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ABSTRACT

In this paper, a numerical study is conducted in order to compare hyperbolic range of equations of
isotherm two-fluid model governing on two-phase flow inside of pipe using conservative Shock
capturing method. Differential equations of the two-fluid model are presented in two forms (i.e. form |
and form IlI). In forms | and II, pressure correction terms are hydrodynamic and hydrostatic,
respectively. In order to compare, the hyperbolic range of equations of two-fluid model is presented in
two forms. One case (water Faucet Case) in the vertical configuration and two other cases (i.e. Large
Relative Velocity Shock Tube Case and Toumi’s Shock Tube Case) in the horizontal configuration
were used. The form | of two-fluid model had broader range of well-posing than form Il of two-fluid
model. The form | of two-fluid model has coefficient that proper selecting of this coefficient ensures
hyperbolic roots of the characteristic equation, but in form Il, roots of the characteristic equation did

not have this capability.

doi: 10.5829/ije.2018.31.01a.20

1. INTRODUCTION

In two-phase flow of gas-liquid, the gas and liquid
phases are simultaneously passing through a pipeline.
Due to extensive application of gas-liquid two-phase
flow in various engineering problems and their more
different and complex behavior than the single-phase
flow; it is vital to study such flows. In addition,
existence of these flows in nuclear technology and
particularly in nuclear steam generators, boilers,
condensers, cooling systems, as well as in gas and oil
pipelines has increased the importance of studying on
these two-phase flows. In two-phase flows systems, it is
highly essential to exactly determine maximum range
that system can work safely. In order to analyze directly
two-phase flows, selecting three-dimensional Navier-
Stokes equations as model has high computational cost
[1]. Therefore, different models are presented in order to
simplify these equations. Generally, there are three
various mathematical models in order to simulate two-
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phase flow systems: Homogeneous Equilibrium Model
[2], Drift Flux Model [3], and Two Fluid Model [3, 4].
In this paper, we focussed on two-fluid model. The
formulation of two-fluid model is based on two types of
mass conservation and momentum equations for each
phases. These equations were obtained by averaging
conservation equations of single-phase flow and
considering the effects of interface to this equation. In
engineering applications including fluid motion,
characteristics of this model are integrated on the cross-
section of the pipe to obtain a one dimensional two-fluid
model. Two-fluid model equations are hyperbolic
differential equations. When the first wave is formed at
interface of two phases in flow within the tube, the flow
conveys, it tends to vary from stratified flow pattern to
the wave flow pattern during change in flow physics
and mathematical nature of the field equations of two-
fluid model. Therefore, it tends to transfer form
hyperbolic differential equations to elliptic differential
equations system. The criteria that ensures to remain
two-fluid model differential equations systems in
hyperbolic range, is real values of the characteristic
equation roots. Analysis of hyperbolic model is needed
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in order to determine validity range of two-fluid the
model. Complex roots of characteristic equation leads to
an ill-posed initial value problem and failure to achieve
converged and consistent results. Numerical approachs
are divided into two categories in terms of pressure
term: The first category of algorithms is based on
pressure. Among them, Interphase Slip Algorithm [5]
and Simple Algorithm can be referred [1, 6]. The
second category of algorithms are algorithms based
Riemann solver. Among these algorithms, Conservative
Shock Capturing Method [7] and Flux Splitting
Methods [8] can be referred. In this study, we focussed
on this category. This category of approaches were
developed form generalizing of solving methods of
Shock flow to two-phase flow problems. Due to their
capturing shock, these approaches are used in order to
predict discontinuities in the interface of two phase
flows. The second category of algorithms are considered
as explicit numerical schemes. In order to calculate time
step, they are dependent on maximum value of wave
velocity. The maximum value of wave velocity for two-
fluid model is equal to maximum value of the roots of
the characteristic equation of governing equations in
solution field. Derivative by varying the terms of the
two-fluid model, which generally are related to
assumptions of pressure and pressure correction terms,
the two-fluid model requires to new hyperbolic analysis
and determining real roots of the characteristic equation.
In the two-fluid model, there is a difference between
pressure of each phase and pressure of the same phase at
the interface. The pressure difference between pressure
of each phase and pressure of the same phase at the
interface is called “term correction pressure”.

In order to determine the roots of the characteristic
equation, they performed hyperbolic analysis of two-
fluid model using density perturbation method and
obtained the approximate values of the roots of the
characteristic equation for the two-fluid model
equations governing the solution field. After them, other
researchers used these assumptions of pressure and the
roots of the characteristic equation presented to
numerically model of two-phase flows in various fields
[9-11].

