
IJE TRANSACTIONS C: Aspects Vol. 30, No. 6, (June 2017) 839-845

Please cite this article as: M. Altaf Ahmed, D. Elizabath Rani, S. A. Sattar, Embedded Memory Test Strategies and Repair, International Journal
of Engineering (IJE), TRANSACTIONS C: Aspects Vol. 30, No. 6, (June 2017) 839-845

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

Embedded Memory Test Strategies and Repair

M. Altaf Ahmed*a, D. Elizabath Rania, S. A. Sattarb

a Department of ECE, GITAM Institute of Technology, GITAM University, Visakhapatnam, India
b Department of ECE, Royal Institute of Technology & Science, A. P. India

P A P E R I N F O

Paper history:
Received 13 July 2016
Received in revised form 24 April 2017
Accepted 24 April 2017

Keywords:
Embedded Memory
Self-testing
Memory Built-in self-repair
System on Chip
Memory Test Algorithm
Yield Improvement

A B S T R A C T

The demand of self-testing proportionally increases with memory size in System on Chip (SoC). SoC

architecture normally occupies the majority of its area by memories. Due to increase in density of
embedded memories, there is a need of self-testing mechanism in SoC design. Therefore, this research

study focuses on this problem and introduces a smooth solution for self-testing. In the proposed

memory test algorithm, the self-testing as well as self-repair mechanisms are incorporated. This
scheme repairs the detected faults and is easily integrated with SoC design. Here, an attempt has been

made to implement the memory built-in-self-repair (MBISR) architecture to test and repair the faults

from the embedded memories. It is little, and it supports at-fast test without timing penalty during its
operation. The proposed method is a better alternative in speed and low area overhead. Thus, it plays a

significant role in yield improvement.

doi: 10.5829/ije.2017.30.06c.03

1. INTRODUCTION1

As the demand for embedded products increases day by

day testing of embedded memories becomes a critical

issue. Because embedded products are implemented on

System on Chip (SoC) where memories reside in a

largest part of chip area. Memories are more prone to

failures than actual logic. Thus, deliberate more defects

with complex defects type detection. To deal with such

complex circuits dense with RAM (Random access

memories), traditional test solutions do not provide

complete solutions. Those methods fail to provide

desired test frequency and test pattern length for large

RAM. The methodology used to test RAM traditionally

is the use of state machine to provide the set of test

patterns with respect to algorithms. This way the state

machine cannot provide correct test patterns if the

complexity increases in the algorithm. In this case, it

becomes very large and extremely slow to provide test

patterns on each clock event and therefore fail to

support the real speed to test RAM in SoC. The

automatic test equipment (ATE) is also used to test

*Corresponding Author’s Email: altaface1@gmail.com (M. Altaf

Ahmed)

memories conventionally, but this method increases

complexity and cost of integrated circuit. As per today’s

deep submicron stage, testing embedded RAM in SoC

becomes important to save chip yield [1-3].The

percentage in an area of embedded RAM in SoC

increases and memory occupying majority of area in

SoC. To solve this problem, many researchers have

provided their solutions on RAM testing. They provide

their own methods/algorithms to improve the testability

of embedded RAM [4]. These methods mostly used

built-in- self-test (BIST) mechanisms, which provide

excellent solutions to the issues. Thus, researchers have

devoted themselves to develop BIST scheme for

locating faults in embedded memories of SoC. The

method of programmable BIST also introduces in

literature [4, 5] as one of the solutions.

The traditional approach for programmable BIST for

memories fault diagnosis, the microcode was used. The

chosen algorithm for test stored in dedicated memory

elements RAM, as an instruction code. Every time as

test algorithm is changed the corresponding code word

is being mapped and new BIST is achieved. This

approach is indicated in research for process diagnosis

and monitoring [5, 6]. Due to RAM based storages these

methodologies suffers from several drawbacks, like area

M. Altaf Ahmed et al. / IJE TRANSACTIONS C: Aspects Vol. 30, No. 6, (June 2017) 839-845 840

overhead and low testability of BIST circuitry and low

flexibility with supported test algorithms. Therefore,

there is a need of sophisticated algorithm which works

on these issues and provides a better solution. In this

research study, we proposed an algorithm for testing the

memories for fault and the mechanism to repair the

diagnosed faults. This algorithm is named as Sift to

detect various faults such as Stuck-at faults (SAFs),

Address-Decoder faults (ADFs), Transition faults (TFs)

and Coupling faults (CFs). Based on this algorithm the

design is implemented to detect and repair the faults

with a reasonable area over head as compared with the

recent work. The rest of the paper is organized as,

Section 2 explains about related work discussion.

