IJE TRANSACTIONS A: Basics Vol. 31, No. 1, (January 2018) 120-127

International Journal of Engineering

Journal Homepage: www.ije.ir

Flow Over an Exponentially Stretching Porous Sheet with Cross-diffusion Effects

and Convective Thermal Conditions

D. Srinivasacharya*, P. Jagadeeshwar

Department of Mathematics, National Institute of Technology, Warangal, Telangana, India

PAPER INFO

ABSTRACT

Paper history:

Received 05 October 2017

Received in revised form 17 November 2017
Accepted 30 November 2017

This article investigates the influence of cross-diffusion on the viscous fluid flow over a porous sheet
stretching exponentially by applying the convective thermal conditions. Velocity slip at the boundary
is considered. The numerical solutions to the governing equations are evaluated using successive
linearisation procedure and Chebyshev collocation method. It is observed from this study that the rate
of heat transfer escalated with enhance in the Biot number and reduced with increase in dufour
number. While, the rate of mass transfer from the sheet to the fluid reduced with increase in both soret
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He);t and Mass Transfer and Biot numbers. Finally, the obtained results for rate of heat transfer are compared with the
Soret published results in the literature for special cases. The influence of the pertinent parameters on the
Dufour physical quantities are displayed through graphs.
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1. INTRODUCTION

The investigation of flow over a sheet elongated
exponentially is of considerable interest because of its
applications in industrial and technological processes,
such as, fluid film condensation process, aerodynamic
extrusion of plastic sheets, crystal growth, the cooling
process of metallic sheets, design of chemical
processing equipment and various heat exchangers and
glass and polymer industries. The pioneering works of
Sakiadis [1, 2], motivated the several researchers to
investigate the stretched flow problem. Crane [3] is one
among them, who extended the work of Sakiadis [1, 2].
Since then several researchers, to mention a few, Rohni
et al. [4], Nadeem and Hussain [5], Khan et al. [6],
Hayat et al. [7], Adeniyan and Adigun [8],
Srinivasacharya and Jagadeeshwar [9], etc., investigated
this flow problem for different geometries under
different physical conditions.

The energy flux originated by a concentration
gradient is termed as the diffusion-thermo or Dufour
effect. While, the thermal-diffusion or Soret effect
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corresponds to mass fluxes created by temperature
gradients. When the temperature and concentration
gradients are considerably very large in areas such as
petrology, hydrology, high-speed aerodynamics,
geosciences, and so forth, the soret and dufour effects
may just become strong despite recognising as second
order phenomena. However, in most of the studies the
importance of soret and dufour effects are neglected.
Eckert and Drake [10] recognized in many instances,
that the importance of these effects cannot be neglected.
Inspite of engineering and industrial applications of
these flows, a little attention (Srinivasacharya and
Ramreddy [11], Sulochana et al. [12] etc,) is focussed
on the flow over the sheets stretching exponentially
including the soret and dufour effects.

Generally, accepted boundary condition on the solid
surface is no-slip condition. However, Navier [13]
suggested that fluid slips at the solid boundary and slip
velocity depends linearly on the shear stress. The fluid
slippage phenomenon at the solid boundary appear in
numerous applications, for example, in nanochannels or
microchannels and the cleaning of simulated heart
valves, internal cavities. Using this velocity-slip
conditions, Su and Zheng [14] reported the effects of
Joule heating and Hall currents on the flow of nanofluid
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over a stretching wedge. Bhatnagar [15] studied the
influence of the shape of stenosis and slip velocity on
non-Newtonian flow of blood through a stenosed
arterial segment. Sarabandi and Moghadam [16]
considered the steady-state fully-developed laminar
flow of non-Newtonian power-law fluids in a circular
microchannel with slip boundary condition under an
imposed constant wall heat flux. On the other hand, a
novel technique for the heating process by providing the
heat with finite capacity to the convecting fluid through
the bounding surface has attracted by numerous
researchers. This type of thermal boundary condition,
called convective boundary condition, results in the rate
of exchange of heat across the boundary being
proportional to the difference in local temperature with
the ambient conditions [17]. Due to the realistic nature
of the convective thermal condition, the investigation of
heat transfer with this condition has rich significance in
mechanical and designing fields, for example, heat
exchangers, atomic plants, gas turbines, and so forth.
Hayat et al. [18] investigated the impact of convective
thermal conditions on the MHD flow of nano-fluid over
an stretching surface in porous medium. Rahman et al.
[19] studied numerically the steady flow, thermal and
solutal transfer process of a nano-fluid past a permeable
exponentially shrinking surface using the Buongiorno’s
model. Recently, Srinivasacharya and Jagadeeshwar
[20] investigated the slip flow of viscous fluid over a
sheet stretching exponentially with convective thermal
conditions. Though, there is considerable literature
available on the flow, thermal and solutal transport
towards a stretching surface, a significant investigations
have not been carried out with convective thermal
conditions in different physical situations.

