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A B S T R A C T  
 

 

This paper addresses an unrelated multi-machine scheduling problem with sequence-dependent setup 
time, release date and processing set restriction to minimize the sum of weighted earliness/tardiness 

penalties and the sum of completion times, which is known to be NP-hard. A Mixed Integer 

Programming (MIP) model is proposed to formulate the considered multi-criteria problem. Also, to 
solve the model for real-sized applications, a Pareto-based algorithm, namely controlled elitism non-

dominated sorting genetic algorithm (CENSGA), is proposed. To validate its performance, the 

algorithm is examined under six performance metric measures, and compared with a Pareto-based 
algorithm, namely NSGA-II. The results are statistically evaluated by the Mann–Whitney test and t-test 

methods. From the obtained results based on the t-test, the proposed CENSGA significantly 

outperforms the NSGA-II in four out of six terms. Additionally, the statistical results from Mann–
Whitney test show that the performance of the proposed CENSGA is better than the NSGA- II in two 

out of six terms. Finally, the experimental results indicate the effectiveness of the proposed algorithm 

for different problems. 

doi: 10.5829/ije.2017.30.12c.07 
 

 
1. INTRODUCTION1 
 

In real manufacturing environments, managers often 

face several criteria and try to find the best solution that 

satisfies all the considerations. In most of the cases, the 

desired objectives are conflicting and managers require 

to optimize these conflicting objectives simultaneously. 

Hence, developing multi-objective models and 

algorithms are essential.  

One of the well-known objective functions in multi-

machine scheduling is to minimize total weighted 

earliness/tardiness penalties, in which jobs should be 

finished at times as near as possible to due dates. On the 

other hand, reducing the completion times causes a 

reduction in the number of total works-in-process (WIP) 

inventories. Therefore, decreasing the completion times 

is also one of the important objective functions [1].  

Behnamian et al. [2] proposed a new hybrid meta-

heuristic algorithm to solve the parallel machines 
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scheduling problem with two objectives, namely 

makespan and sum of the earliness and tardiness of jobs. 

Zarandi and Keyvanfar [3] considered a bi-objective 

scheduling problem on identical parallel machines to 

minimize the total costs of earliness and tardiness as 

well as makespan. They applied a non-dominated 

sorting genetic algorithm II (NSGA-II) and non-

dominated ranked genetic algorithm (NRGA). 

Lin et al. [4] proposed two heuristics and a genetic 

algorithm (GA) to find non-dominated solutions to 

multi-objective unrelated parallel machine scheduling 

problems. Tavakkoli-Moghaddam et al. [5] presented a 

new mathematical model and a meta-heuristic method 

based on a GA for a multi-criteria unrelated parallel 

machine scheduling problem minimizing the total 

earliness and tardiness penalties as well as machine 

costs.  
Tavakkoli-Moghaddam et al. [6] presented a two-

level mixed-integer programming (MIP) model and a 

GA to solve a parallel machines scheduling problem 

with the objectives of the number of tardy jobs and total 

completion times. Amin-Tahmasbi and Tavakkoli-
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Moghaddam [7] presented an algorithm based on a 

multi-objective immune system (MOIS) for a bi-

objective flow shop scheduling problem with sequence-

dependent setup times to minimize the total completion 

time and the total earliness/tardiness for all jobs.  

Most of the studies have considered single-criteria 

algorithms. However, a new scheme of the multi-criteria 

algorithms has been proposed recently. These 

algorithms do not transform a multi-criteria problem to 

a single criterion one that more intensity to lead a multi-

criteria procedure [8]. The NSGA-II proposed by Deb 

[8]is one the most well-known algorithms in this 

category. A controlled based version of the NSGA-II is 

called a controlled elitism NSGA (CENSGA) [9].  

Li et al. [10] considered the problem Pm| ri, sij |(Cmax, 

∑Tj) and proposed the NSGA-II and strength Pareto 

evolutionary algorithm (SPEA-II). Fakhrzad et al. [11] 

presented a multi-objective hybrid GA for job shop 

scheduling with sequence-dependent setup times. The 

objectives are to minimize the makespan and the sum of 

the earliness/tardiness of jobs. They compared their 

algorithm with an SPEA-II. Rahmati [12] proposed the 

Pareto-based CENSGA for the multi-objective flexible 

job shop scheduling problem.  

This paper addresses a multi-objective scheduling 

problem with sequence-dependent setup times, different 

release dates of jobs and processing set restrictions on m 

unrelated-parallel machines to minimize the total 

weighted earliness/tardiness penalties and the total of 

completion times, simultaneously.    