Issa and Kempf [1] used the two-fluid model in
order to Simulation of slug flow in horizontal and nearly
horizontal pipes with the two-fluid model.

In order to solve two-fluid equations governing on
the solution field, Issa and Kempf [1] used a Staggered
mesh using finite volume numerical method. Because of
this numerical method is unconditional stable, there is
no sensitivity to find the roots of the characteristic
equation. Therefore, for calculating time step, they
considered characteristic value as the maximum velocity
of the gas (Aax = Ul max). Also, they considered
value of Courant Friedrichs Levy Number equal to 0.5.
After them, other researchers used these assumptions of

pressure and the roots of the characteristic equation in
order to numerical modeling of two-phase flows in
various fields [6, 12-14]. Omgba-Essama [2], used two-
fluid model in order to numerical modelling of two-
phase flows. In this two-fluid model, assumptions of
pressure and pressure correction term presented by Issa
and Kempf [1] were used. In this study, numerical
modelling was performed through Flux Splitting
Methods that is based on Riemann solver. In this study,
it was stated that obtaining the roots of the characteristic
equation through accurate analytical method is very
difficult. Therefore, four real characteristic values for
the roots of the characteristic equation was presented
using the perturbation method around a small parameter.
It should be noted that eigenvalues obtained using
approximate method are valid only for a small
perturbations and it ensures governing hyperbolic two-
fluid equations.

Hanyang and Liejin [15] used a transient two-fluid
model in order to evaluate the interfacial instability and
the initiation of slug regime in gas-liquid two-phase
flows at the horizontal channel.

They used a staggered mesh based on the finite
volume method in order to calculate pressure term.
Also, they used maximum velocity of the gas phase in
each time step and set Courant Friedrichs Levy Number
equal to 0.5.

Figueiredo et al. [16] investigated accuracy of the
Flux-Corrected Transport humerical method applied to
transient two-phase flow simulations in gas pipelines.
The governing equation presented are based on pressure
assumptions presented by lIssa and Kempf [1]. In
Numerical analysis, they wused the maximum
characteristic value presented by Omgba-Essama [2].
Bueno et al. [17] perform numerical simulation of
stratified Two-Phase Flow in a Nearly Horizontal Gas-
Liquid Pipeline With a Leak. In their research, they
used pressure assumptions presented by Issa and Kempf
[1]. Also, they used the roots of characteristic equation
presented by Omgba-Essama [2].

According to literature, it was found that two models
(i.e. hydrostatic model and hydrodynamic model) were
used to express pressure correction term for simulating
gas-liquid two-phase flows using two-fluid model. The
use of each of these models requires a unique
hyperbolic analysis and determination of the roots of the
characteristic equation for each of the models. The roots
of the characteristic equation affect directly both on the
nature of mathematical models and accuracy of
numerical algorithms of the solution. The roots of the
characteristic equation for hydrodynamic model are
presented by Evje and Flatten [8]. Furthermore, the
roots of the characteristic equation for hydrostatic
model are presented by Essama [2].

According to reviews, no reference has compared
between the hyperbolic ranges of the two-fluid model.



H. Zolfaghary Azizi et al./ IJE TRANSACTIONS A: Basics Vol. 31, No. 1, (January 2018) 144-156 146

Therefore, in the present paper, effects of the roots of
the characteristic equation on the hyperbolic range of
the two-fluid model were investigated by choosing three
valid cases of two-phase flow (i.e. water faucet case,
large relative velocity shock tube case, and Toumi’s
shock tube case) with different initial conditions for the
variables of flow (i.e. velocity, volume fraction of
phases, and pressure).

2. GOVERNING EQUATIONS

The spatial average form of two-fluid model is very
practical for complex engineering applications.
Averaged two-fluid model is obtained from integrating
three-dimensional two-fluid model in terms of position
on the cross-section and using suitable average values
[3]. Momentum and energy transferred between each
phase and the wall, as well as dynamic interaction
between phases at the interface appear source terms and
empirical relations are used to calculate them [4].