Therefore, motivated by the above investigations
and importance of these flows in engineering and
manufacturing process, we made an attempt to analyse
the cross-diffusion effects on the flow over a permeable
stretching sheet with convective thermal conditions. In
addition to these physical conditions, velocity slip at the
surface and suction/injection are also considered.

2. MATHEMATICAL FORMULATION

Consider a stretching sheet in an incompressible
viscous fluid with a temperature and concentration as T,
and C,, respectively. The Cartesian framework is
selected by taking positive x -axis which is along the
sheet and ¥ -axis which is orthogonal to the sheet. The
stretching velocity of the sheet is assumed as U«(X) =

U e% where % the distance from the slit. Assume that
the sheet is either cooled or heated convectively through
a fluid with temperature Ty and which induces a heat

%
transfer coefficient hy, where hy=h Ju, /2L eéL (0,

a ) is the velocity vector, C is the concentration and T
is the temperature. The suction/injection velocity of the

fluid through the sheet is V(%) = V, e%L , Where Vj is
the strength of suction/injection. Further, the slip

velocity of the fluid is assumed as N(X)=N, e %'—,
where Np is the velocity slip factor. Hence, the
following equations which governs the present flow
with cross-diffusion effects [21, 22] are:

. o
e, 22 )
ox oy
_oa, - o0, o%a,
X g + Uy — =V 8y2 (2)
aT T 8T Dxy 8°C
Oy +0y—=a— +—L— ©)
ox & & cscp oy
aC aC _0°C Dxy 07T
Oy~ +0y—— =D +—L"— (4)
oX oy o2 Tm o2

where v, p, €, Cs, T, k7, @ and D are respectively, the
kinematic viscosity, the density, the specific heat
capacity at the constant pressure, the concentration
susceptibility, the mean fluid temperature, the thermal
diffusion ratio, the thermal diffusivity and the mass
diffusivity.

The conditions at the boundary are:

or =~ . (5)

i, >0T >T,C—>C, a5 §ow

Substituting the stream functions @, =-dy /oy and
dy=0w/ox and then the following dimensionless
variables:

X X
y=9JUg/(2vL)e2L, w = J2vLUge2LF(x,y),
f :Too + (rf _Too)T (X, y)l (6)

C=Cy,+(Cy=C.)C(x.Y)
into Equations (1) - (4), we attain:

F"+FF" —2F2 =0 ™

iT"—b— FT'+Ds C"=0 (8)
Pr
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The conditions at the boundary reduces to:

F(0)=S, F'(0)=1+AF"(0),
T'(0)=-Bi(l-T(0)), C(O)=1at y=0 (10)
F'(0) >0, T(x) >0, C(0)—>0as y—m

where Bi =£\/; is the Biot number, Pr = v /a is the
K

Prandtl number, S= Dxr Ty¢/(vCoT,,) is the soret
number, S=Vp,2L/WJ, is the suction/injection
parameter according as S > 0 or S < O respectively, Ds
= D xr C¢ vCsCpT, is the Dufor parameter,
A=NgWg/2Lis the velocity slip parameter,
Sc=v/D is the Schmidt number and the prime
symbolizes the derivative with respect to y.

The local Nusselt number Nug = X qu/k(Ts - T),
and local Sherwood number Shy = X gn/x(Cy, - C.,), are
given by:

Nui:_\/g\/@r(m and Shiz—\/%\/?egc’(o)} (11)

where Rey =% U«( X )/v is the local Reynolds number.