According to the best of our knowledge, there exists 

no accomplished research on a multi-objective unrelated 

parallel machines environment considering both the 

total weighted earliness/tardiness penalties and the total 

of completion times. Following, the notation system 

introduced by Graham et al. [13], this problem is 

denoted as R| rj, sij, Mj | (∑αjEj+βjTj, ∑Cj) that is known 

to be strongly NP-hard because the sub-problem is NP-

completeness [1].  

The donation of our study is to propose first a MIP 

model. Second, we apply the CENSGA for searching 

Pareto-optimal solutions. Then, the proposed algorithm 

is compared with a benchmark based on the NSGA-II.  

The rest of the paper is organized as follows. In 

Section 2, problem definition and notations are 

introduced, and then a new mathematical model is 

proposed. Section 3 describes the proposed multi-

objective GA and solution methodology. Section 4 

shows the experimental results. Finally, the conclusion 

and further studies are presented in Section 5. 
 

 

2. PROBLEM DESCRIPTION 
 
In this study, the problem of scheduling n different jobs 

on m unrelated-parallel machines is considered. 

Preemption is not allowed. All machines are not capable 

of processing all jobs. All jobs are not available for 

processing at time zero. The sequence-dependent setup 

time is considered. At any time, each machine can 

process at most one job, and each machine can only 

process one job at the same time. Also, processing times 

and due dates are deterministic. The test time is 

included in the processing time. 

 

2. 1. Indices and Parameters 
𝑛 : Number of jobs 

𝑚 : Number of machines 

𝑖 : Machine index (𝑖 = 1,2, … , 𝑚) 

𝑗, 𝑘 : Job index (𝑗, 𝑘 = 0,1,2, … , 𝑛) 

𝑝𝑖𝑗  : Processing time of job j on machine i 

dj : Due date of job j 

𝑅𝑗 : Release date of job j 

𝑆𝑖𝑗𝑘 : Past-sequence-dependent setup time of job j if job 

k precedes job j 

𝛼𝑗 : Earliness penalty for job j 

𝛽𝑗  : Tardiness penalty for job j 

𝑆𝑡𝑗 : Start time of job j 

𝑎𝑖𝑗  : 1 if job j can be processed by machine i; 0, 

otherwise 

 

2.2. Decision Variables 
𝑥𝑖𝑗  : 1 if job j is processed on machine i; otherwise 0 

𝑦𝑗𝑘 : 1 if job k has been scheduled right after job j; 0, 

otherwise 

𝐶𝑗 : Completion time of job j 

𝑧𝑗 : 1 if job j is processed on machine m; 0, otherwise  

𝐸𝑗 : Earliness of job j 

𝑇𝑗 : Tardiness of job j 

 

2. 3. Mathematical Model      The considered problem 

can be formulated by using the following MIP model: 

 

Min   ∑ 𝛼𝑗𝐸𝑗 + ∑ 𝛽𝑗𝑇𝑗
𝑛
𝑗=1

𝑛
𝑗=1   (1) 

Min   ∑ 𝐶𝑗
𝑛
𝑗=1   (2) 

s.t.  

∑ 𝑥𝑖𝑗
𝑚
𝑖=1 = 1  (3) 

∑ 𝑦𝑗𝑘 = 1𝑛
𝑗=0   (4) 

∑ 𝑦𝑗𝑘 ≤ 1 𝑚
𝑘=0   (5) 

𝑦𝑗𝑘 ≤ 1 − 𝑥𝑖𝑗 + (1 − ∑ 𝑥𝑖′𝑘𝑖′≠𝑖 )  (6) 

𝑥𝑖𝑗 ≤ 𝑎𝑖𝑗   (7) 

𝑆𝑡𝑘 ≥ ∑ 𝑆𝑗𝑘𝑖 . 𝑥𝑖𝑘 + 𝐶𝑗
𝑚
𝑖=1 − 𝑀. (1 − 𝑦𝑗𝑘)  (8) 
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𝑆𝑡𝑘 ≤ ∑ 𝑆𝑗𝑘𝑖 . 𝑥𝑖𝑘 + 𝐶𝑗
𝑚
𝑖=1 − 𝑀. [(1 − 𝑦𝑗𝑘) + (1 − 𝑧𝑘) (9) 

𝑆𝑡𝑘 ≥ 𝑅𝑘  (10) 

