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A B S T R A C T  
 

 

Thermo-elastic damping is a significant dissipation mechanism in high quality factor microstructures. 

In this paper, thermo-elastic damping of the in-plane vibration of fully clamped rectangular micro-
plates has been studied. The governing equation of the micro-plate motion and heat conduction 

equation were derived. Then, The Galerkin method has been used to solve the coupled heat-

displacement equations. Eventually, considering the micro-plate of various materials, the effects of 
geometrical parameters including the length and width of micro-plate and also ambient temperature on 

the thermo-elastic damping quality factor have been investigated. 

 

doi: 10.5829/ije.2018.31.01a.14 
 

 
1. INTRODUCTION1 
 

Recently, Micro Electro Mechanical Systems (MEMS) 

have drawn many attentions due to the advantages of 

favorable scaling property, low energy consumption, 

high sensitivity, high mechanical resonance frequencies 

and high design flexibility. Micro-waveguides, micro-

resonators, micro-mirrors, micro-switches and micro-

pumps are essential parts in many MEMS devices such 

as charge detectors, radio frequency (RF) filters, mass 

flow sensors and many others. Micro-plates are one of 

the essential structures widely used in resonantly 

actuated micro-structures in which the sensitivity and 

resolution are underlying issues [1]. Thus, designing 

micro-resonators with high quality factor is of a great 

necessity.  

The dissipation mechanisms contributing in the 

decline of the quality factor can be classified into 

extrinsic and intrinsic losses in which intrinsic losses 

such as Thermo-Elastic Damping (TED) cannot be 

controlled as easily as extrinsic losses such as air 

damping [1]. TED is a significant loss mechanism in 
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flexural resonators [1] which was discovered by Zener 

[2, 3]. TED, as a source of mechanical thermal noise, is 

a contributing factor in the decreasing of quality factor 

and consequently increasing of energy consumption. 

Duwel et al. [4] and Evoy et al. [5] have experimentally 

shown that TED is a major damping source in MEMS 

and NEMS. Lifshitz and Roukes derived an analytical 

expression for quality factor (QF) of TED in micro-

beams and studied the effect of different geometrical 

parameters on it [6]. Sun et al. [7] and Sharma et al. [8] 

established the equation of the coupled thermo-elastic 

case for axi-symmetric out-of-plane vibrations of a 

circular micro-plate in order to study TED in micro-

plates. TED of transversal vibrations of micro-beams 

and micro-plates have been discussed in the literature by 

Rezazadeh et al. [9], Najafi et al. [10], Maroofi et al. 

[11] and many others. Furthermore, Rezazadeh et al. 

[12] studied TED in a micro-beam resonator based on 

modified couple stress theory and Zhong et al. [13] 

investigated TED in a micro-plate resonator using 

modified couple stress. The mentioned theory is utilized 

to capture the size effect where there is a considerable 

internal length scale parameter [14, 15]. 

The natural frequencies of in-plane vibrations are 

much higher than those of transverse vibrations, 
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however, in-plane vibrations occur where structure is 

made of piezoelectric or magnetostrictive materials 

subjected to electric or magnetic field [16, 17]. In-plane 

vibrations appeared in the design of ship hulls [18] and 

also in the outer sheets of the sandwich panels while the 

assembly itself undergoes lateral vibration [19]. Bardell 

et al. [20] studied in-plane vibration frequencies in 

simply supported plates, clamped and free plates using 

Rayleigh-Ritz method. Seok et al. [21] used the 

equations of plane stress including in-plane inertia to 

treat the problem of the free vibrations of a thin 

relatively short cantilever plate and presented the 

dispersion curves for in-plane flexure of rectangular 

plates. Gorman [22] obtained accurate analytical-type 

solutions by means of the superposition method for the 

free in-plane vibration of fully clamped rectangular 

plates. In other work, Gorman employed the 

superposition method to analyze the effects of elastic 

edge support on the in-plane free vibration frequencies 

and mode shapes of rectangular plates [23]. He also 

obtained accurate analytical-type solutions for the free 

in-plane vibration eigenvalues and mode shapes of fully 

clamped orthotropic rectangular plates [23]. Gorman 

presented exact solutions for the free in-plane vibration 

of the rectangular plates with two opposite edges simply 

supported [24]. Andrianov et al. [25] analyzed natural 

in-plane vibration of rectangular plates using homology 

perturbation approach. Hyde et al. [26] investigated free 

in-plane vibration of rectangular plates undergoing 

plane stress deformation through Ritz discrimination of 

the Rayleigh quotient. 

In this paper, thermo-elastic damping of in-plane 

vibrations of a fully clamped rectangular micro-plate 

under electrostatic actuation is investigated. The 

Galerkin method and complex-frequency approach are 

applied to solve the coupled equations of the plate 

motion and heat conduction. Furthermore, it aims to 

determine how the length, width and ambient 

temperature influence the QTED.  

