentum conservation equation for gas: 

𝜕

𝜕𝑡
(𝜌𝑔𝑅𝑔𝑢𝑔) +

𝜕

𝜕𝑥
(𝜌𝑔𝑅𝑔𝑢𝑔

2) = −
𝜕

𝜕𝑥
  

((𝑃𝑔 − 𝑃𝑔𝑖)𝑅𝑔) − 𝑅𝑔
𝜕𝑃𝑔𝑖

𝜕𝑥
−𝜌𝑔𝑅𝑔𝐺𝑠𝑖𝑛𝛽 + 𝐹𝑔𝑤 + 𝐹𝐼  

(3) 

Momentum conservation equation for liquid: 

𝜕

𝜕𝑡
(𝜌𝑙𝑅𝑙𝑢𝑙) +

𝜕

𝜕𝑥
(𝜌𝑙𝑅𝑙𝑢𝑙

2) = −
𝜕

𝜕𝑥
  

((𝑃𝑙 − 𝑃𝑙𝑖)𝑅𝑙) − 𝑅𝑙
𝜕𝑃𝑙𝑖

𝜕𝑥
−𝜌𝑙𝑅𝑙𝐺𝑠𝑖𝑛𝛽 + 𝐹𝑙𝑤 − 𝐹𝐼  

(4) 

where, for k
th

 phase, (if 𝑘 =  𝑔, then the phase is gas 

and if 𝑘 =  𝑙, then the phase is liquid). Also,𝜌𝑘,𝑢𝑘,𝑃𝑘 , 
and 𝑃𝑘𝑖  are density in k

th
 phase, volume fraction in k

th
 

phase, velocity in k
th

 phase, pressure in k
th

 phase, and 

pressure at the interface in k
th

 phase, respectively. 

(𝜌𝑘𝑅𝑘𝐺𝑠𝑖𝑛𝛽), 𝐹𝑘𝑤, and 𝐹𝐼 are gravitational force term, 

friction force of each phase with the walls, and friction 

force of phases at the interface, respectively. G is the 

acceleration of gravity. 

In above momentum equations, the term 𝑃𝑔 − 𝑃𝑔𝑖  is 

indicated as ∆𝑃𝑔𝑖  and called “pressure correction term 

for the gas phase”. Also, the term 𝑃𝑙 − 𝑃𝑙𝑖 is indicated as 

∆𝑃𝑙𝑖  and called “pressure correction term for the liquid 

phase”. Pressure terms in above momentum equations 

can be expressed as two forms in terms of the extension 

of the derivative to variables. 

−
𝜕

𝜕𝑥
((𝑃𝑘 − 𝑃𝑘𝑖)𝑅𝑘) − 𝑅𝑘

𝜕𝑃𝑘𝑖

𝜕𝑥
  (5) 

= −
𝜕(𝑅𝑘𝑃𝑘)

𝜕𝑥
+ 𝑃𝑘𝑖

𝜕𝑅𝑘

𝜕𝑥
  (6) 

= −𝑅𝑘
𝜕𝑃𝑘

𝜕𝑥
− 𝛥𝑃𝑘𝑖

𝜕𝑅𝑘

𝜕𝑥
  (7) 

Now, different forms of two-fluid model are obtained 

by applying different assumptions for the pressure term. 

Evje and Flåtten [8], used Equation (5) for pressure 

terms and assumed that the pressure of gas phase is 

equal to the pressure of liquid phase (𝑃𝑔 = 𝑃𝑙 = 𝑃) as 

well as the pressure of phases at the interface (𝑃𝑔𝑖 =

𝑃𝑙𝑖 = 𝑃𝑖), and in order to correct pressure, the following 

relation was used: 

∆𝑃𝑘𝑖 = 𝑃𝑘 − 𝑃𝑘𝑖 = 𝛿
𝑅𝑙𝑅𝑔𝜌𝑙𝜌𝑔

𝜌𝑔𝑅𝑙+𝜌𝑙𝑅𝑔
(𝑢𝑔 − 𝑢𝑙)

2
  (8) 

In this paper, the Equations (1) - (4) and (8) is called the 

equations form I. Issa and Kempf presented the 

following relations for the pressure term of two-fluid 

model by considering the Equation (6) and hydrostatic 

pressure assumption for liquid phase and calculating the 

average pressure of the liquid phase by integrating of 

the cross-section of the pipe [1]: 

−
𝜕

𝜕𝑥
((𝑃𝑔 − 𝑃𝑔𝑖)𝑅𝑔) − 𝑅𝑔

𝜕𝑃𝑔𝑖

𝜕𝑥
= −𝑅𝑔

𝜕𝑃

𝜕𝑥
  (9) 

In their work, it was assumed that the gas phase 

pressure is equal to the gas phase pressure at the 

interface (i.e. (Pg = Pgi = P)). 

