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A B S T R A C T  
 

 

This article investigates the influence of cross-diffusion on the viscous fluid flow over a porous sheet 

stretching exponentially by applying the convective thermal conditions. Velocity slip at the boundary 
is considered. The numerical solutions to the governing equations are evaluated using successive 

linearisation procedure and Chebyshev collocation method. It is observed from this study that the rate 

of heat transfer escalated with enhance in the Biot number and reduced with increase in dufour 
number. While, the rate of mass transfer from the sheet to the fluid reduced with increase in both soret 

and Biot numbers. Finally, the obtained results for rate of heat transfer are compared with the 

published results in the literature for special cases. The influence of the pertinent parameters on the 
physical quantities are displayed through graphs. 

doi: 10.5829/ije.2018.31.01a.17 
 

 
1. INTRODUCTION1 
 

The investigation of flow over a sheet elongated 

exponentially is of considerable interest because of its 

applications in industrial and technological processes, 

such as, fluid film condensation process, aerodynamic 

extrusion of plastic sheets, crystal growth, the cooling 

process of metallic sheets, design of chemical 

processing equipment  and various heat exchangers and 

glass and polymer industries. The pioneering works of 

Sakiadis [1, 2], motivated the several researchers to 

investigate the stretched flow problem. Crane [3] is one 

among them, who extended the work of Sakiadis [1, 2]. 

Since then several researchers, to mention a few, Rohni 

et al. [4], Nadeem and Hussain [5], Khan et al. [6], 

Hayat et al. [7], Adeniyan and Adigun [8], 

Srinivasacharya and Jagadeeshwar [9], etc., investigated 

this flow problem for different geometries under 

different physical conditions. 

The energy flux originated by a concentration 

gradient is termed as the diffusion-thermo or Dufour 

effect. While, the thermal-diffusion or Soret effect 
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corresponds to mass fluxes created by temperature 

gradients. When the temperature and concentration 

gradients are considerably very large in areas such as 

petrology, hydrology, high-speed aerodynamics, 

geosciences, and so forth, the soret and dufour effects 

may just become strong despite recognising as second 

order phenomena. However, in most of the studies the 

importance of soret and dufour effects are neglected. 

Eckert and Drake [10] recognized in many instances, 

that the importance of these effects cannot be neglected. 

Inspite of engineering and industrial applications of 

these flows, a little attention (Srinivasacharya and 

Ramreddy [11], Sulochana et al. [12] etc,) is focussed 

on the flow over the sheets stretching exponentially 

including the soret and dufour effects. 

Generally, accepted boundary condition on the solid 

surface is no-slip condition. However, Navier [13] 

suggested that fluid slips at the solid boundary and slip 

velocity depends linearly on the shear stress. The fluid 

slippage phenomenon at the solid boundary appear in 

numerous applications, for example, in nanochannels or 

microchannels and the cleaning of simulated heart 

valves, internal cavities. Using this velocity-slip 

conditions, Su and Zheng [14] reported the effects of 

Joule heating and Hall currents on the flow of nanofluid 
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over a stretching wedge. Bhatnagar [15] studied the 

influence of the shape of stenosis and slip velocity on 

non-Newtonian flow of blood through a stenosed 

arterial segment. Sarabandi and Moghadam [16] 

considered the steady-state fully-developed laminar 

flow of non-Newtonian power-law fluids in a circular 

microchannel with slip boundary condition under an 

imposed constant wall heat flux. On the other hand, a 

novel technique for the heating process by providing the 

heat with finite capacity to the convecting fluid through 

the bounding surface has attracted by numerous 

researchers. This type of thermal boundary condition, 

called convective boundary condition, results in the rate 

of exchange of heat across the boundary being 

proportional to the difference in local temperature with 

the ambient conditions [17]. Due to the realistic nature 

of the convective thermal condition, the investigation of 

heat transfer with this condition has rich significance in 

mechanical and designing fields, for example, heat 

exchangers, atomic plants, gas turbines, and so forth. 

Hayat et al. [18] investigated the impact of convective 

thermal conditions on the MHD flow of nano-fluid over 

an stretching surface in porous medium. Rahman et al. 