Section 3 consists of methodology and implementation.

Section 4 provides results obtained and comparison to

existing work. Section 5 describes conclusion and

section 6 is references.

2. RELATED WORK

Since last three decade memory testing has been a

research topic of interest. Many researchers have

implemented memory BIST as well as Memory BISR

designs. The MBIST architecture for covering different

faults in the embedded memories are presented [2, 5, 7,

8].

The transparent based programmable MBIST for off

line and on line testing has been presented and the area

overhead is proposed [5]. The linear feedback shift

register (LFSR) based testing for MBIST for low power

is proposed [7]. Author has tried to minimize the

dynamic power by decreasing the switching activity. A

survey has been conducted in fault testing of memories

and has discussed the area overhead in various

approaches [8]. A memory BIST controller for detecting

types of faults using March algorithm is proposed [2].

For industrial ASIC design, an approach is introduced to

test the embedded RAMs. The above discussed work

covers the diagnosis of memory for finding different

types of faults in the memory.

The detected faults can be repaired, as mentioned in

literature [9] by the spare memory approach named

BRAINS. The survey of embedded memory test

strategies and fault repairs are covered [8]. The area

over head in SoC design is proposed [10] and is 4.1% in

8Kx64 memory size. The repair method is introduced

with the additional area over head with redundancy

architecture for DRAM as 1.3% [11].

Apart from this, many authors have proposed

various fault detecting methods such as stuck-at fault,

address decoding fault, transition fault and very few of

them have covered the coupling faults. The repair

methods are also described in few papers for low area

over head. To continue this work we proposed a smart

test solution to detect these faults in the memory with

repairable feature and high coverage of fault. The

proposed method covers the features and exceptional

solutions for diagnosis fault in embedded memories and

repairable strategies at high frequency with excellent

fault coverage. The area over head is just 2.3% and is

inversely proportional to the size of the selected Virtex

target device.

3. METHODOLOGIES

3. 1. Built-in-Self-Test Principle The basic

principle of BIST is illustrated in Figure 1. The BIST

principle is, to design the circuit so that the circuit can

automatically test itself for faults. This is actually the

additional functionality incorporate into the design of

the circuit to provide the self-testing features. It can also

termed as self-verification at the time. It is capable to

test the embedded memories without any external

stimuli [12].

Thus, testing integrated circuit (IC) can be done by

additional logic design integrated within the same IC.

This special design is able to send some test pattern to

test the design itself and compute the faults if presented.

As shown, in principle, the BIST consists of four

functional entities. First, the test pattern generator

(TPG), second the BIST Controller, third the circuit

under test (CUT) and fourth, the output response

analyzer (ORA). The TPG is producing a chain of

patterns for testing the CUT. The OR analyzer indicates

the Fail/Pass for the design under test. The BIST

controller performs the operation of testing the design

and, it provides the BIST done signal after the test

completion.

A set of stimuli is applied to the CUT and output

compares with expected/reference output to test the

good or bad circuitry. If comparison is passed it will go

to start and a new test will be executed. If the test

compared is failed it displays faulty circuitry and

indicates the test is done. The flow of test strategy is

shown in Figure 2. The input stimuli are applied to the

circuit, through the test benches. The test vectors,

therefore, are written on the test bench and will test the

circuit by comparing the output.