−
𝜕

𝜕𝑥
((𝑃𝑙 − 𝑃𝑙𝑖)𝑅𝑙) − 𝑅𝑙

𝜕𝑃𝑙𝑖

𝜕𝑥
=  n − 𝑅𝑙

𝜕𝑃

𝜕𝑥
−

𝜌𝑙𝑅𝑙𝐺 𝑐𝑜𝑠 𝛽
𝜕ℎ𝑙

𝜕𝑥
  

(10) 

ℎ𝑙 is height of the liquid phase. Also, it was assumed 

that the liquid phase pressure at the interface is equal to 

the gas phase pressure at the interface (i.e. (𝑃𝑔𝑖 = 𝑃𝑙𝑖 =

𝑃)). In addition, the liquid phase pressure varies 

hydrostatically in direction of vertical axis. Also, in 

some references [2], Equation (7) was used for the term 

pressure of momentum equation. The following relation 

was presented the pressure correction term: 

𝑃𝑐 = ∆𝑃𝑘𝑖 = 𝜌𝑙𝑅𝑙𝐺 𝑐𝑜𝑠 𝛽
𝜕ℎ𝑙

𝜕𝑅𝑙
  (11) 

By replacing Equation (11) into Equation (7), we have: 

−𝑅𝑘
𝜕𝑃𝑘

𝜕𝑥
− 𝜌𝑙𝑅𝑙𝐺 𝑐𝑜𝑠 𝛽

𝜕ℎ𝑙

𝜕𝑅𝑙

𝜕𝑅𝑙

𝜕𝑥
= −𝑅𝑘

𝜕𝑃𝑘

𝜕𝑥
−

𝜌𝑙𝑅𝑙𝐺 𝑐𝑜𝑠 𝛽
𝜕ℎ𝑙

𝜕𝑥
  

(12) 
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where, the Equation (12) is the same Equation (10).  

Equations (1)-(4) and (10) is called the equations form 

II. For completing the system of equations, additional 

relations are required. These relations, a geometric 

constraint and the relationship between density and 

pressure of phases are included. A geometric constraint 

states that summation of volume fractions of the two 

phases [2]: 

𝑅𝐿 + 𝑅𝐺 = 1  (13) 

The relationship between density and pressure of phases 

are presented stated as follows [8]: 

𝜕𝑃𝑘

𝜕𝜌𝑘
= 𝐶𝑘

2  (14) 

where, Ck is the speed of sound in each phase. 

Cg
2 = 105(m s⁄ )2  Cl

2 = 106(m s⁄ )2  

 
 
3. HYPERBOLIC ANALYSIS EQUATIONS 
 
3. 1. Hyperbolic Analysis of Form I The basic 

governing equations are presented as quasi-linear. This 

form of a governing equation are required in order to 

express eigenvalues and hyperbolic analysis of the two-

fluid model. In fact, the governing equations on two-

fluid model must be written as below: 

𝜕𝑄

𝜕𝑡
+ 𝐴(𝑄)

𝜕𝑄

𝜕𝑥
= 𝑆(𝑄) (15) 

In above relation, 𝑄, 𝑆, and 𝐴(𝑄) are conservative 

variables vector, vector including source term, and 

system’s matrix, respectively. The vectors Q and S, and 

the matrix 𝐴 for two-fluid model are defined as 

following: 

𝑄 = [𝑅𝑔𝜌𝑔𝑅𝑙𝜌𝑙𝑅𝑔𝜌𝑔𝑢𝑔𝑅𝑙𝜌𝑙𝑢𝑙]
𝑇
  (16) 

𝑆 = [  0    𝑅𝑔𝜌𝑔𝐺    0    𝑅𝑙𝜌𝑙𝐺]
𝑇

  (17) 

𝐴 =

[
 
 
 
 
0 0 1
0 0 0
𝐴31 𝐴32 2𝑢𝑔

0
1
0

𝐴41 𝐴420   2𝑢𝑙]
 
 
 
 

  (18) 

𝐴31 =
𝑅𝑔𝜌𝑙+

∆𝑃𝑔𝑖𝑅𝑙

𝐶𝑙
2

𝑘
− 𝑢𝑔

2  
(19-1) 

𝐴32 =
𝑅𝑔𝜌𝑔+

∆𝑃𝑔𝑖𝑅𝑔

𝐶𝑔
2

𝑘
  

(19-2) 

𝐴41 =
𝑅𝑙𝜌𝑙+

∆𝑃𝑙𝑖𝑅𝑙

𝐶𝑙
2

𝑘
  (19-3) 

𝐴42 =
𝑅𝑙𝜌𝑔+

∆𝑃𝑙𝑖𝑅𝑔

𝐶𝑔
2

𝑘
− 𝑢𝑙

2  (19-4) 

where, 𝑘 = 𝑅𝑙𝜌𝑔 𝐶𝑙
2⁄ + 𝑅𝑔𝜌𝑙 𝐶𝑔

2⁄ . The range in which 

the two-fluid model equations remains as hyperbolic 

can be determined by calculating eigenvalues of the 

matrix I. Because of the complexity of the desired 

matrix characteristic equation, there is no exact 

analytical equation to calculate the eigenvalues of 

matrix. Using analysis of density perturbations of the 

equation (20) for the eigenvalues of the matrix I, Evje 

and Flatten[8] demonstrated that the Equations (21)-(24) 

are valid. 