[19] studied numerically the steady flow, thermal and 

solutal transfer process of a nano-fluid past a permeable 

exponentially shrinking surface using the Buongiorno’s 

model. Recently, Srinivasacharya and Jagadeeshwar 

[20] investigated the slip flow of viscous fluid over a 

sheet stretching exponentially with convective thermal 

conditions. Though, there is considerable literature 

available on the flow, thermal and solutal transport 

towards a stretching surface, a significant investigations 

have not been carried out with convective thermal 

conditions in different physical situations. 

Therefore, motivated by the above investigations 

and importance of these flows in engineering and 

manufacturing process, we made an attempt to analyse 

the cross-diffusion effects on the flow over a permeable 

stretching sheet with convective thermal conditions. In 

addition to these physical conditions, velocity slip at the 

surface and suction/injection are also considered. 

 

 

2. MATHEMATICAL FORMULATION 
 

Consider a stretching sheet in an incompressible  

viscous fluid with a temperature and concentration as T∞  

and C∞, respectively. The Cartesian framework is 

selected by taking positive x -axis which is along the 

sheet and y -axis which is orthogonal to the sheet. The 

stretching velocity of the sheet is assumed as U*( x ) = 

U0 
x

Le  where x   the distance from the slit. Assume that 

the sheet is either cooled or heated convectively through 

a fluid with temperature Tf and which induces a heat 

transfer coefficient hf, where hf = h 0 / 2U L  2
x

Le . ( u x, 

u y) is the velocity vector, C  is the concentration and T  

is the temperature. The suction/injection velocity of the 

fluid through the sheet is V*( x ) = V0 2
x

Le , where V0 is 

the strength of suction/injection. Further, the slip 

velocity of the fluid is assumed as N( x )=N0 2
x

Le


, 

where N0 is the velocity slip factor.  Hence, the 

following equations which governs the present flow 

with cross-diffusion effects [21, 22] are: 

0
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where υ, , cp, cs, Tm, κT, α and D are respectively, the 

kinematic viscosity, the density, the specific heat 

capacity at the constant pressure, the concentration 

susceptibility, the mean fluid temperature, the thermal 

diffusion ratio, the thermal diffusivity and the mass 

diffusivity. 

The conditions at the boundary are: 
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Substituting the stream functions /  xu y   and 

/yu x    and then the following dimensionless 

variables: 
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into Equations (1) - (4), we attain: 

22 0F FF F      (7) 

1
0fT FT D C

Pr
      (8) 



D. Srinivasacharya and P. Jagadeeshwar / IJE TRANSACTIONS A: Basics  Vol. 31, No. 1, (January 2018)   120-127                       122 
 

1
0rC FC S T

Sc
      (9) 

The conditions at the boundary reduces to: 

(0) , (0) 1 ''(0),

(0) (1 (0)), (0) 1 at 0

( ) 0, ( ) 0, ( ) 0 as

F S F F

T Bi T C y
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where 
h

Bi 


  is the Biot number, Pr =  /α is the 

Prandtl number, Sr= DκT T0/(υC0Tm) is the soret 

number, 0 02 /S V L U  is the suction/injection 

parameter according as S > 0 or S < 0 respectively,  Df 

= D κT C0/ υCsCpT0 is the Dufor parameter, 

0 0 / 2N U L  is the velocity slip parameter, 

/Sc D  is the Schmidt number and the prime 

symbolizes the derivative with respect to y. 

The local Nusselt number xNu = x qw/κ(Tf - T∞), 

and local Sherwood number xSh = x qm/κ(Cw - C∞), are 

given by: 

(0) and (0)
2 2

x x x x

x x
Nu Re T Sh Re C

L L


     
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where xRe = x U*( x )/υ is the local Reynolds number. 

 

 

3. NUMERICAL SOLUTION 
 

The system of Equations (7)–(9) is linearized using 

successive linearisation method (SLM) [23, 24]. In this 

method, the functions F(y), T(y) and C(y) are expressed 

as: 
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where Fr(y), Tr(y) and Cr(y)  (r = 1, 2, 3, ...) are 

functions, which are not known and Fi(y), Ti(y) and 

Ci(y) (i > 1) are approximations. Substituting Equation 

(12) in Equations (7) to (9) and taking the linear part, 

we get: 
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where the coefficients , 1lk r   and , 1k i  , (l, k = 1, 2, 3) 

are in terms of the approximations Fi, Ti and Ci, (i 

=1,2,3,..., r-1) and their derivatives. 