Figure 1. Basic BIST Principle

841 M. Altaf Ahmed et al. / IJE TRANSACTIONS C: Aspects Vol. 30, No. 6, (June 2017) 839-845

3. 2. Proposed Algorithm As discussed in the

introduction part, the majority portion of silicon area in

SoC is dominant by on-chip memories. The integration

of high density memories on a single silicon chip might

be the cause of many faults such as Stuck-at fault

(SAFs), Transition fault, Coupling fault, Address

Decoding faults etc. Let us introduce an approach to

catch the faults which were appeared while dealt with

the high capacity memories. The proposed algorithm

here tests the embedded memory in SoC and named as

Sift algorithm and mainly consists of several Sift

elements, separated by semicolon. This algorithm is

similar to the principle of MARCH based algorithm

[13]. Sift algorithm is shown below with W and R

notations which are known as read and write operations

respectively.

{ ↕(W0) ; ↑(R0,W1); ↓(R1,W1,R1); ↑(R1,W0,R0);

↕R0 }

Sift Memory BIST Algorithm

This algorithm consists of ten (10N) Sift elements and

five (5) Sift steps to accomplish the test. The up-arrow

stands for ascending order of address sequence for

writing and reading operation in each step. Similarly,

the down arrow indicates the descending order of

address sequence to perform writing reading operation

in each step. These read write operations in front of the

parenthesis are to be applied to each address one after

the other sequentially. All the operations have to be

performed before a jump to the next address location in

the sequence of operations as per the algorithm steps. A

fault can be caught in read operations only. The

notations in the algorithm are indicated as follows.

 ↕: Indicates writing into and reading from the

memory from address 0 to max or max to 0, order is

not significant.

 ↑: Indicates writing / reading can be done from

address 0 to max.

 Figure 2. Test Flow

 ↓: Indicates writing / reading can be done from

address max to 0.

 W0: Write all 0s to the address location.

 W1: Write all 1s to the address location.

 R0: Read 0s from the address location.

 R1: Read 1s from the address location.

3. 3. Memory BIST Architecture Sift algorithm is

implemented for fault diagnosis and repair of the

detected faults. Memory BIST architecture for proposed

method is indicated in Figure 3. It consists of main

memory array (SRAM) on which the test is going

conduct, Memory BIST Controller, reference test

pattern storage block to detect and repair the defects

presented in the embedded memory blocks [2]. The

MBIST controller with these blocks performs on-chip

self-testing of SRAMs.

The address Decoders are used for testing of

selected addresses of memory. It uses internally counter

or LFSR to produce the random addresses to test. MUX

is used to select the data for comparing from main

memory and storage pattern and it select the mode of

MBIST. Comparator block compares the data out with

expected output and results in the test pass or fail.

MBIST controller is a state machine uses the separate

state for all individual steps of the algorithm and

performs read-write operations on memory indicate in

Figure 4.

This is the main self-testing block which detects the

error in main memory and intimates about the address at

which error occurred. Then, to repair the detected fault

the additional logic is introduced which selects the

original data from storage and ignores the address

location at which error is detected. The repair

mechanism is illustrated in Figure 5 and it is discussed

in subsequence subsection.

3. 3. 1. Memory BIST Controller State Machine
Implementation Memory BIST Controller block is

implemented using state machine consisting of the

states equal to the operational steps in algorithm and

Figure 3. Memory Built in Self-Test Architecture

M. Altaf Ahmed et al. / IJE TRANSACTIONS C: Aspects Vol. 30, No. 6, (June 2017) 839-845 842

two additional states Idle for start and status to display

results. The states of the state machine are as follows.

 S0: Idle: To start the memory BIST operation.

 S1: W0: When start signal asserts state machine

jump to W0 state and perform write operations in

ascending or descending (order is not significant)

get filled with all 0s at all locations.

 S2: R0W1: This state performs read operation and

then writes operation at the same address location

then changes the address and performs the same for

whole memory in ascending order of address

sequence.

 S3: R1W1R1: This state performs read first then

write and again read operation in descending order

of address sequence and jumps to next state if the

0th address is reached.

 S4: R1W0R0: It is similar to previous state but

writes 0s in place of 1s.

 S5: R0: This state reads 0s in any address order

sequence.

 S6: Status: The state machine jump to this state

from any state where read operations are carried out

if a fault occurs and it displays result about fail

memory Id and address location of the fault

occurrence.

3. 3. 2. Built in Self Repair Architecture
Memory Built in Self Repair Architecture shown in

Figure 5 consists of memory BIST controller which

works according to algorithm and built in self-repair

block. If fault detects during read operation a

multiplexer at the Data out will select only the correct

output that is from the spare memory location.