𝜆{1,2} = 𝑢𝑃 ± 𝐶𝑚   ,      𝜆{3,4} = 𝑢𝑢 ± 𝑣  (20) 

𝑢𝑃 =
𝑅𝑔𝜌𝑙𝑢𝑔+𝑅𝑙𝜌𝑔𝑢𝑙

𝑅𝑔𝜌𝑙+𝑅𝑙𝜌𝑔
  (21) 

𝑢𝑢 =
𝑅𝑔𝜌𝑙𝑢𝑙+𝑅𝑙𝜌𝑔𝑢𝑔

𝑅𝑔𝜌𝑙+𝑅𝑙𝜌𝑔
  (22) 

𝑣 = √
𝛥𝑃𝑖(𝑅𝑔𝜌𝑙+𝑅𝑙𝜌𝑔)−𝑅𝑔𝑅𝑙𝜌𝑙𝜌𝑔(𝑢𝑔−𝑢𝑙)

2

(𝑅𝑔𝜌𝑙+𝑅𝑙𝜌𝑔)
2   (23) 

𝐶𝑚 = √
𝑅𝑔𝜌𝑙+𝑅𝑙𝜌𝑔

(
𝜕𝜌𝑔

𝜕𝑃
)𝑅𝑔𝜌𝑙+(

𝜕𝜌𝑙
𝜕𝑃
)𝑅𝑙𝜌𝑔

  (24) 

The Equation (23) shows that if 𝛥𝑃𝑖 = 0, then 

eigenvalues are complex. Thus, In Equation (8), δ must 

be more than one. 

with 𝛿 a positive constant. Taking 𝛿 ≥ 1makes the 

two-fluid model hyperbolic [8]. If the initial velocities 

of phases are equal, according to Equation (8), the 

pressure correction term is zero which means that 𝑃𝑘 is 

equal to 𝑃𝑘𝑖 . In this case, the system of governing 

equations has complex eigenvalues, resulting an ill-

posed initial value problem, where there is an 

unphysical and unbounded growth of small wavelength 

of disturbances [8]. 

 
3. 2. Hyperbolic Analysis of Form II In order to 

determine the eigenvalues of the system, first, systems 

of a governing equation are written as the following 

compact form: 

𝑀𝐴
𝜕𝜓

𝜕𝑡
+𝑀𝐵

𝜕𝜓

𝜕𝑥
= 𝑆  (25) 

where, 𝑀𝐴 and 𝑀𝐵 are two non-singular square matrices 

of coefficients that are functions of dependent flow 

variables. The vector 𝜓 is included dependent flow 

variables or initial variables. Also, the vector S denotes 

the main terms and source algebraic to transfer mass 

and momentum between the surface and the wall. Their 

characteristics can be described by the following 

relation: 
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𝑑𝑒𝑡(𝑀𝐵 − 𝜆𝑀𝐴) = 0  (26) 

where, λ is a characteristic value. Equation of form II 

can be written as Equation (25) and using the  

following matrix [2]. 

𝑀𝐴 =

[
 
 
 
 
−𝜌𝑔 0 0

1 0 0
0 𝜌𝑔𝑅𝑔 0

𝑅𝑔
0
0

0     0𝜌𝑙𝑅𝑙 0 ]
 
 
 
 

  (27) 

𝑀𝐵 =

[
 
 
 
 
 
−𝜌𝑔𝑢𝑔 𝜌𝑔𝑅𝑔 0

𝑢𝑙 0 𝑅𝑙
0 𝜌𝑔𝑅𝑔𝑢𝑔 0

𝑅𝑔𝑢𝑔
0

𝑅𝑔𝐶𝑔
2

𝑃𝐶     0   𝜌𝑙𝑅𝑙𝑢𝑙 𝑅𝑙𝐶𝑔
2 ]
 
 
 
 
 

  (28) 

where,Cg
2 = ∂P ∂ρg⁄  is the square of the speed of sound 

of gas. By replacing matrices (27) and (28) in Equation 

(26), characteristic polynomial is obtained as below: 

−�̃�4 + �̃�2(1 + 𝜒 + �̂�) − �̂� + 2𝜃�̃�(1 − �̃�2) + 𝜃2(1 −

�̃�2) = 0  
(29) 

where, 

�̃� =
𝜆−𝑢𝑔

𝐶𝑔
  (30) 

�̂� =
𝑃𝐶

𝜌𝑙𝐶𝑔
2 =

𝐴𝑙𝐺 𝑐𝑜𝑠 𝛽

𝑑𝐴𝑙/𝑑ℎ𝑙𝐶𝑔
2  (31) 

𝜃 =
𝑢𝑟

𝐶𝑔
=
𝑢𝑔−𝑢𝑙

𝐶𝑔
  (32) 

Perturbation method about the small parameter θ =
ur Cg⁄  is used. For the majority of flows that exist in the 

pipeline, the relative velocity 𝑢𝑟 has order of several 

meters per second. Also, the speed of sound in the gas is 

order of 200 to 300 meters per second. Therefore, 

parameter θ is small and it seems that this parameter for 

perturbation analysis is suitable [2]. Using Goursat's 

lemma, we have: Where P(x, θ) is in terms of small 

parameter θ and the real coefficient x: 

𝑃(𝑥, 𝜃) = 𝑃0(𝑥) + 𝜃𝑃1(𝑥) +
𝜃2

2
𝑃2(𝑥)  (33) 

Where, 𝑃0(𝑥),𝑃1(𝑥), and 𝑃2(𝑥)are polynomial having 

three terms with real coefficients. The purpose is to find 

roots of the polynomial 𝑃(𝑥, 𝜃) having real 

coefficientsin neighboring of root of the polynomial 

𝑃0(𝑥) (i.e.x0). There may be two cases. In the first case 

𝑥0 is unit root of the polynomial 𝑃0(𝑥) and in the 

second case, P0(x) has two roots. In this paper, the first 

case occurs. If the 𝑥0 is unit root of the polynomial 

𝑃0(𝑥), then there is a first order function𝑥(𝜃) that is 

differentiable in terms 𝜃 so that 𝑃(𝑥(𝜃), 𝜃) = 0 and we 

have: 