𝑆𝑡𝑘 ≤ 𝑅𝑘 + 𝑧𝑘 . 𝑀   (11) 

𝐶𝑗 = 𝑆𝑡𝑗 + ∑ 𝑥𝑖𝑗 ∗ 𝑃𝑖𝑗
𝑚
𝑖=1   (12) 

𝐶𝑗 + 𝐸𝑗 − 𝑇𝑗 = 𝑑𝑗      (13) 

𝑥𝑖𝑘 , 𝑦𝑗𝑘 ∈ {0,1}   (14) 

𝐶𝑗 , 𝐸𝑗 , 𝑇𝑗 ≥ 0, 𝑗, 𝑘 = 0,1,2, … , 𝑛,𝑖 = 1,2, … , 𝑚 (15) 

Equations (1) and (2) represent the objective functions, 

which aim to minimize the weighted sum of 

earliness/tardiness penalties cost and the sum of 

completion time. Equation (3) ensures that each job is 

scheduled only once and processed by one machine. 

Equations (4) to (6) ensure that each job (but not the last 

scheduled job) must come immediately before, and each 

job (but not the first scheduled job) must come 

immediately after only one other job. It is assumed a 

dummy job 0, which always presents at the first position 

on each machine. Equation (7) ensures that each job is 

assigned to one of the machines. With regards to release 

dates and setup times of jobs, Equations (8) to (12) 

calculate the completion time of each job. Equation (13) 

indicates the relation between earliness and tardiness for 

each job. 
 

 

3. NSGA-II AND CENSGA 
 
The NSGA-II attempts to find Pareto-optimal solutions 

in a multi-objective optimization problem. This 

algorithm uses an elitist principle and emphasizes non-

dominated solutions [2, 8].  

The NSGA-II uses a crowding distance in their 

selection to maintain diversity. The mechanism is 

illustrated in Figure 1, where Pt indicates the main 

population at iteration t [12]. A mating pool is created 

and binary tournament selection with replacement is 

used to fill the mating pool, in which two solutions are 

selected randomly from the population and then the 

better solution is chosen. The one with a higher 

crowding distance is selected if the solutions have the 

same rank and the one with a lower rank is selected if 

the solutions are from different ranks [12].  

In a mating pool, it creates a new population Qt by 

using the main operators, namely crossover and 

mutation. To create a larger population Rt, main and 

new populations are merged. For inserting a dominance 

concept in the NSGA-II and CENSGA, fast non-

dominated sorting (FNDS) is used for searching the 

objective of Pareto-based algorithms, which is good 

convergence. FNDS is performed and the solutions in Rt 

are sorted. The less value of FNDS means a better rank. 

To create the main population with the same size as Pt, 

it is needed to perform a selection operation [12].  

The CENSGA is a developed version of the popular 

NSGA-II [8]. Most of the CENSGA’s operators are 

designed, like NSGA-II. The major difference of the 

CENSGA with the NSGA-II is a selection strategy, in 

which CENSGA participates all fronts in selection 

through a geometric distribution [12]. See the CENSGA 

schematically in [8]. 

 

3. 1. Chromosome Representation       Chromosome 

representation determines how the problem is structured 

in the GA. For representing chromosomes, we use 

binary coding. Chromosomes are made of zero-one 

genes. Genes encode two pieces of information, a job 

and the number of the machine selected for its 

processing. Each gene is represented by a pair of 

numbers (0, 1), while 1 denotes the job being assigned 

to the corresponding machine and 0 means that a job is 

not assigned to that machine. The initial chromosomes 

are created and developed at random. The introduced 

chromosome contains all the jobs assigned to each 

machine and machines assigned to each job. 
 

3. 2. Selection Method and Elitism       Another 

operator called a crowing distance (CD) is considered, 

which finds the distance between each individual in a 

front based on their m objectives in m-dimensional 

solutions space [8]. The NSGA-II and CENSGA use 

crowding distances in their selection to maintain 

diversity. A crowding distance is a measure of the 

objective space and is defined for solutions of the same 

rank. 

Among two solutions with the same rank, the one 

with a higher crowding distance is preferable. A binary 

tournament selection is performed according to these 

two operators. The CENSGA is a developed version of 

the NSGA-II, in which a specific selection is done such 

that all fronts participate in the selection strategy [8]. 

This process is controlled by a geometric distribution 

(see Figure 2). 
 