The average form of two-fluid model equations
governing on the solution field is demonstrated as
following [8]. In this study, the flow is considered as
isotherm. Conservation of mass and momentum
equations for gas and liquid phases are stated as
follows:

Mass conservation equation for gas:

a a
ot (pgRy) + o (pgRqug) = 0 @
Mass conservation equation for liquid:

(.01 D+ (.01 ) =0 (2)

Momentum conservation equation for gas:

) )
5(pgRgug) + a(pgRgué) = T

®3)
((Pg )R ) pgR Gsinf + F,, + F
Momentum conservation equation for liquid:
a a
5 (lRw) + —(piRuf) = — -

(4)

dPy; .
(P = P)R)) — Ry~ =piRiGsinf + Fyy, — Fy

where, for k™ phase, (if k = g, then the phase is gas
and if k = [, then the phase is liquid). Also,p;,u,Py,
and Py; are density in k™ phase, volume fraction in k"
phase, velocity in k™ phase, pressure in k™ phase, and
pressure at the interface in k™ phase, respectively.
(px R, GsinB), Fy,,, and F, are gravitational force term,
friction force of each phase with the walls, and friction
force of phases at the interface, respectively. G is the
acceleration of gravity.

In above momentum equations, the term P, — Py; is
indicated as APy; and called “pressure correction term

for the gas phase”. Also, the term P, — P;; is indicated as
APy; and called “pressure correction term for the liquid
phase”. Pressure terms in above momentum equations
can be expressed as two forms in terms of the extension
of the derivative to variables.

a 9Py
—a((Pk Pu)Ry) — Ri—, - (5)
_ _ 9(RkPr) 9Rk
= ox TP, (6)
ap 3R
= _Rka_xk_APkia_xk @)

Now, different forms of two-fluid model are obtained
by applying different assumptions for the pressure term.
Evje and Flatten [8], used Equation (5) for pressure
terms and assumed that the pressure of gas phase is
equal to the pressure of liquid phase (P, = P, = P) as
well as the pressure of phases at the interface (P, =
P,; = P;), and in order to correct pressure, the following
relation was used:

R[Ryplpg ( U, _ul) (8)

APy = P — Py = p Ri+piRg

In this paper, the Equations (1) - (4) and (8) is called the
equations form 1. Issa and Kempf presented the
following relations for the pressure term of two-fluid
model by considering the Equation (6) and hydrostatic
pressure assumption for liquid phase and calculating the
average pressure of the liquid phase by integrating of
the cross-section of the pipe [1]:

— 2 (B~ Pgi)Ry) — Ry =2 = —R,E (©)

In their work, it was assumed that the gas phase
pressure is equal to the gas phase pressure at the
interface (i.e. (P; = Py = P)).

—aa—x((Pz Pu)Rl) Rzaph

PR G Cosﬂ E

= n-Rr2_
=n Rlax (10)

h; is height of the liquid phase. Also, it was assumed
that the liquid phase pressure at the interface is equal to
the gas phase pressure at the interface (i.e. (Py; = P; =
P)). In addition, the liquid phase pressure varies
hydrostatically in direction of vertical axis. Also, in
some references [2], Equation (7) was used for the term
pressure of momentum equation. The following relation
was presented the pressure correction term:

oh
P. = APy; = p,R,G cos BB a—Ri (11)

By replacing Equation (11) into Equation (7), we have:
apy dndR, _ o, 9Pk
_RkE—p,RlG cosﬁa—RlE— Ry P 12)

PiR,G cos B %
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where, the Equation (12) is the same Equation (10).
Equations (1)-(4) and (10) is called the equations form
Il. For completing the system of equations, additional
relations are required. These relations, a geometric
constraint and the relationship between density and
pressure of phases are included. A geometric constraint
states that summation of volume fractions of the two
phases [2]:

The relationship between density and pressure of phases
are presented stated as follows [8]:
9P

o9, = Ck (14)

where, Cy is the speed of sound in each phase.
Cz = 10°(m/s)* CZ = 10%(m/s)?

3. HYPERBOLIC ANALYSIS EQUATIONS

3. 1. Hyperbolic Analysis of Form I The basic
governing equations are presented as quasi-linear. This
form of a governing equation are required in order to
express eigenvalues and hyperbolic analysis of the two-
fluid model. In fact, the governing equations on two-
fluid model must be written as below:

2 a@%=s@ (15)

In above relation, Q,S, and A(Q) are conservative
variables vector, vector including source term, and
system’s matrix, respectively. The vectors Q and S, and
the matrix A for two-fluid model are defined as
following:

T
Q= [RgpgRllegpgugRlplul] (16)
S=[0 RypyG 0 RG] an
[ 0 0 ()]
| O 0 1|
A=Az As gO | (18)
lA4_1 A420 ZuLJ
Rgpl+ gl Ry
19-1
Azl = - ué ( )
AP 4iR
Rygpg+—L1
Ay, =G (19-2)
k
Ripu+= (19-3)
Ay =———

k

Rlpg+APli2Rg
Ay = — e} (13-4
where, k = R;py/C? + Ryp,/CZ. The range in which

the two-fluid model equations remains as hyperbolic
can be determined by calculating eigenvalues of the
matrix 1. Because of the complexity of the desired
matrix characteristic equation, there is no exact
analytical equation to calculate the eigenvalues of
matrix. Using analysis of density perturbations of the
equation (20) for the eigenvalues of the matrix I, Evje
and Flatten[8] demonstrated that the Equations (21)-(24)
are valid.