𝑃0     ́ is first derivative of the polynomial 𝑃0(𝑥). by 

combining Equations (29) and (33), the following 

polynomials are obtained: 

{

𝑃0(�̃�) = −�̃�
4 + �̃�2(1 + 𝜒 + �̂�) − �̂�

𝑃1(�̃�) = 2�̃�(1 − �̃�
2)

𝑃2(�̃�) = 2(1 − �̃�
2)

  (34) 

𝑥(𝜃) = 𝑥0 + 𝜃𝑧1 +𝑂(𝜃)  (35) 

𝑧1 = −
𝑃1(𝑥0)

𝑃0
′(𝑥0)

  (36) 

To obtain zeros of the polynomial P0(λ̃), it is sufficient 

to solve the following equation: 

−�̃�4 + �̃�2(1 + 𝜒 + �̂�) − �̂� = 0
�̃�2=𝑦
→   𝑦2 − 𝑦 (1 + 𝜒 +

�̂�) + �̂� = 0  
(37) 

To obtain the roots of the equation (37), we write: 

𝛥𝑆 = (𝜒 + (1 − √�̂�)
2

) . (𝜒 + (1 + √�̂�)
2

)  (38) 

We always have: ∆S ≥ 0 → P̂ ≥ 0 ⟹ cosβ ≥ 0 Two 

roots of the equation are: 

{
y+ =

(1+χ+P̂)+√∆S

2

y− =
(1+χ+P̂)−√∆S

2

  (39) 

The root of y+ is positive because of all of its terms are 

positive. Also, it can be proved through the limit of 

minimum that  𝑦− is positive. 

𝑦− ≥ 𝑦−
𝑚𝑖𝑛

=
(1+𝜒+�̂�)−√𝛥𝑚𝑎𝑥

𝑆

2
  

(40) 

and 

𝛥 = (1 + 𝜒 + �̂�)
2
− 4�̂� < (1 + 𝜒 + �̂�)

2
= 𝛥𝑚𝑎𝑥

𝑆   (41) 

also 

𝑦− ≥ 𝑦−
𝑚𝑖𝑛

= 0⟹ 𝑦− ≥ 0  (42) 

Therefore, both roots are positive. Characteristic values 

of Equation (37) are obtained, stated as follows: 

{
 
 

 
 �̃�1 = −√𝑦

+

�̃�2 = −√𝑦
−

�̃�3 = √𝑦
−

�̃�4 = √𝑦
+

  (43) 

Using Equations (35) and(36), we have: 

{
𝑧1,4 =

1−𝑦+

2𝑦+−(1+𝜒+�̂�)

𝑧2,3 =
1−𝑦−

2𝑦−−(1+𝜒+�̂�)

  (44) 

Therefore, for stratified pressure correction term, four 

eigenvalues are real and thus cos β ≥ 0 is obtained: 
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{
  
 

  
 𝜆1 = 𝑢𝑔 − 𝐶𝑔√𝑦

+ + 𝑢𝑟
1−𝑦+

2𝑦+−(1+𝜒+�̂� )

𝜆2 = 𝑢𝑔 − 𝐶𝑔√𝑦
− + 𝑢𝑟

1−𝑦−

2𝑦−−(1+𝜒+�̂� )

𝜆3 = 𝑢𝑔 + 𝐶𝑔√𝑦
− + 𝑢𝑟

1−𝑦−

2𝑦−−(1+𝜒+�̂� )

𝜆4 = 𝑢𝑔 + 𝐶𝑔√𝑦
+ + 𝑢𝑟

1−𝑦+

2𝑦+−(1+𝜒+�̂� )

  (45) 

where, 

𝜒 =
𝜌𝑔𝑅𝑙

𝜌𝑙𝑅𝑔
  (46) 

�̂� =
𝐴𝑙𝐺 𝑐𝑜𝑠 𝛽

𝐴𝑙
′   (47) 

𝐴𝑙
′ =

𝑑𝐴𝑙

𝑑ℎ𝑙
  (48) 

𝑢𝑟 = 𝑢𝑔 − 𝑢𝑙  (49) 

𝑢𝑟 is the relative velocity of phases. Two-phase flow 

models are highly sensitive to being real or imagine of 

their roots of characteristic equation. If the roots of 

characteristic equation of differential equations 

governing on model are imagine, then an ill-posed 

initial value problem is formed, as result, unlimited 

instabilities are occurred and eventually the results 

cannot be convergent. But if the roots of characteristic 

equation are real, then well-posed initial value problem 

is formed unlimited instabilities are removed [18]. The 

limit of stability of two-fluid model by considering the 

hydrostatic pressure correction term is the Kelvin 

Helmholtz  instability that is obtained expressed as 

follows [2]. 