3. NUMERICAL SOLUTION

The system of Equations (7)-(9) is linearized using
successive linearisation method (SLM) [23, 24]. In this
method, the functions F(y), T(y) and C(y) are expressed
as:

r-1 r-1
F=Fy)+ ZF.(V),T(y) =T (N+ zTi(Y),

i=0 i=0 (12)

r-1
and C(y) =Cr(¥)+ Y _Ci(¥)

i=0
where F.(y), T{y) and C.(y) (r = 1, 2, 3, ..) are
functions, which are not known and Fi(y), Ti(y) and
Ci(y) (i > 1) are approximations. Substituting Equation
(12) in Equations (7) to (9) and taking the linear part,
we get:

R nniafh ™ rgiaR + nsiafk = cia (13)
Zoni-1Fi + %rTi F 222l + DG =G0 (14)
Z31i-1F +S¢Ti "+ %C Ci"+ 232i-1Ci "= C3ia (15)

where the coefficients y, ., and ¢4, (L k=1,2,3)

are in terms of the approximations F;, T, and C;, (i
=1,2,3,..., r-1) and their derivatives.
The boundary associated conditions are:

Fr(0) = AF"(0) - F '(0) = F () =0, } (16)
T '(0) = BiT(0) =T, (0) =C,(0) =C(0) =0
Choosing the initial approximation Fo(y), To(y) and
Co(y) satisfy the conditions (10) and solving the linear
Equations (13) to (15) recursively, we get the solutions
for F.(y), T.(y) and C,(y) (r > 1) and hence, F(y), T(y)
and C(y).

To solve Equations (13) to (15) along with the
boundary conditions (16), Chebyshev spectral
collocation method [25] is used. The problem is solved
for [0, L] instead of /0, ), where the parameter L is
used to recover the conditions at infinity.

To apply Chebyshev spectral collocation method,
the domain under consideration [0, L] is transformed to
[-1, 1] by the transformation &=(2/L)-1, -1<&<1.

The unknown functions F(y), T,(y) and C.(y) (r=1,
2, 3, ...) and their derivatives are expressed in terms of

Chebyshev polynomials Y, (£) = cos(kcos 1(&)) at N+1
Gauss-Lobatto collocation points & =cos(zk / N), k=1,
2,...Nas:

N

Iﬁr(éz) = kZ;,)Fr(ék)Yk(é:m) and
e N (17)
2= 2 Dim[i (%),

ay® ko
where I (y)= Fi(y) or T,(y) or C,(y), D= 2D/L with D is
the Chebyshev derivative matrix and a is the order of the
derivative.

Substituting in (17) in (13) - (15) leads to the matrix
equation (for details see ([23, 24]). Incorporating
boundary conditions and solving the resulting matrix
system, we get the solution.

4.RESULTS AND DISCUSSION

Numerical values for —7(0) of Magyari and Keller [22]
are compared with the results of current method for
particular values of Dy =0, A =0, S, =0, S =0 and
Bi »o shown in Table 1 and found to be in good
agreement.

To elucidate the significance of relevant parameters,
the numerical calculations are carried out by taking S =
0.5,D;=0.03,Sc=0.22, Pr=1.0,4=1.0,S,=0.5, Bi
=1.0, N =100 and L = 20 unless otherwise mentioned.
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TABLE 1. Comparative analysis for —7°(0) by the current
method for for S, =0,4=0,D;=0,S=0and Bi >«

Nusselt number -77(0)

Pr Magyari and Keller [26] Present Error Percent

0.5 0.330493 0.330537 0.013313
1 0.549643 0.549643 0.000000
3 1.122188 1.122086 0.009089
5 1.521240 1.521238 0.000131
8 1.991847 1.991836 0.000552
10 2.257429 2.257422 0.000310

The influence of slip and suction/injection parameters
on the fluid velocity is portrayed in the Figures 1(a) —
1(b). It is evident from the Figures 1(a) and 1(b) that
raise in slipperiness and fluid suction diminishes the
fluid velocity while injection is enhancing the velocity.