 

 

2. MODEL DESCRIPTION AND PROBLEM 
FORMULATION 
 

Figure 1 depicts a fully clamped rectangular micro-plate 

in which L , b  and h are the length, width, and 

thickness of the plate, respectively. 

 

2. 1. Stress and Strain Fields          Mechanical and 

thermal effects result in a general strain field as [27]: 

( ) (T)
e

M
ij ij ije e   (1) 

Stress in terms of strain can be written as: 

 
Figure 1.  Schematic of a fully clamped micro-plate 

 

 

 0ij ijkl kl ijC e T T     (2) 

where, ijklC is a fourth-order elasticity tensor [28] and 

ij is a second-order tensor containing thermo-elastic 

moduli [29]. Thus, Equation (2) can be expressed as: 

0
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(3 2 ) ( )
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 (3) 

in which  ,  ,   and   are Lame’s constant, shear 

modulus, thermal expansion coefficient and Kronecker 

delta, respectively. Equation (3) in terms of E  and   

can be rewritten as follows: 
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(4) 

 

2. 2. Motion Equation        The governing equation of 

motion is expressed as [30]: 

,ij j i ib a     (5) 

where  , 
ib and a are the mass density, body force, and 

acceleration vector, respectively. The equation of 

motion by ignoring the body force can be written as: 

, , ,

0 ,

( )

(3 2 ) ( )

k ki i jj j ij

i i

u u u

T T u

 

   

 

   
 (6) 

 

2. 3. Heat Equation           Heat conduction equation 

with no sources is defined as [29]: 

, 0(3 2 )ii iikT cT T e       (7) 

where k and c  are the thermal conductivity and the 

specific heat at constant pressure, respectively. 

Rewriting Equation (7) in terms of displacement results 

in the following equation: 
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, 0 ,(3 2 )ii i ikT cT T u       (1) 

Equations (6) and (8) are a system of coupled equations. 

Considering plane stress condition due to the thickness 

of the plate we have: 

( )

( )
1

( )
1

z x y

x y

w
e

z E

e e

u v

x y


 
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 (9) 

It is assumed that the plate can only vibrate in x and y 

directions, hence the terms 
2 2
u z  and 

2 2
v z   are 

eliminated; it means that plate remains at a right angle 

in x and y directions or ( , , )u u x y t  and ( , , )v v x y t . 

Heat doesn’t have enough time to transfer in z direction 

because the vibrations are not steady, which means: 

( , , )T T x y t . Simplifying and transforming Equations 

(6) and (1) into non-dimensional form result in: 
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where: 
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The non-dimensional parameters of Equation (10) are 

introduced as: 

2
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where 0  T T   .  

 

2. 4. Solving the Governing Equations         The 

Galerkin method is applied to solve Equation (10). 

Thereby, it can be approximated in terms of linear 

combinations of a finite number of shape functions and 

time-dependent coefficients [31, 32]. 
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(13) 

By substituting Equation (13) into Equation (10), error 

functions are obtained as follows: 
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Shape functions which satisfy the boundary conditions 

are considered as follows: 
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Weighted residual method of Galerkin is applied to 

Equation (14) as follow: 
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(16) 

By substituting Equation (15) into Equation (16) and 

simplifying it for the first mode of displacements in x 

and y directions, the first mode of heat in y direction 

and the second mode of heat in x direction, results can 

be described as: 
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in which  11
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Substituting Equation (18) into Equation (17) gives: 
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Therefore, the complex frequencies of the system can be 

obtained by solving the following characteristic 

equation. 
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3. NUMERICAL RESULTS 
 

The micro-plates with the specifications as given in 

Table 1 [33, 34] are considered for investigating the 

effects of length, width, ambient temperature and 

material properties on the quality factor. 

According to complex frequency approach, The 

quality factors of thermo-elastic damping (QTED) for the 

cases in which   is small, can be achieved as follows 

[6]: 

1 1 Re( )

2 2 Im( )
TEDQ



 
   (21) 

In this study, the coefficient of linear thermal expansion 

is assumed to be constant. 

Table 2 shows the evaluated frequency result for the 

first mode of displacements when there is no heat effect 

in vibrations which is in a good agreement with those of 

other researchers. 

Figure 2 illustrates the quality factor versus length of 

micro-plate for the first mode of displacements at the 

constant ambient temperature (
0 300T k ) for different 

material. It is clear from this figure that increment of the 

length of the micro-plates leads to a rise in the quality 

factor. Additionally, it can be seen that in the cases of 

Silicon-Carbide (SiC) and Si plates, increasing slope is 

much higher than the other materials. 
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TABLE 1. Material properties of micro-plates. 