Adpgy=upxCpn , Ay =uyxv (20)

i T @

il T @)

\/AP i(Rgp1+Ripg)— RgRtPtPg(ug w)? 23)
(Rgp1+R1Pg)"

C, = Rgpi+Ripg )

(%)Rgpl“'(%)’?lpg

The Equation (23) shows that if AP, =0, then
eigenvalues are complex. Thus, In Equation (8), 6 must
be more than one.

with § a positive constant. Taking & = 1makes the
two-fluid model hyperbolic [8]. If the initial velocities
of phases are equal, according to Equation (8), the
pressure correction term is zero which means that P is
equal to P,;. In this case, the system of governing
equations has complex eigenvalues, resulting an ill-
posed initial value problem, where there is an
unphysical and unbounded growth of small wavelength
of disturbances [8].

3. 2. Hyperbolic Analysis of Form II In order to
determine the eigenvalues of the system, first, systems
of a governing equation are written as the following
compact form:

M2 M 2= (25)

where, M, and My are two non-singular square matrices
of coefficients that are functions of dependent flow
variables. The vector i is included dependent flow
variables or initial variables. Also, the vector S denotes
the main terms and source algebraic to transfer mass
and momentum between the surface and the wall. Their
characteristics can be described by the following
relation:
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where, A is a characteristic value. Equation of form Il
can be written as Equation (25) and using the
following matrix [2].

[—Pg 0 ORg
1 0 00
My=| 0 pyR, 00 @7)
L 0 Olel 0
[—PgUg  PgRy O Rgug]
u; 0 Rl 0
Mp=| O pgRgug  ORyCH | (28)
L PC 0 lelul RIC;

where,Cg = 0P /dpg is the square of the speed of sound
of gas. By replacing matrices (27) and (28) in Equation
(26), characteristic polynomial is obtained as below:

2+ 2(1+x+P)—P+202(1-22)+0%2(1 -

) = (29)
where,

~ A-u

A= —ng (30)
5 _ Pc _ AGcos B

P= piCZ ~ dA/dhCE (31)
g =Y =t (32)

Cq Cq

Perturbation method about the small parameter 6 =
u,/Cyg is used. For the majority of flows that exist in the
pipeline, the relative velocity u, has order of several
meters per second. Also, the speed of sound in the gas is
order of 200 to 300 meters per second. Therefore,
parameter 0 is small and it seems that this parameter for
perturbation analysis is suitable [2]. Using Goursat's
lemma, we have: Where P(x,0) is in terms of small
parameter 0 and the real coefficient x:

P(x,0) = Po(x) + 6P, (x) + 2P, (x) (33)

Where, Py(x),P,(x), and P,(x)are polynomial having
three terms with real coefficients. The purpose is to find
roots of the polynomial P(x,6) having real
coefficientsin neighboring of root of the polynomial
Py(x) (i.e.xq). There may be two cases. In the first case
X, IS unit root of the polynomial P,(x) and in the
second case, Py (x) has two roots. In this paper, the first
case occurs. If the x, is unit root of the polynomial
Py(x), then there is a first order functionx(6) that is
differentiable in terms 0 so that P(x(6),0) = 0 and we
have:

P, is first derivative of the polynomial P,(x). by
combining Equations (29) and (33), the following
polynomials are obtained:

Po(A)=-21*+22(1+x+P)-P
P (2)=22(1-2?) (34)
P,(1) =2(1-22)

2(0) = xo + 02, + 0(6) (35)
_ P
A= Py(xo) (36)

To obtain zeros of the polynomial P,(1), it is sufficient
to solve the following equation:

-
—Z4+ZZ(1+X+}3)—13=OA—>yy2—y(1+)(+ 37)
P)+P=0

To obtain the roots of the equation (37), we write:
#5= (x4 (1=VB) ). (x+ (1+B) ) (38)

We always have: AS>0-P>0= cosf=0Two
roots of the equation are:

+ (1+x+f>)+«/ﬁ
y ==

_ _ (14x+P)-VaS (39)
y =75

The root of y™* is positive because of all of its terms are
positive. Also, it can be proved through the limit of
minimum that y~ is positive.