(𝑢𝑔 − 𝑢𝑙)
2
≤ √(𝑅𝑔𝜌𝑙 + 𝑅𝑙𝜌𝑔)

𝜌𝑙−𝜌𝑔

𝜌𝑙𝜌𝑔
𝑔 𝑐𝑜𝑠 𝛽

𝐴
𝜕𝐴𝑙
𝜕ℎ

  (50) 

It means that the limit of Kelvin Helmholtz instability is 

equal to limit of well-posing of a single-pressure two-

fluid model by considering the hydrostatic pressure 

correction term. On the one hand it can be shown that if 

the velocity difference between the two phases is more 

than this value, then the interface between the two 

phases are physically unstable as well. It means that 

limit of physical instability at the interface is equal to 

well-posing of single-pressure two-fluid model by 

considering the hydrostatic pressure correction term . If 

the velocity difference between the two phases is more 

than this value, then the roots of characteristic equation 

is imagine and the model is ill-posed. This ill-posing 

causes that the results do not show realistic physics of 

two-fluid flow model. 

 

 

4. NUMERICAL SOLUTION METHODS 
 
Single-pressure two-fluid model equations can be 

written as non- conservative, as following [7]: 

𝜕𝑄

𝜕𝑡
+
𝜕𝐹

𝜕𝑥
= 𝐻

𝜕𝑅𝑘

𝜕𝑥
+ 𝑆  (51) 

Q is conservative variables vector. F is conservative 

flux vector. Also, 𝑆 and 𝐻 𝜕𝑅𝑘 𝜕𝑥⁄  are transfer vectors 

of the interface and are included all non-conservative 

terms. For non-conservative system Equation (51) form 

of the discretization equation is as following [7]: 

𝑄𝑖
𝑛+1 = 𝑄𝑖

𝑛 +
∆𝑡

∆𝑥
(𝐹𝑖−1/2
𝑛 − 𝐹𝑖+1/2

𝑛 ) + ∆𝑡 (𝐻
𝜕𝑅𝑘

𝜕𝑥
) +

∆𝑡𝑆𝑖  
(52) 

In Equation (52), n and 𝑛 + 1 denotes the old and new 

time steps respectively. Also 𝑖 represents the cell. To 

calculate the numerical flux term 𝐹𝑖+1/2
𝑛 , lax-friedrichs 

method is used. 

 

4. 1. Lax-Friedrichs Method In this method, flux 

is calculated as following [7]: 

𝐹𝑖+1 2⁄
𝑛𝐿𝐹 =  

1

2
(𝐹𝑖+1
𝑛 + 𝐹𝑖

𝑛) − 
∆𝑥

2∆𝑡
(𝑄𝑖+1

𝑛 − 𝑄𝑖
𝑛)  (53) 

Numerical flux in the cell i
th

 is defined as 𝐹𝑖
𝑛 = 𝐹(𝑄𝑖

𝑛) 
that is obtained based on the physical flux term 

expressed by the model. Single- equations two-fluid 

model pressure have the non-conservative terms 

𝐻 𝜕𝑅𝑘 𝜕𝑥⁄  that must be separated properly. Otherwise, 

this term causes instability in the results [19]. 

In order to discrete the non-conservative term 

𝐻 ∂Rk ∂x⁄ , the following equations are presented [19]: 

𝐻
𝜕𝑅𝑔

𝜕𝑥
= 𝐻𝑅𝑔𝑅𝑙

𝜕𝐵𝐺

𝜕𝑥
  (54) 

𝐻
𝜕𝑅𝑙

𝜕𝑥
= 𝐻𝑅𝑙𝑅𝑔

𝜕𝐵𝐿

𝜕𝑥
  (55) 

The derivative terms 𝜕𝐵𝐺 𝜕𝑥⁄  and 𝜕𝐵𝐿 𝜕𝑥⁄  are 

separated using the central scheme [19]:  

𝐻𝑅𝑔𝑅𝑙
𝜕𝐵𝐺

𝜕𝑥
= 𝐻𝑅𝑔𝑅𝑙

𝐵𝐺𝑖+1−𝐵𝐺𝑖−1

2∆𝑥
  (56) 

𝐻𝑅𝑙𝑅𝑔
𝜕𝐵𝐿

𝜕𝑥
= 𝐻𝑅𝑔𝑅𝑙

𝐵𝐿𝑖+1−𝐵𝐿𝑖−1

2∆𝑥
  (57) 

where [19] 

𝐵𝐺 = 𝑙𝑜𝑔 (
𝑅𝑔

𝑅𝑙
)  (58) 

𝐵𝐿 = 𝑙𝑜𝑔 (
𝑅𝑙

𝑅𝑔
)  (59) 

 

4. 2. Calculation Time Step In order to calculate 

time step, first, ∆𝑥 is considered as mesh size, then the 

time step ∆𝑡 is calculated using the following realation 

[2]. 

∆𝑡 = 𝐶𝐹𝐿
∆𝑥

𝜆𝑚𝑎𝑥
𝑛   (60) 

In the present study, value of the Courante-Friedrichs-

Levy number is assumed a number between 0.2 to 0.7. 
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𝜆𝑚𝑎𝑥
𝑛 is the maximum value of the wave velocity on the 

solution field at the time of 𝑛. The maximum value of 

wave velocity for the single-pressure two-fluid model is 

equal to the maximum value of the characteristic 

equation a governing on the solution field. The 

characteristic value of the two-fluid model was 

presented by Omgba-Essama [2] by considering the 

term hydrostatic pressure the correction. Also, the 

characteristic value of the two-fluid model was 

presented by Evje and Flåtten [8] by considering the 

term hydrodynamic pressure the correction.  