 

 
Figure 1. Evolution cycle in the NSGA-II 
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Equation (16) formulates this distribution. In this 

equation, 𝑛𝑖 denotes the maximum number of the 

allowed individuals in the i-th front and r denotes the 

reduction rate (r<1). Allowed individuals in the i-

th front and r denote the reduction rate (r <1) [8]. 

𝑛𝑖 = 𝑟. 𝑛𝑖−1                      (16) 

It is also worth to be mentioned, in a population of size 

N, the maximum number of individuals, which is 

allowed in each front (𝑖 = 1,2, … , 𝑘) is calculated by 

[8]: 

𝑛𝑖 = 𝑁
1−𝑟

1−𝑟𝑘
𝑟𝑖−1          (17) 

 

3. 3. Crossover Operator      The crossover operation 

generates offspring by combining two chromosomes’ 

features. It has been shown in the literature that a 

uniform crossover works better than one- and two-point 

crossovers [14]. In order to do that, two chromosomes 

of the current generation are selected. A vector of a 

random number between 0 and 1 should be generated. 

For each gen of the chromosome, if this vector value is 

less than 0.7, the gen from the “first” chromosome is 

copied to the new chromosome; otherwise, the gen from 

the “second” chromosome is selected (see Figure 3) 

[15]. 
 

 

 
Figure 2. Selection strategy of CENSGA vs. NSGA-II 

 

 
 

(a) Parent 1 

2.33 1.67 2.53 
 

2.33 0.10 0.50 
 

2.33 0.03 
  

0.70 0.90 0.78 0.23 

(b) Parent 2 

3.34 1.44 2.69 
 

0.36 0.10 0.48 
 

0.79 0.54 
  

0.28 0.36 0.14 0.58 

(c) Random numbers 0.45 0.83 0.68 0.75 

(d) Offspring 

2.33 1.44 2.53 
 

0.23 0.10 0.50 
 

0.23 0.54 
  

0.70 0.36 0.78 0.58 

Figure 3. Uniform crossover example 

 

3. 4. Mutation Operator       A mutation operator 

ensures that diversity is maintained in the population 

which prevents the GA from becoming trapped in ‘blind 

corners’ or ‘local optima’ during the search. Here, a 

random mutation approach is used. A gene is selected 

randomly and replaced with a different random number 

in allowed bounds. 
 

 

4. EXPERIMENTAL RESULTS 
 

This section investigates the effectiveness of the 

proposed algorithm and its priority to the NSGA-II. To 

present the efficiency of the proposed algorithm, 

different sets of inputs are tested. For each method, each 

instance is implemented 10 times and the average value 

of the 10 runs is considered. The algorithms are written 

by Matlab software on a PC with 4 GB RAM and 2.5 

GHz CPU. The population and iteration size in all test 

problems are set to 200 and 100, respectively. Pc=85% 

(i.e., crossover rate), and Pm=10% (i.e., mutation rate). 

In the following sub-sections, the computational results 

of the algorithm on some multi-objective performance 

metrics are presented. 

 

4. 1. Evaluation Metric      A conflicting nature of 

Pareto archive’s solutions makes us use some 

performance measures to have a better assessment of the 

proposed algorithm. So, six performance metrics are 

taken into account. 

 

4. 1. 1. Mean Ideal Distance (MID)        This measure 

presents the closeness between a Pareto solution and 

ideal point (0, 0), which can be shown as: 

𝑀𝐼𝐷 =
∑ 𝑐𝑖

𝑛
𝑖=1

𝑛
       (18) 

where n is the number of non-dominated set and 𝑐𝑖 =

√𝑓1𝑖
2 + 𝑓2𝑖

2 , and 𝑓1𝑖
2 , 𝑓2𝑖

2  are the value of i-th non-

dominated solution for the first and second objective 

functions, respectively [15]. 

 

4. 1. 2. Rate of Achievement to All Responses 
Simultaneously (RAS)      It balances in reaching to 

objective functions [15]. 

𝑅𝐴𝑆 =
∑ (

𝑓1𝑖−𝐹𝑖
𝐹𝑖

)+(
𝑓2𝑖−𝐹𝑖

𝐹𝑖
)𝑛

𝑖=1

𝑛
     (19) 

where 𝐹𝑖 = min{ 𝑓1𝑖, 𝑓2𝑖}, [16]    

  

4. 1. 3. Spread of Non-dominance Solution (SNS)         
It is a diversity measure of Pareto archive solutions 

[15]. 