N
Y 2V i = 7(1””))2 e (40)
and
A=+ +P)° —4P <1+ y+P)* = A5, (41)
also
VYV ZY ain=0=y" =0 (42)

Therefore, both roots are positive. Characteristic values
of Equation (37) are obtained, stated as follows:

(j1=_\/F

1, ==y~
2=y (43)
13 = \/—F
Ay = \/}F
Using Equations (35) and(36), we have:
1-yt
V4 P~
{ 1,4 2y —1(_1;-_)(+P) (44)

Therefore, for stratified pressure correction term, four
eigenvalues are real and thus cos 8 = 0 is obtained:
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+

(/11 =y — Gyt U s 2y+ —(1+)(+P)

| = -y"
{AZ =ug—Cg Tu Ur 59— (1+){+P)

e (45)
13—ug+C,/ +urm
1-y*
kﬂ4 = Uy +Cg1/ +urm
where,
— PaRt
=2 (46)
5 _ AiGcosB
p =t @)
,  dA
Ay = d_hi (48)
U = Ug— Y (49)

u, is the relative velocity of phases. Two-phase flow
models are highly sensitive to being real or imagine of
their roots of characteristic equation. If the roots of
characteristic equation of differential equations
governing on model are imagine, then an ill-posed
initial value problem is formed, as result, unlimited
instabilities are occurred and eventually the results
cannot be convergent. But if the roots of characteristic
equation are real, then well-posed initial value problem
is formed unlimited instabilities are removed [18]. The
limit of stability of two-fluid model by considering the
hydrostatic pressure correction term is the Kelvin
Helmholtz instability that is obtained expressed as
follows [2].

(%—wfsjm 50)

It means that the limit of Kelvin Helmholtz instability is
equal to limit of well-posing of a single-pressure two-
fluid model by considering the hydrostatic pressure
correction term. On the one hand it can be shown that if
the velocity difference between the two phases is more
than this value, then the interface between the two
phases are physically unstable as well. It means that
limit of physical instability at the interface is equal to
well-posing of single-pressure two-fluid model by
considering the hydrostatic pressure correction term . If
the velocity difference between the two phases is more
than this value, then the roots of characteristic equation
is imagine and the model is ill-posed. This ill-posing
causes that the results do not show realistic physics of
two-fluid flow model.

4. NUMERICAL SOLUTION METHODS

Single-pressure two-fluid model equations can be
written as non- conservative, as following [7]:

SH—=HZE+S (51)
Q is conservative variables vector. F is conservative
flux vector. Also, S and H R, /dx are transfer vectors
of the interface and are included all non-conservative
terms. For non-conservative system Equation (51) form
of the discretization equation is as following [7]:

n+1 = Q! + - (an 1/2 — I.+1/2) +At (H a}lk) + (52)

AtSi

In Equation (52), n and n + 1 denotes the old and new
time steps respectively. Also i represents the cell. To
calculate the numerical flux term F, ,, lax-friedrichs
method is used.

4. 1. Lax-Friedrichs Method
is calculated as following [7]:

Ftr-t—LlF/Z (Fﬁi-l + Fn) - E(Q&l Q? (53)

In this method, flux

Numerical flux in the cell i" is defined as F* = F(Q!")
that is obtained based on the physical flux term
expressed by the model. Single- equations two-fluid
model pressure have the non-conservative terms
H 0R,,/0x that must be separated properly. Otherwise,
this term causes instability in the results [19].
In order to discrete the non-conservative term
H 0R, /0%, the following equations are presented [19]:
Ry _

—ZL= HR R 2 - (54)

H = HR,Ry 2 (55)

The derivative terms 0BG/dx and 0BL/dx are
separated using the central scheme [19]:

0BG BGi+1—BG;_4

HRgR, 2= = HRR, 221 (56)
HRR,2Z: = HR g R 2T (57)
where [19]
R,
= log (R—f) (58)
Ry
BL = log (R—) (59)
g

4. 2. Calculation Time Step In order to calculate
time step, first, Ax is considered as mesh size, then the
time step At is calculated using the following realation

[2].
Ax
At = CFL

max

(60)

In the present study, value of the Courante-Friedrichs-
Levy number is assumed a number between 0.2 to 0.7.
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A ax 1S the maximum value of the wave velocity on the
solution field at the time of n. The maximum value of
wave velocity for the single-pressure two-fluid model is
equal to the maximum value of the characteristic
equation a governing on the solution field. The
characteristic value of the two-fluid model was
presented by Omgba-Essama [2] by considering the
term hydrostatic pressure the correction. Also, the
characteristic value of the two-fluid model was
presented by Evje and Flatten [8] by considering the
term hydrodynamic pressure the correction.