 

4. 3. Boundary Condition            For a computing 

domain (0, L) discretized into M computing cells of 

length ∆𝑥, we require special conditions at the boundary 

positions x=0 and x=L as illustrated in Figure 1. These 

boundary conditions are expected to provide for test 

case the numerical fluxes 𝐹1/2
𝑛𝐿𝐹and 𝐹𝑀+1/2

𝑛𝐿𝐹 , which are 

required by finite difference discretisation such as 

Equation (53) in order to advance the extreme cells 1 

and M to the next time level. For this, in the input and 

output, virtual grid will be considered and zeroth-order 

extrapolation for the virtual points are used for the flux 

in entry and outlet. 
 
 
5. VALIDATION OF METHODS 
 
In this section, in order to observe the effect the roots of 

the characteristic equation on the accuracy of the results, 

three case studies namely water faucet case, large 

relative velocity shock tube case, and Toumi’s shock 

tube case are analyzed using two-fluid model.  

 

5. 1. Water Faucet Case     This system is comprised 

of a vertical pipe have a height of 12 meters and a 

diameter of 1 m. At the initial moment, velocity of 

water is 10𝑚 𝑠⁄  and velocity of water is 0, and the 

volume fraction of water is assumed 0.8. The pressure 

in the channel is equal to 100000 Pa. Inlet conditions is 

equivalent to the initial conditions and for outlet of pipe, 

fully developed boundary condition are valid. Around 

the water, the air having density of 1.16 𝑘𝑔 𝑚3⁄  flows 

continuously, also the density of water is considered 

1000 𝑘𝑔 𝑚3⁄ [2]. Figure 2 shows schematic of water 

faucet case. 
 

 

 
Figure 1. computing field and virtual cells 

 
Figure 2. Schematic of water faucet case 

 

 

In water faucet case, pressure inlet condition, velocity 

outlet, and fully developed are used for pressure 

boundary conditions in inlet, velocity term in outlet, and 

void fraction, respectively. 

Analytic solution of water faucet case is presented in 

the reference [20]. Results of the reference were 

extracted from Evje and Flåtten [20]. 

First, independent results of computing mesh for 

volume fraction profile of the gas-phase of both forms 

presented were obtained for the roots of the 

characteristic equation. Figures 3 and 4 indicate 

dependency of results computational mesh for volume 

fraction profile of the gas-phase at the time 0.6s for 

𝐶𝐹𝐿 = 0.5. 

The independent result of the computational mesh 

for volume fraction profile of the gas-phase is shown in 

the above stated figures, respectively, using the root of 

the characteristic equation of form II and root of the 

characteristic equation of form I. It was found that in the 

computational mesh 6400, results are independent on 

the computational mesh.  

Figure 5 shows the effect of value of δ on 

calculating the roots of the characteristic equation of 

form I as well as direct effect of value of δ effect on 

accuracy of prediction of pressure changes profile. 

Figure 6 compares accuracy of the roots of the 

characteristic equation of form I and form II, in where 

𝛿=1.2. The number of computational mesh is 6400. 

Also, calculations time and the Courante-Friedrichs-

Levy number are equal to 0.6 and 0.5, respectively. 

 

 

 
Figure 3. Water Faucet Case. volume fraction profile of the 

gas-phase for the roots of the characteristic equation of form 

(II) 
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Figure 4. Water Faucet Case. volume fraction profile of the 

gas-phase for the roots of the characteristic equation of form 

(I) 
 

 

 
Figure 5. Water Faucet Case. Comparison of different values 

of δ for root of the characteristic equation of form (I) for the 

pressure changes profile 

 
Figure 6. Water Faucet Case. Comparison of root of the 

characteristic equation forms (I) and (II) for the pressure 

changes profile 

 

The results of pressure changes profile presented in the 

Figure 6 show that results obtained for the pressure 

changes profile using the roots of the characteristic 

equation of form I have better agreement with the 

analytical solution of the water faucet case . Hydrostatic 

pressure correction term for the water faucet case is 

equal to zero because channel is vertical and cos 𝛽 in 

Equation (10) is zero. As a result, the effect of 

hydrostatic pressure correction term in the two-fluid 

equations is removed. In fact, we assumed 𝑃𝑖𝑙 = 𝑃𝑖𝑔 =

𝑃𝑙 = 𝑃𝑔 = 𝑃. This causes that the roots of characteristic 

equation, unconditionally to be complex. And in this 

case, use of form is no suggested. Therefore, there is the 

mismatch of results obtained while using the roots of 

the characteristic equation of form II to analytical 

solution of water faucet case. 

In numerical modeling, we assumed that(𝑃𝑔 = 𝑃𝑙). 

The gas phase pressure is calculated according to 

Equation (14). The pressure changes profile predicted 

by the roots of the characteristic equation of form II has 

a greater increase than pressure changes profile 

predicted by the roots of the characteristic equation of 

form I. According to Figure 9, the gas phase volume 

fraction profile predicted by the roots of the 

characteristic equation of form II has grown more than 

the proportions of the gas phase predicted by the roots 

of the characteristic equation of form I.Therefore, the 

further growth of the gas-phase volume fraction profile 

predicted by the roots of the characteristic equation of 

form II increases cross-section of the gas phase. 

According to Bernoulli's equations, increases in 

cross-section of the gas phase leads to increase in 

pressure, increase in liquid phase velocity and in 

decrease in gas phase velocity. Results of pressure 

changes profile, gas phase velocity profile and liquid 

phase velocity are indicated in Figures 6, 7 and 8, 

respectively. Mathematically, the gas phase velocity 

profile, the liquid phase velocity profile and  the volume 

fraction profile of the gas phase are investigated. 