The boundary associated conditions are: 
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Choosing the initial approximation F0(y), T0(y) and 

C0(y) satisfy the conditions (10) and solving the linear 

Equations (13) to (15) recursively, we get the solutions 

for Fr(y), Tr(y) and Cr(y) (r > 1) and hence, F(y), T(y) 

and C(y).  

To solve Equations (13) to (15) along with the 

boundary conditions (16), Chebyshev spectral 

collocation method [25] is used. The problem is solved 

for [0, L] instead of [0, ∞), where the parameter L is 

used to recover the conditions at infinity.  

To apply Chebyshev spectral collocation method, 

the domain under consideration [0, L] is transformed to 

[-1, 1] by the transformation (2 / ) 1, 1 1L       . 

The unknown functions Fr(y), Tr(y) and Cr(y)  (r = 1, 

2, 3, ...) and their derivatives are expressed in terms of 

Chebyshev polynomials 1( ) cos( cos ( ))k k    at N+1 

Gauss-Lobatto collocation points cos( / ),k k N   k = 1, 

2, . . .N as: 
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where Гr(y)= Fr(y) or Tr(y) or Cr(y), D= 2D/L with D is 

the Chebyshev derivative matrix and a is the order of the 

derivative. 

Substituting in (17) in (13) - (15) leads to the matrix 

equation (for details see ([23, 24]). Incorporating 

boundary conditions and solving the resulting matrix 

system, we get the solution. 

 

 

 

4. RESULTS AND DISCUSSION 
 
Numerical values for –T’(0) of Magyari and Keller [22] 

are compared with the results of current method for 

particular values of Df = 0,  = 0, Sr = 0, S =0 and 

Bi   shown in Table 1 and found to be in good 

agreement. 

To elucidate the significance of relevant parameters, 

the numerical calculations are carried out by taking S = 

0.5, Df = 0.03, Sc = 0.22, Pr = 1.0,  = 1.0, Sr = 0.5, Bi 

= 1.0, N = 100 and L = 20 unless otherwise mentioned. 
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TABLE 1. Comparative analysis for –T’(0) by the current 

method for for Sr = 0,  = 0, Df = 0, S = 0 and Bi   

Nusselt number –T’(0) 

Pr Magyari and Keller [26] Present Error Percent 

0.5 0.330493 0.330537 0.013313 

1 0.549643 0.549643 0.000000 

3 1.122188 1.122086 0.009089 

5 1.521240 1.521238 0.000131 

8 1.991847 1.991836 0.000552 

10 2.257429 2.257422 0.000310 

 

The influence of slip and suction/injection parameters 

on the fluid velocity is portrayed in the Figures 1(a) – 

1(b). It is evident from the Figures 1(a) and 1(b) that 

raise in slipperiness and fluid suction diminishes the 

fluid velocity while injection is enhancing the velocity.  

The variation of temperature distribution with Bi, , 

S, and Df  is plotted through the Figures 2(a) – 2(d). 

Figure 2(a) illustrates that the temperature is enhancing 

with raise in the value of Bi and hence gain in thickness 

of thermal boundary. Further, for large value of Biot 

number, the convective thermal condition from (10) 

transforms to (0) 1T  , which signifies the constant 

wall condition. 

 

 
(a) 

 
(b) 

Figure 1. (a) Influence of  on F’, (b) Influence of S on F’ 

It is evident from the Figure 2(b) that temperature 

enhanced with a raise in slipperiness. 

 
(a)  

 
(b)  

 
(c)  

 
(d) 

Figure 2. (a) Influence of Bi on T , (b) Influence of  on T, (c) 

Influence of S on T, (d) Influence of Df on T 
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It is well known fact that wall suction reduces the 

thickness of thermal boundary layer and hence, 

reduction in temperature arises. This phenomenon is 

graphically presented in the Figure 2(c). However, the 

wall injection produces the exact contradictory nature. It 

is observed from the figures that the thickness of the 

thermal boundary layer is increased with an increase in 

the values of Dufour number as shown in Figure 2(d).  
The influence of , S, Sr and Bi on concentration of 

the fluid is shown graphically in Figures 3(a) – 3(d). It 

is clear from the Figure 3(a) that the increase in 

slipperiness rises the concentration. On the other hand, 

the wall injection enhanced the fluid concentration and 

suction reduced the concentration as shown in the 

Figure 3(b).  
 