Therefore, the data flow is from memory under test

if no faults detected and from spare memory if the

failure occurs. The procedural flow chart of MBISR is

shown in Figure 6. The performance of the BISR

depends upon the size of spare/redundant array. The

increase of faulty memory locations may tolerate but

increases the area and complexity.

Figure 4. Memory BIST State Machine

Figure 5. Built in Self Repair (BISR) Architecture

To avoid such circumstances of more faulty locations,

complexity and area overhead, the MBISR circuitry

must follow the shared mechanism for multiple

memories. In this method, the MBISR will share to

multiple RAMs in parallel and serial shared BISR [14,

15] which is considered to be the solution to this

problem. The shared BIST scheme is therefore

mentioned in Figure 7.

It consists of multiple RAM blocks and BISR

circuitry which is shared by all the block of memory.

This is a generalized form of SoC where embedded

memory blocks are placed. The BISR circuitry denoted

by g1 is shared with embedded memory blocks under

test M1, M3, M4 and M5. The BISR circuitry which is

identified as g2 is shared into memory blocks M2, M6,

M7 and M8 under test.

Figure 6. MBISR Chart

843 M. Altaf Ahmed et al. / IJE TRANSACTIONS C: Aspects Vol. 30, No. 6, (June 2017) 839-845

Figure 7. BISR for Multiple RAM Blocks

4. RESULTS AND COMPARISON

The architecture is implemented in Verilog Hard Ware

Description language (HDL). The Simulation and

synthesis carried out using Modalism and Xilinx ISE

14.1 tool respectively [3, 16]. To simulate the

architecture, test cases are written to verify the

functional correctness. The multiplexer is used to

perform more than one operation in the same location of

memory in several states of the state machine. The

simulation result for writing and reading into memory is

shown in Figure 8.

The Sift algorithm consists of several Sift elements

as mentioned in the algorithm the state machine

implemented consisting of seven states. In the

simulation, two cases are considered for memory M1

and memory M2. The M1 is failed due to the defect

occurred at memory address location 2. Once the fault is

detected the state machine jumps to status state and

displays the information about memory Id, fail address

location and pass/fail status. In the second case for

memory Id M2, it is passed, because no fault occurred

during the self-test procedure. Synthesis results are

tabulated in the Table 1.

The architecture is implemented on Virtex 7 FPGA

with Target Device xc7vx330t-3-ffg1157 [16-18]

selected. The total area occupied is 268940 kilobytes.

This is just 2.13 percent area overhead of total chip area.

The total area in slice LUTs are 160 (uses 69-LE) and

the time period is 2.10ns. The maximum working

frequency of hardware is 496.43 MHz.

Figure 8. Simulation Result for memory writing and reading

TABLE 1. Synthesis Results

Design
Area Slice

LUTs
Time

Max .Frequency

(MHz)

MBIST Controller

(Proposed)

69-LE (160

LUTs)
2.10ns 496.43

MBIST Controller for

MARCH C+
71-LE 4.068ns 245.821

PMBIST (MARCH
SAM)

77-LE ---- 80.27

Hybrid P-MBIST 81-LE ---- 82.17

The proposed algorithm is therefore compared with

other existing algorithms. The results show that the

proposed algorithm is better in terms of fault diagnosis

and self-testing. The comparison of various March

algorithm and targeted faults are indicated in tabular

format in Table 2. This algorithm targets variety of

faults occurred in the memory.

TABLE 2. Comparison with March Algorithms

Sr.