Velocity changes profile of the gas phase in Figure 7 

shows that the roots of the characteristic equation of 

form I, by considering the most unfavorable value of δ, 

are presented more accurate results than the roots of the 

characteristic equation of form II. 

Also, results of the gas-phase volume fraction 

profile and liquid phase velocity in Figures 9 and 8 

show more consistent the results of roots of the 

characteristic equation of form II.  

 

 

 
Figure 7.Water faucet case. Comparison of effect of the roots 

of the characteristic equation of the forms (I) and (II) for 

velocity profile of the gas phase 
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Figure 8.Water faucet case. Comparison of effect of the roots 

of the characteristic equation of forms (I) and (II) for velocity 

profile of the liquid phase 

 

 

 
Figure 9.Water faucet case. Comparison of effect of the roots 

of the characteristic equation of forms (I) and (II) for volume 

fraction profile of the gas-phase 

 

 

This contradiction is not caused by the impact of the 

roots of the characteristic equation, but it is caused by 

ill-posing of the two-fluid model having hydrostatic 

pressure correction term. 

By considering hydrostatic pressure correction term, 

because of Kelvin Helmholtz instability is equal to the 

limit of well-posing of two-fluid model [2]. Therefore, 

due to being vertical of pipe, the cos 𝛽 in the Equation 

(10) is zero. As a result, the left side of Kelvin 

Helmholtz instability of the Equation (50) is zero and 

we have (𝑢𝑔 − 𝑢𝑙)
2
≤ 0. But, according to the initial 

velocity of the two phases, this condition is not valid for 

the water faucet case. Therefore, the water faucet case is 

an ill-posed initial value problem that validation of 

results is possible by comparing the analytical solution 

of the problem. 

 
5. 2. Large Relative Velocity Case      This problem is 

a Riemann initial value problem that is included a 

channel with 100 m length that in position of 50 m are 

divided in two parts and both ends of the channel are 

closed. Characteristics of this problem and initial 

conditions on the left and right diaphragm are presented 

in Table 1 [21]. Schematic of large relative velocity case 

is shown in Figure 10. 
Figures 11 and 12, dependency on computational 

mesh solutions for the velocity profile of the gas phase 

at the time of 0.1 seconds for the CFL = 0.5 are shown. 

These figures indicate the results independent on the 

computational mesh for velocity profile of the gas phase 

using the roots of the characteristic equation of form I 

and the roots of the characteristic equation of form II, 

respectively. It was found that in the computational 

mesh 1600, results are independent on the 

computational mesh. 

In this section, we compared the roots of the 

characteristic equation of form I and form II. The results 

presented for pressure changes profile, volume fraction 

profile of the liquid phase, velocity profile the of gas 

phase and velocity profile of the liquid phase in Figures 

13-16, respectively are valid. 

Results of pressure changes profile are shown in 

Figure 13. The most appropriate amount of δ for the 

roots of the characteristic equation of form I, that 

ensures being well-posed of the model and compliance 

with analytical solutions, is 1.2.  

 

 

 
Figure 10. Schematic of large relative velocity case 

 

 

TABLE 1. Initial conditions of the large relative velocity 

shock tube case 

Quantity Unit Left Right 

Gas volume fraction - 0.29 0.3 

Liquid velocity 𝑚 𝑠⁄  1 1 

Gas velocity 𝑚 𝑠⁄  65 50 

Pressure 𝐾𝑝𝑎 265 265 

Gas density 𝑘𝑔 𝑚3⁄  2.65 2.65 

liquid density 𝑘𝑔 𝑚3⁄  1000 1000 
 

 

 
Figure 11. Large relative velocity shock tube case. velocity 

profile of the gas phase of the roots of characteristic equation 

of form (II) 
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Figure 12. Large relative velocity shock tube case. velocity 

profile of the gas phase of the roots of characteristic equation 

of form (I) 

 

 
Figure 13. Large relative velocity case. Comparison of the 

effects of the roots of the characteristic equation of forms (I) 

and (II) for pressure changes profile 

 

 

 
Figure 14. Large relative velocity case. Comparison of the 

effects of the roots of the characteristic equation of forms (I) 

and (II) for the volume fraction profile of the liquid phase. 

 

 

The values of 2 and 2.5 for δ causes being ill-posed of 

the model and leads to incorrect prediction for solving 

wave motion, in fact, it shows misinformation from the 

actual physics of flow. 

Results of pressure changes profile are shown in 

Figure 13,  the  roots  of  the  characteristic  equation  of  

 
Figure 15. Large relative velocity case. Comparison of the 

effects of the roots of the characteristic equation of forms (I) 

and (II) for gas profile of the phase velocity 

 

 

 
Figure 16. Large relative velocity case. Comparison of the 

effects of the roots of the characteristic equation of forms (I) 

and (II) for velocity profile of the liquid phase. 
 

 

form II has predicted discontinuities in the solution field 

with more accurate than the roots of the characteristic 

equation of form I. The results presented for pressure 

changes profile, volume fraction profile of liquid phase, 

velocity profile of gas phase and velocity profile of 

liquid phase in Figures 14, 15, and 16, respectively are 

valid. 