 
(a)  

 
(b)  

 
(c)  

 
(d) 

Figure 3. (a) Influence of  on C, (b) Influence of S on C (c) 

Influence of Sr on C, (d) Influence of Bi on C 

 

The impact of Soret number on concentration profile is 

presented in Figure 3(c). It is apparent from this figure 

that the concentration is increased with an increase in Sr.  

Figure 3(d) illustrates that the concentration is enhanced 

with a raise in the value of Bi and hence gain in 

thickness of the concentration boundary. However, the 

enhancement in concentration is less compared to that 

temperature with a rise in Biot number as shown in the 

Figure 2(a). 

The influence of Bi, Df and  on the rate of heat 

transfer with S are depicted through the Figures 4(a) – 

4(c). Figure 4(a) demonstrates that the rate of heat 

transfer is increased with a rise in Bi. 
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(c) 

Figure 4. (a) Influence of Bi on –T’(0), (b) Influence of Df  on 

–T’(0) (c). Influence of  on –T’(0) 
 

On the other hand, Figures 4(b) and 4(c) depict the 

behaviour of rate of heat transfer for different values of 

Dufour number and slip parameter. It is clear from these 

figures that the rate of heat transfer decreases with 

increasing values of Dufour number and slip parameter. 

Further, it is noticed that the rate of heat transfer is 

enhancing with fluid suction in the presence all 

pertinent parameters. 

The rate of mass transfer under the influence of 

Dufour, Soret, Biot numbers and velocity slip parameter 

is represented in Figures 5(a) - 5(d). It is noticed from 

the Figure 5(a) that the rate of mass transfer is enhanced 

with an enhancement in the value of Df. While, 

reduction in the rate of mass transfer is observed with 

the rise in Sr as portrayed in Figure 5(b). Figures 5(c) 

and 5(d) depict that the rate of mass transfer is 

diminishing with rise in Biot number and slip 

parameter. On the other hand, the rate of mass transfer 

from the sheet to the fluid is enhancing with fluid 

suction. 
 

 

5. CONCLUSION 
 

The influence of cross-diffusion effects on the flow over 

a sheet stretching exponentially in presence of 

convective thermal conditions has been studied.  
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(d) 

Figure 5. (a) Influence of Df  on –C’(0), (b) Influence of Sr on 

–C’(0), (c) Influence of Bi on –C’(0) (d). Influence of  on –

C’(0) 
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increase in the Dufour number and slip. 
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 An increase in suction and Dufour number 

escalated the rate of mass transfer. It diminished 

with increase in Soret, Biot numbers and velocity 

slip. 
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هچكيد
 

 

اين مقاله تأثير نفوذ عرضی را بر روي جريان مايع چسبنده بر روي يك ورقه متخلخل کششی به طور نمادين با استفاده از 

شرايط حرارتی کنتراست مورد بررسی داده است. لغزش سرعت در مرز در نظر گرفته شده است. راه حل هاي عددي براي 

ارزيابی می شود. از اين مطالعه   Chebyshevی و روش جابجايی معادلات حاکم با استفاده از روش خطی سازي متوال

کاهش می يابد. در  dufourمشاهده می شود که ميزان انتقال حرارت با افزايش عدد بيو افزايش می يابد و با افزايش عدد 

کاهش می يابد. در نهايت، نتايج به دست  soretحالی که سرعت انتقال جرم از ورق به مايع با افزايش هر دو عدد بيو و 

آمده براي ميزان انتقال حرارت با نتايج منتشر شده در پيشينه ادبيات براي موارد خاص مقايسه می شود. تأثير پارامترهاي 

 مربوط به مقادير فيزيکی از طريق نمودارها نمايش داده می شود.

doi: 10.5829/ije.2018.31.01a.17 

 
 