4. 3. Boundary Condition For a computing
domain (0, L) discretized into M computing cells of
length Ax, we require special conditions at the boundary
positions x=0 and x=L as illustrated in Figure 1. These
boundary conditions are expected to provide for test
case the numerical fluxes Fj/i"and Fy% ,, which are
required by finite difference discretisation such as
Equation (53) in order to advance the extreme cells 1
and M to the next time level. For this, in the input and
output, virtual grid will be considered and zeroth-order
extrapolation for the virtual points are used for the flux
in entry and outlet.

5. VALIDATION OF METHODS

In this section, in order to observe the effect the roots of
the characteristic equation on the accuracy of the results,
three case studies namely water faucet case, large
relative velocity shock tube case, and Toumi’s shock
tube case are analyzed using two-fluid model.

5. 1. Water Faucet Case  This system is comprised
of a vertical pipe have a height of 12 meters and a
diameter of 1 m. At the initial moment, velocity of
water is 10m/s and velocity of water is 0, and the
volume fraction of water is assumed 0.8. The pressure
in the channel is equal to 100000 Pa. Inlet conditions is
equivalent to the initial conditions and for outlet of pipe,
fully developed boundary condition are valid. Around
the water, the air having density of 1.16 kg/m3 flows
continuously, also the density of water is considered
1000 kg/m3[2]. Figure 2 shows schematic of water
faucet case.

Left Right
boundary Computational boundary
domain
- P S -

Xal Xal
o Msl

Left Right
virtual cells virtual cells

Figure 1. computing field and virtual cells

P B

Figure 2. Schematic of water faucet case

In water faucet case, pressure inlet condition, velocity
outlet, and fully developed are used for pressure
boundary conditions in inlet, velocity term in outlet, and
void fraction, respectively.

Analytic solution of water faucet case is presented in
the reference [20]. Results of the reference were
extracted from Evje and Flatten [20].

First, independent results of computing mesh for
volume fraction profile of the gas-phase of both forms
presented were obtained for the roots of the
characteristic equation. Figures 3 and 4 indicate
dependency of results computational mesh for volume
fraction profile of the gas-phase at the time 0.6s for
CFL = 0.5.

The independent result of the computational mesh
for volume fraction profile of the gas-phase is shown in
the above stated figures, respectively, using the root of
the characteristic equation of form Il and root of the
characteristic equation of form I. It was found that in the
computational mesh 6400, results are independent on
the computational mesh.

Figure 5 shows the effect of value of & on
calculating the roots of the characteristic equation of
form | as well as direct effect of value of & effect on
accuracy of prediction of pressure changes profile.
Figure 6 compares accuracy of the roots of the
characteristic equation of form | and form Il, in where
6=1.2. The number of computational mesh is 6400.
Also, calculations time and the Courante-Friedrichs-
Levy number are equal to 0.6 and 0.5, respectively.

Exact
——&—— cells =400
—&—— cells=1400
fffff cells = 2400
cells = 3400
— cells = 4400
cells = 5400
cells = 6400

Gas Volume Fraction

Distance (m )

Figure 3. Water Faucet Case. volume fraction profile of the
gas-phase for the roots of the characteristic equation of form

(mn
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Figure 4. Water Faucet Case. volume fraction profile of the
gas-phase for the roots of the characteristic equation of form
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Figure 5. Water Faucet Case. Comparison of different values
of § for root of the characteristic equation of form (I) for the
pressure changes profile
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Figure 6. Water Faucet Case. Comparison of root of the
characteristic equation forms (1) and (Il) for the pressure
changes profile

The results of pressure changes profile presented in the
Figure 6 show that results obtained for the pressure
changes profile using the roots of the characteristic
equation of form | have better agreement with the
analytical solution of the water faucet case . Hydrostatic
pressure correction term for the water faucet case is
equal to zero because channel is vertical and cosf in
Equation (10) is zero. As a result, the effect of
hydrostatic pressure correction term in the two-fluid
equations is removed. In fact, we assumed P; = P,; =

P, = P, = P. This causes that the roots of characteristic
equation, unconditionally to be complex. And in this
case, use of form is no suggested. Therefore, there is the
mismatch of results obtained while using the roots of
the characteristic equation of form Il to analytical
solution of water faucet case.