𝑆𝑁𝑆 = √
∑ (𝑀𝐼𝐷−𝑐𝑖)2𝑛

𝑖=1

𝑛−1
         (20) 
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4. 1. 4. Spacing (S)      This metric introduced by 

Schott [17] is used for measuring the extent of spread 

among the obtained solutions. It is formulated by: 

𝑆 = √
1

|𝑛|
∑ (𝑑𝑖 − 𝑑̅)2𝑛

𝑖=1           (21) 

 where  𝑑𝑖 = min⏟
k∈n,𝑘≠1

∑ |𝑓𝑚
𝑖 − 𝑓𝑚

𝑘|,2
𝑚=1 𝑑̅ = ∑

 𝑑𝑖

|𝑛|
  𝑛

𝑖=1 is 

the mean of all  𝑑𝑖, and n denotes the size of the Pareto 

front [18]. 

 

4. 1. 5. Number of Pareto Solution (NPS)        This 

metric is used to show the number of Pareto-optimal 
solutions obtained by each of the meta-heuristic 

algorithms [18]. 
 

4. 1. 6. RUN TIME (RT)       This measure presents the 

computational time of meta-heuristic algorithms to 

obtain optimal solutions. 
 

4. 2. Computational Results         By using data given 

in some related articles (e.g., [1]) that are simplified 

models of this paper, we apply this algorithm to a 

number of test problems and examples. The outputs of 

the mentioned metrics are shown in Tables 1 and 2. 

Also, it should be noticed that for the SNS and NPS, big 

values are better, while as for the MID, RAS, RT and S, 

small values are better.  
Now, in a total view to summarized results presented 

in the last row of Tables 1 and 2, the CENSGA has a 

better value of the MID, RAS, SNS, NPS and RT 

measures while as NSGA-II just has a better value of 

the S measure. These results are evaluated statistically 

by the means of Mann–Whitney test and t-test [19]. 

Outputs of these statistical tests are shown in Tables 3 

and 4. 
 

 

TABLE 1. Results of CENSGA on multi-objective metrics 

Problem 
Proposed CENSGA 

   
MID RAS SNS S NPS RT(s) 

MK01 0.7946 0.8007 61.7481 1.9438 47 121 

MK02 0.7211 0.731 44.919 1.9545 37 117 

MK03 0.7192 0.7254 68.6437 1.8814 47 128 

MK04 0.7412 0.7498 90.5682 1.8477 53 138 

MK05 0.7363 0.74 124.69 1.7381 56 140 

MK06 0.7319 0.7366 114.19 1.8025 35 147 

MK07 0.7273 0.7327 128.974 1.86 37 154 

MK08 0.7584 0.7644 151.813 1.7836 40 167 

MK09 0.7024 0.7073 149.492 1.8225 38 172 

MK10 0.6777 0.6825 174.333 1.795 44 184 

Total value 7.3101 7.3704 1109.37 18.43 434 1468 

TABLE 2. Results of NSGA-II on multi-objective metrics 

Problem 
Proposed NSGA-II 

   
MID RAS SNS S NPS RT(s) 

MK01 0.7946 0.8007 61.7481 1.9637 12 269 

MK02 0.7211 0.731 44.919 1.939 15 258 

MK03 0.7192 0.7254 68.6437 1.9264 15 287 

MK04 0.7412 0.7498 90.5682 1.8216 34 295 

MK05 0.7363 0.74 124.69 1.7202 25 299 

MK06 0.7319 0.7366 114.19 1.7624 26 315 

MK07 0.7273 0.7327 128.974 1.6989 28 325 

MK08 0.7584 0.7644 151.813 1.738 30 352 

MK09 0.7024 0.7073 149.492 1.7296 21 361 

MK10 0.6777 0.6825 174.333 1.6238 20 393 

Total value 7.3101 7.3704 1109.37 17.9236 226 3154 

 

 

TABLE 3. Statistical comparison of the proposed algorithms 

by using the Mann–Whitney test 

Measures 
Mann–Whitney test 

P-value Result Final Result 

MID 0.075 H0 isn’t rejected - 

RAS 0.089 H0 isn’t rejected - 

SNS 0.909 H0 isn’t rejected - 

S 0.162 H0 isn’t rejected - 

RT 0.000 H0 is rejected CENSGA 

NPS 0.000 H0 is rejected CENSGA 

 

 

TABLE 4. Statistical comparison of the proposed algorithms 

by using the t-test 

Measures 
t-test 

p-value Result Final Result 

MID 0.028 H0 is rejected CENSGA 

RAS 0.027 H0 is rejected CENSGA 

SNS 0.959 H0 is not rejected - 

S 0.255 H0 is not rejected - 

RT 0.000 H0 is rejected CENSGA 

NPS 0.000 H0 is rejected CENSGA 

 

 

The Mann–Whitney test, as a non-parametric 

alternative to the two-sample t-test is used for testing 

the equality of two population medians. On the other 

hand, the t-test performs a parametric hypothesis test for 

evaluating equality of two population means [18]. 