Parameters Unit Si SiC PolySilicon Gold Nickel 

Young’s modulus (E) GPa 169 400 160 79 210 

Poisson’s ratio (ν) --- 0.28 0.185 0.22 0.44 0.31 

Thermal conductivity (k) w mk  150 70 148 318 92 

Density (ρ) 3kg m  2300 3200 2330 19320 8900 

Specific heat at constant volume ( C ) j kgk  695 938 107 129 438 

Coefficient of linear thermal expansion (α)× 610  1k  2.6 3 4.7 14.21 13 

 

 

TABLE 2. Non-dimensional Natural frequency (ω) of micro-

plate  

Ref. ω  

Present 3.741 

Bardell et al. [20] 3.555 

Gorman [23] 3.555 

Hyde et al. [26] 3.549 

Dozio [35] 3.555 

Du et al. [36] 3.554 

 

 

 
Figure 2. Thermo-elastic damping quality factor versus the 

length of the micro-plates of SiC, Si, nickel, polysilicon, and 

gold 
 

 

The quality factors of thermo-elastic damping with 

respect to the variations of ambient temperature are 

depicted in Figure 1. As shown, increasing ambient 

temperature results in decreasing of QTED. 

The variations of QTED for various values of plate 

widths are plotted in Figure 2 at the constant ambient 

temperature (
0 300T k ). It can be seen that as the 

width of the plate increases, the QTED decreases. 

Figure 3, 6 and 7 depicted an attempt to magnify the 

lower region of Figures 2, 3, and 4 where QTED of gold 

and polysilicon are much lower than those of nickel, Si, 

and SiC and consequently not clear enough. 

 
Figure 1. Effect of ambient temperatures on QTED of the 

micro-plates (L=b=200µm) of SiC, Si, nickel, polysilicon, and 

gold 
 

 
Figure 2. Thermo-elastic damping quality factor versus the 

width of the micro-plates of SiC, Si, nickel, polysilicon, and 

gold 
 

 
Figure 3. QTED versus the length of the micro-plates of 

polysilicon and gold 

parsargham
Rectangle
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Rectangle

parsargham
Rectangle
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Figure 4. Effect of various ambient temperatures on QTED of 

the micro-plates (L=b=200µm) of polysilicon, and gold 
 

 

 

 
Figure 5. Thermo-elastic damping quality factor versus the 

width of the micro-plates of polysilicon and gold 

 

 

 

Figure 8 depicts the first mode of displacement for fully 

clamped square micro-plate. 

Table 3 presents the differences between QTED of in-

plane and transversal vibrations for silicon fully 

clamped micro-plate under various temperatures. It can 

be seen that QTEDs of in-plane vibrations are extremely 

higher than those of transversal vibration. 

 

 

 

 
Figure 6. First mode of displacements of the micro-plate 

TABLE 3. Differences between QTED in in-plane and 

transversal vibrations for silicon fully clamped micro-plate 

T0 ( K ) QTED (in this paper) QTED (Nayfeh, Younis [1]) 

100 213.5 510  ≈ 4.5 510  

150 142.3 510  ≈ 3 510  

300 71.1 510  ≈ 1.5 510  

 

 

4. CONCLUSION 
 

This paper studied in-plane vibration of a fully clamped 

rectangular micro-plate considering thermo-coupling 

effect. The governing equation of the micro-plate 

motion and heat conduction equation were extracted. 

Then, the non-dimensional forms of these equations 

were obtained. Afterwards, Galerkin method was 

applied to solve the equations. The complex 

fundamental Eigen frequency of the first mode of the 

micro-plate vibration was determined by solving the 

coupled ordinary equations and eventually quality factor 

of the system was achieved. The results indicate that 

QTED is decreased by increasing the width and ambient 

temperature of the micro-plate while it is increased by 

an increment of the length of the plate. Additionally, it 

is demonstrated that QTED of gold and poly-silicon 

plates change slightly over the width of the micro-plates 

in comparison with nickel, silicon, and Si-Carbide. 

Moreover, the obtained QTED of in-plane vibrations is 

presented in comparison to transversal vibrations and it 

is observed that QTED of in-plane vibrations is about 50 

times higher than that of transversal vibrations. 

It can be suggested that the structures with in-plane 

vibrations could be used instead of those with the 

transversal vibrations where the high value of the 

magnitude of vibration is not of require. The results 

offered to be employed in the design of MEMS 

waveguides and MEMS resonators with the high quality 

factor. Future work could be devoted to extending this 

study based on couple stress theory. 
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هچكيد
 

 

بالا است. این مقاله میرایی  فاکتور کیفیت قابل توجهی در میکروساختارهایی با ترموالاستیک ، مکانیزم اتلافیمیرایی 

بر  حاکم  ه معادل دهد. میکروصفحه مستطیلی کاملا گیردار مورد مطالعه قرار می ای را درارتعاشات درون صفحه ترموالاستیک

استخراج و روش گلرکین برای حل معادلات کوپل شده بکار گرفته  معادله هدایت حرارتیمستطیلی و میکروصفحه  ارتعاشات 

و عرض و همچنین اثر دمای محیط  های مختلف، اثر ابعاد شامل طولاست. سپس، برای میکروصفحات مسطتیلی از جنسشده

 است.بر فاکتور کیفیت مورد بررسی قرار گرفته

doi: 10.5829/ije.2018.31.01a.14 

 
 