In numerical modeling, we assumed that(P, = P,).
The gas phase pressure is calculated according to
Equation (14). The pressure changes profile predicted
by the roots of the characteristic equation of form Il has
a greater increase than pressure changes profile
predicted by the roots of the characteristic equation of
form 1. According to Figure 9, the gas phase volume
fraction profile predicted by the roots of the
characteristic equation of form Il has grown more than
the proportions of the gas phase predicted by the roots
of the characteristic equation of form I.Therefore, the
further growth of the gas-phase volume fraction profile
predicted by the roots of the characteristic equation of
form Il increases cross-section of the gas phase.

According to Bernoulli's equations, increases in
cross-section of the gas phase leads to increase in
pressure, increase in liquid phase velocity and in
decrease in gas phase velocity. Results of pressure
changes profile, gas phase velocity profile and liquid
phase velocity are indicated in Figures 6, 7 and 8,
respectively. Mathematically, the gas phase velocity
profile, the liquid phase velocity profile and the volume
fraction profile of the gas phase are investigated.

Velocity changes profile of the gas phase in Figure 7
shows that the roots of the characteristic equation of
form I, by considering the most unfavorable value of §,
are presented more accurate results than the roots of the
characteristic equation of form II.

Also, results of the gas-phase volume fraction
profile and liquid phase velocity in Figures 9 and 8
show more consistent the results of roots of the
characteristic equation of form II.
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Figure 7.Water faucet case. Comparison of effect of the roots
of the characteristic equation of the forms (I) and (Il) for
velocity profile of the gas phase
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in Table 1 [21]. Schematic of large relative velocity case
is shown in Figure 10.

Figures 11 and 12, dependency on computational
mesh solutions for the velocity profile of the gas phase
at the time of 0.1 seconds for the CFL = 0.5 are shown.
These figures indicate the results independent on the
computational mesh for velocity profile of the gas phase
using the roots of the characteristic equation of form |
and the roots of the characteristic equation of form I,
respectively. It was found that in the computational
mesh 1600, results are independent on the
computational mesh.

In this section, we compared the roots of the
characteristic equation of form I and form Il. The results
presented for pressure changes profile, volume fraction
profile of the liquid phase, velocity profile the of gas
phase and velocity profile of the liquid phase in Figures
13-16, respectively are valid.

Results of pressure changes profile are shown in
Figure 13. The most appropriate amount of & for the
roots of the characteristic equation of form I, that
ensures being well-posed of the model and compliance
with analytical solutions, is 1.2.

f Diaphragm {1 = 0)

Bl Water
[ Gas

Figure 9.Water faucet case. Comparison of effect of the roots
of the characteristic equation of forms (I) and (I1) for volume
fraction profile of the gas-phase

This contradiction is not caused by the impact of the
roots of the characteristic equation, but it is caused by
ill-posing of the two-fluid model having hydrostatic
pressure correction term.

By considering hydrostatic pressure correction term,
because of Kelvin Helmholtz instability is equal to the
limit of well-posing of two-fluid model [2]. Therefore,
due to being vertical of pipe, the cos f in the Equation
(10) is zero. As a result, the left side of Kelvin
Helmholtz instability of the Equation (50) is zero and

we have (ug, —ul)2 < 0. But, according to the initial
velocity of the two phases, this condition is not valid for
the water faucet case. Therefore, the water faucet case is
an ill-posed initial value problem that validation of
results is possible by comparing the analytical solution
of the problem.

5. 2. Large Relative Velocity Case  This problem is
a Riemann initial value problem that is included a
channel with 100 m length that in position of 50 m are
divided in two parts and both ends of the channel are
closed. Characteristics of this problem and initial
conditions on the left and right diaphragm are presented

Figure 10. Schematic of large relative velocity case

TABLE 1. Initial conditions of the large relative velocity

shock tube case

Quantity Unit Left Right
Gas volume fraction 0.29 0.3
Liquid velocity m/s 1 1
Gas velocity m/s 65 50
Pressure Kpa 265 265
Gas density kg/m® 2.65 2.65
liquid density kg/m? 1000 1000
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Figure 11. Large relative velocity shock tube case. velocity
profile of the gas phase of the roots of characteristic equation
of form (1)
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Figure 12. Large relative velocity shock tube case. velocity
profile of the gas phase of the roots of characteristic equation
of form (1)
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Figure 13. Large relative velocity case. Comparison of the
effects of the roots of the characteristic equation of forms (1)
and (1) for pressure changes profile
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Figure 14. Large relative velocity case. Comparison of the
effects of the roots of the characteristic equation of forms (I)

and (I1) for the volume fraction profile of the liquid phase.