From the obtained results based on the t-test 

represented in Table 4, the CENSGA significantly 

outperforms the NSGA-II in terms of the MID, RAS, RT 
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and NPS measures. But in terms of SNS and S, the two 

algorithms are not statistically different, which means 

the t-test does not reject the null hypothesis of equality 

the CENSGA and NSGA-II. In addition, the statistical 

results from the Mann–Whitney test indicate that the 

performance of the CENSGA is better than the NSGA-

II in the terms of RT and NPS, and in the remained 

measures, the two algorithms are not statistically 

different. So in total, the proposed CENSGA is more 

efficient than the NSGA-II and recommended for the 

problem.  

In this research, in order to exhibit real-world 

situation, a bi-objective scheduling problem is 

formulated, which simultaneously minimizes (1) the 

total cost of earliness/tardiness and (2) the total of 

completion times or flow time. In practice, the usage of 

both objectives is well-justified, the first objective 

actually focuses on the make-to-order (MTO) 

philosophy in supply chain management and production 

theory: an item should be delivered exactly when it is 

required by the customer, and the second one is related 

to WIP inventory and rapid turn-around of jobs. 
 

 

5. CONCLUSION AND FUTURE STUDIES 
 

This paper considered the multi-objective problem of 

scheduling unrelated parallel machines to minimize the 

total weighted earliness, tardiness penalties and the sum 

of completion times. In this paper, a Pareto-based 

algorithm, called CENSGA, was implemented for 

solving an unrelated parallel machines scheduling 

problem with sequence-dependent setup times and 

release date. Then, this algorithm was compared with 

the benchmark algorithm, namely NSGA-II, on some 

multi-objective metrics. These metrics were also 

analyzed statistically by the means of the comparison 

test. Computational results show that the obtained 

solutions of the proposed CENSGA are better than the 

NSGA-II in this field of scheduling problems.  

In the future research, it may be desirable to apply 

other meta-heuristic algorithms to our problem and 

compare outcomes on this topic. In addition, presenting 

other performance metrics can be advantageous for this 

algorithm. 
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هچكيد
 

 

 

پردازش  محدودیت کارها و دسترس زمان توالی، به وابسته سازیآماده زمان با نامرتبط موازی هایتحقیق، مسئله ماشین این

و دیر کرد کارها و همچنین  های زود کردسازی مجموع وزنی هزینهمطالعه قرار داده است. هدف، کمینهکارها را مورد 

باشد. برای مسئله مورد نظر، یک مدل خطی عدد صحیح مختلط ارائه های تکمیل کارها میسازی مجموع زمانکمینه

قرار دارد، برای حل مسائل در اندازه واقعی،  NP-Hardگردیده شده است. همچنین از آنجایی که مسئله در دسته مسائل 

ارائه شده است. الگوریتم ارائه شده در شش معیار عملکردی با الگوریتم  CENSGAیک الگوریتم مبتنی بر پارتو با نام 

NSGA-II آمده به صورت آماری توسط آزمایش میانگین  مورد مقایسه و اعتبار سنجی قرار گرفته شده است. نتایج بدست

Mann–Whitney  و آزمایشt آزمایش است. نتایج حاصل از   مورد ارزیابی قرار داده شدهt دهد که الگوریتم نشان می

CENSGA  در چهار معیار از شش معیار به طور قابل توجهی عملکرد بهتری نسبت به الگوریتمNSGA-II  .داشته است

در  CENSGAدهد که عملکرد الگوریتم نشان می Mann–Whitneyهمچنین، نتایج آماری حاصل از آزمایش میانگین 

از اینرو، نتایج آزمایشات تجربی نشان دهنده  .است بوده NSGA-IIدو معیار از شش معیار بهتر از عملکرد الگوریتم 

 باشد.کارایی بالا الگوریتم معرفی شده برای مسائل محتلف می

doi: 10.5829/ije.2017.30.12c.07 

 

 