 
5. 3. Toumi’s Shock Tube Case This system is 

consisted of a pipe hiving length of 100m divided into 

two parts in 50m of its length and both ends of channel 

is closed. Specifications of this case and initial 

conditions is indicated in Table 2 [22]. 
Figures 17 and 18 show dependence of results on the 

computational mesh for the velocity profile of the gas 

phase at the time 0.08 s for𝐶𝐹𝐿 = 0.2. 

The Figures 17 and 18 show the results independent on 

the computational mesh for velocity profile of gas phase 

using the roots of characteristic equation of form II and 

the roots of characteristic equation of form I, 

respectively. it was found that in the computational 

mesh 1600, results are independent on the 

computational. 
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In this section, we compare the roots of the 

characteristic equation of form I and form II. Results for 

pressure changes profile, volume fraction profile of the 

gas phase, velocity profile the of gas phase and velocity 

profile of the liquid phase presented in Figures 19, 20, 

21, and 22, respectively. 

In order to predict pressure changes profile and more 

accurate matching of results by analytical solution 

Toumi’s shock tube case. The most appropriate amount 

of δ is 2; that ensures the roots of the characteristic 

equation are real, as a results, the model is well-posed. 

Data are presented in Figure 19. 

 

 
TABLE 2. Initial conditions of Toumi’s shock tube case 

Quantity Unit Left Right 

Gas volume fraction - 0.25 0.1 

Liquid velocity 𝑚 𝑠⁄  0 0 

Gas velocity 𝑚 𝑠⁄  0 0 

Pressure 𝑚𝑝𝑎 20 10 

Gas density 𝑘𝑔 𝑚3⁄  200 100 

liquid density 𝑘𝑔 𝑚3⁄  1000 1000 

 

 

 
Figure 17.Toumi’s Case. velocity profile of the gas phase for 

the roots of characteristic equation of form (II) 

 

 

 
Figure 18.Toumi’s Case. velocity profile of the gas phase for 

the roots of characteristic equation of form (I) 

 
Figure 19. Toumi’s Case. Comparison of the roots of the 

characteristic equation of forms (I) and (II) for the pressure 

change profile 

 

 

 
Figure 20. Toumi’s Case. Comparison of the roots of the 

characteristic equation of forms (I) and (II) for volume 

fraction profile of the gas-phase 

 

 

 
Figure 21. Toumi’s Case. Comparison of the roots of the 

characteristic equation of forms (I) and (II) for velocity profile 

of gas phase 

 

 

 

Setting 1.01 and 1.2 for δ causes that the model should 

be ill-posed and the results predicted are non-physical. 

Results of pressure changes profile are shown using the 

roots of the characteristic equation of form II. 
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Figure 22. Toumi’s Case. Comparison of the roots of the 

characteristic equation of forms (I) and (II) for velocity profile 

of liquid phase 

 

 

This model does not predict the motion of wave and it 

presents non-physical results due to having ill-posed 

model. 

The pressure changes due to height of the fluid is 

used for calculating the roots of the characteristic 

equation of form II. But because of at the initial 

moment, there is pressure gradient around both sides of 

the diaphragm Toumi’s shock tube case. As a result, the 

pressure changes due to height of the fluid is intangible 

and the balance between the mathematical nature of 

physics model is not formed and therefore, system is ill-

posed. 

Results for pressure changes profile, volume fraction 

profile of the liquid phase, velocity profile of gas phase 

and velocity profile of liquid phase presented in Figures 

19, 20, 21and 22, respectively are valid. 

 
 
6. CONCLUSION 
 
Our investigations indicated that the roots of the 

characteristic equation of form I ensures the range of 

well-posing more than the roots of the characteristic 

equation of form II. Results of Toumi’s shock tube case 

showed that extreme velocity and pressure gradients 

effect directly on the roots of the characteristic equation 

of two-fluid model and leads to present non-physical 

results for the roots of the characteristic equation of 

form II. The two-fluid model I is included a coefficient 

that appropriate selection of its value ensures that the 

roots of the characteristic equation is hyperbolic, but the 

roots of the characteristic equation have not this 

property. 
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هچكيد
 

 

محدوده هیپربولیکی معادلات مدل دو سیالی دما ثابت حاکم بر جریان های در این مقاله، یک مطالعه عددی برای مقایسه 

معادلات  شده است. انجام با استفاده از متد تسخیر شاک پایستار مدلسازی عددی دوفازی داخل لوله انجام شده است. 

از ترم تصحیح فشار  Iیل مدل دو سیالی بر اساس نوع ترم تصحیح فشار در دو فرم ارائه شده است. در فرم دیفرانس

محدوده هیپربولیکی برای مقایسه   از ترم تصحیح فشار هیدرواستاتیک استفاده شده است. IIهیدرودینامیک و در فرم 

شیر آب در هندسه قائم و دومسئله نمونه لوله شاک سرعت معادلات مدل دو سیالی در دو فرم ارائه شده، از مسئله نمونه 

دارای محدوده خوش رفتاری گسترده تری نسبت به  Iمدل دوسیالی فرم نسبی بزرگ و لوله شاک تامی استفاده شده است. 

دارای ضریبی می باشد که انتخاب مقادیر مناسب برای این ضریب  Iمدل دو سیالی فرم  می باشد. IIمدل دو سیالی فرم 

این قابلیت را  IIتضمین کننده هیپربولیک بودن ریشه های معادله مشخصه می باشد، اما ریشه های معادله مشخصه فرم 

 ندارند.

doi: 10.5829/ije.2018.31.01a.20 

 

 

 