The variation of temperature distribution with Bi, 4,
S, and Dy is plotted through the Figures 2(a) — 2(d).
Figure 2(a) illustrates that the temperature is enhancing
with raise in the value of Bi and hence gain in thickness
of thermal boundary. Further, for large value of Biot
number, the convective thermal condition from (10)
transforms to T(0) —1, which signifies the constant
wall condition.
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§=-1.0,-05,0.0,1.0,2.0

y 8 12 16

(b)
Figure 1. (a) Influence of 1 on F”, (b) Influence of S on F’

It is evident from the Figure 2(b) that temperature

enhanced with a raise in slipperiness.
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Figure 2. (a) Influence of Bi on T, (b) Influence of Aon T, (c)
Influence of Son T, (d) Influence of Dson T
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It is well known fact that wall suction reduces the
thickness of thermal boundary layer and hence,
reduction in temperature arises. This phenomenon is
graphically presented in the Figure 2(c). However, the
wall injection produces the exact contradictory nature. It
is observed from the figures that the thickness of the
thermal boundary layer is increased with an increase in
the values of Dufour number as shown in Figure 2(d).

The influence of 4, S, S, and Bi on concentration of
the fluid is shown graphically in Figures 3(a) — 3(d). It
is clear from the Figure 3(a) that the increase in
slipperiness rises the concentration. On the other hand,
the wall injection enhanced the fluid concentration and
suction reduced the concentration as shown in the
Figure 3(b).
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(d)
Figure 3. (a) Influence of 4 on C, (b) Influence of S on C (c)
Influence of S, on C, (d) Influence of Bi on C

The impact of Soret number on concentration profile is
presented in Figure 3(c). It is apparent from this figure
that the concentration is increased with an increase in S,.
Figure 3(d) illustrates that the concentration is enhanced
with a raise in the value of Bi and hence gain in
thickness of the concentration boundary. However, the
enhancement in concentration is less compared to that
temperature with a rise in Biot number as shown in the
Figure 2(a).

The influence of Bi, D; and A on the rate of heat
transfer with S are depicted through the Figures 4(a) —
4(c). Figure 4(a) demonstrates that the rate of heat
transfer is increased with a rise in Bi.
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©
Figure 4. (a) Influence of Bi on —7(0), (b) Influence of D on
—T’(0) (c). Influence of A on-T"(0)

On the other hand, Figures 4(b) and 4(c) depict the
behaviour of rate of heat transfer for different values of
Dufour number and slip parameter. It is clear from these
figures that the rate of heat transfer decreases with
increasing values of Dufour number and slip parameter.
Further, it is noticed that the rate of heat transfer is
enhancing with fluid suction in the presence all
pertinent parameters.

The rate of mass transfer under the influence of
Dufour, Soret, Biot numbers and velocity slip parameter
is represented in Figures 5(a) - 5(d). It is noticed from
the Figure 5(a) that the rate of mass transfer is enhanced
with an enhancement in the value of D; While,
reduction in the rate of mass transfer is observed with
the rise in S, as portrayed in Figure 5(b). Figures 5(c)
and 5(d) depict that the rate of mass transfer is
diminishing with rise in Biot number and slip
parameter. On the other hand, the rate of mass transfer
from the sheet to the fluid is enhancing with fluid
suction.

5. CONCLUSION

The influence of cross-diffusion effects on the flow over
a sheet stretching exponentially in presence of
convective thermal conditions has been studied.
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Figure 5. (a) Influence of Ds on —C"’(0), (b) Influence of S, on

—C’(0), (c) Influence of Bi on —C’(0) (d). Influence of 1 on —

)

Successive linearization method along with the
Chebyshev collocation method is used to solve the
governing equations.

e Velocity of the fluid is reduced with a decrease in
slip and fluid suction. Skin-friction diminished with
a rise in the suction and enhanced with slip.

e  Fluid temperature is escalated with a rise in Dufour,
Biot numbers and slip parameter and decelerated
with fluid suction.

e  Fluid concentration is enriched with a rise in Biot
and soret numbers and reduced with an increase in
slip parameter.

o Rate of heat transfer is enhanced with a rise in Biot
number and fluid suction. It decreased with an
increase in the Dufour number and slip.
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An increase in suction and Dufour number
escalated the rate of mass transfer. It diminished
with increase in Soret, Biot numbers and velocity
slip.
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