The values of 2 and 2.5 for & causes being ill-posed of
the model and leads to incorrect prediction for solving
wave motion, in fact, it shows misinformation from the
actual physics of flow.

Results of pressure changes profile are shown in
Figure 13, the roots of the characteristic equation of
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Figure 15. Large relative velocity case. Comparison of the
effects of the roots of the characteristic equation of forms (I)
and (I1) for gas profile of the phase velocity
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Figure 16. Large relative velocity case. Comparison of the
effects of the roots of the characteristic equation of forms (I)

and (I1) for velocity profile of the liquid phase.

Liquid velocity ( mis )
2
T

form Il has predicted discontinuities in the solution field
with more accurate than the roots of the characteristic
equation of form I. The results presented for pressure
changes profile, volume fraction profile of liquid phase,
velocity profile of gas phase and velocity profile of
liquid phase in Figures 14, 15, and 16, respectively are
valid.

5.3. Toumi’s Shock Tube Case This system is
consisted of a pipe hiving length of 100m divided into
two parts in 50m of its length and both ends of channel
is closed. Specifications of this case and initial
conditions is indicated in Table 2 [22].

Figures 17 and 18 show dependence of results on the

computational mesh for the velocity profile of the gas
phase at the time 0.08 s forCFL = 0.2.
The Figures 17 and 18 show the results independent on
the computational mesh for velocity profile of gas phase
using the roots of characteristic equation of form Il and
the roots of characteristic equation of form |,
respectively. it was found that in the computational
mesh 1600, results are independent on the
computational.
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In this section, we compare the roots of the
characteristic equation of form | and form II. Results for
pressure changes profile, volume fraction profile of the
gas phase, velocity profile the of gas phase and velocity
profile of the liquid phase presented in Figures 19, 20,
21, and 22, respectively.

In order to predict pressure changes profile and more
accurate matching of results by analytical solution
Toumi’s shock tube case. The most appropriate amount
of & is 2; that ensures the roots of the characteristic
equation are real, as a results, the model is well-posed.

154

Data are presented in Figure 19.

TABLE 2. Initial conditions of Toumi’s shock tube case

Quantity Unit Left Right
Gas volume fraction - 0.25 0.1
Liquid velocity m/s 0
Gas velocity m/s 0
Pressure mpa 20 10
Gas density kg/m3 200 100
liquid density kg/m3 1000 1000
120 1
100 - S AN
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Figure 17.Toumi’s Case. velocity profile of the gas phase for
the roots of characteristic equation of form (I1)
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Figure 18.Toumi’s Case. velocity profile of the gas phase for
the roots of characteristic equation of form (1)
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Figure 19. Toumi’s Case. Comparison of the roots of the
characteristic equation of forms (I) and (lI) for the pressure
change profile
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Figure 20. Toumi’s Case. Comparison of the roots of the
characteristic equation of forms (1) and (ll) for volume
fraction profile of the gas-phase
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Figure 21. Toumi’s Case. Comparison of the roots of the
characteristic equation of forms (1) and (l1) for velocity profile
of gas phase

Setting 1.01 and 1.2 for & causes that the model should
be ill-posed and the results predicted are non-physical.
Results of pressure changes profile are shown using the
roots of the characteristic equation of form II.
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Figure 22. Toumi’s Case. Comparison of the roots of the
characteristic equation of forms (1) and (I1) for velocity profile
of liquid phase

This model does not predict the motion of wave and it
presents non-physical results due to having ill-posed
model.

The pressure changes due to height of the fluid is
used for calculating the roots of the characteristic
equation of form Il. But because of at the initial
moment, there is pressure gradient around both sides of
the diaphragm Toumi’s shock tube case. As a result, the
pressure changes due to height of the fluid is intangible
and the balance between the mathematical nature of
physics model is not formed and therefore, system is ill-
posed.

Results for pressure changes profile, volume fraction
profile of the liquid phase, velocity profile of gas phase
and velocity profile of liquid phase presented in Figures
19, 20, 21and 22, respectively are valid.

6. CONCLUSION

Our investigations indicated that the roots of the
characteristic equation of form | ensures the range of
well-posing more than the roots of the characteristic
equation of form II. Results of Toumi’s shock tube case
showed that extreme velocity and pressure gradients
effect directly on the roots of the characteristic equation
of two-fluid model and leads to present non-physical
results for the roots of the characteristic equation of
form 11. The two-fluid model 1 is included a coefficient
that appropriate selection of its value ensures that the
roots of the characteristic equation is hyperbolic, but the
roots of the characteristic equation have not this

property.
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