No.
Algorithm

No.of

Elements

No.of

steps

Test

sequence
Target Faults

1 March A 15N 5 * SAFs, ADFs,

TFs,

2 March X 6N 4 ** CFs

3 Mats + 5N 3 *** SAFs, ADFs

4 March C 11N 7 **** SAFs, ADFs,

TFs some CFs

5
Proposed

Sift
10N 5 ***** SAFs, ADFs,

TFs, CFs

* {↕W0, ↑(R0,W1,W0, W1), ↑(R1,W0,W1), ↓((R1,W0,W1,

W0), ↓(R0,W1, W0)}
** {↕W0, ↑(R0,W1), ↓(R1,W0), ↕R0

*** {↕W0, ↑(R0, W1), ↓(R1,W0)}

**** {↕W0, ↑(R0,W1), ↑(R1,W0), ↕R0, ↓(R0,W1), ↓(R1,W0),
↕R0 }

***** { ↕W0, ↑(R0,W1), ↓(R1,W1,R1), ↑(R1,W0,R0), ↕R0}

M. Altaf Ahmed et al. / IJE TRANSACTIONS C: Aspects Vol. 30, No. 6, (June 2017) 839-845 844

TABLE 3. MBIST Comparison
Sr.

No.
Method

Supported

Algorithm

Target

Faults

Fault

Coverage %

Repai

rable

1
Shi-Yu Hung
[14] MBIST

March SAFs Low No

2
Sanghun Park

[4] MBIST

Extended

March -C

SAF,

ADFs
Low No

3
MBIST Video
Decoder [19]

March
17N

SAFs,

ADFs,

TFs

Low No

4

MBIST

Dongky u

Youn, [13]

March
C

SAFs,

ADFs,

TFs

Low No

5
Proposed
MBIST

Sift

SAFs,

ADFs,TF

s, CFs

High Yes

The comparison in Table 3 describes the target faults

coverage, and the repairable features.

It can be concluded that the higher and better fault

coverage are obtained from the proposed algorithm as

compared with other approaches. The fault coverage is

high with the proposed method because it targets almost

all possible faults occurred in the memory. The

additional feature of repair for detected faults is also

embedded. The comparison with other mentioned

methods are tabulated.

5. CONCLUSION

The proposed method MBISR provides fault diagnosis

and supports repair schemes for embedded memory

blocks. The architecture is implemented for easy

integration in SoC with little area overhead and high

repairable rate. The experimental results show that the

MBISR works on max. frequency of 496.43 MHz with

only 160 slices LUT and 2.10ns time period. The

method successfully detects maximum faults occurred

and repairs them in the memory. Thus, it helps in

improving the overall yield of the chip with very low

area overhead. It works at high speed with only 2.13

percentage of total chip area overhead. As a result, we

conclude that the proposed architecture can lead to a

significantly faster and has ability to test and repair the

embedded memory in SoC. It plays an essential role in

improving the total yield of product.

6. REFERENCES

1. Wu, T.-H., Chen, P.-Y., Lee, M., Lin, B.-Y., Wu, C.-W., Tien,

C.-H., Lin, H.-C., Chen, H., Peng, C.-N. and Wang, M.-J., "A

memory yield improvement scheme combining built-in self-
repair and error correction codes", in Test Conference (ITC),

IEEE International,. (2012), 1-9.

2. Ahmed, M.A., Rani, D.E. and Sattar, S.A., "Fpga based high

speed memory bist controller for embedded applications",
Indian Journal of Science and Technology, Vol. 8, No. 33,

(2015).

3. Aljumah, A. and Ahmed, M.A., "Amba based advanced dma
controller for soc", International Journal of Advanced

Computer Science and Applications, Vol. 7, No. 3, (2016),

188-193.

4. Park, S., Lee, K., Im, C., Kwak, N., Kim, K. and Choi, Y.,

"Designing built-in self-test circuits for embedded memories

test", in ASICs,. AP-ASIC. Proceedings of the Second IEEE
Asia Pacific Conference on, (2000), 315-318.

5. Boutobza, S., Nicolaidis, M., Lamara, K.M. and Costa, A., "A
transparent based programmable memory bist", in Test

Symposium,. ETS'06. Eleventh IEEE European, (2006), 89-96.

6. Schanstra, I., Lukita, D., Van de Goor, A.J., Veelenturf, K. and
van Wijnen, P.J., "Semiconductor manufacturing process

monitoring using built-in self-test for embedded memories", in

Test Conference, Proceedings., International, (1998), 872-881.

7. Krishna, K.M. and Sailaja, M., "Low power memory built in self

test address generator using clock controlled linear feedback

shift registers", Journal of Electronic Testing, Vol. 30, No. 1,
(2014), 77-85.

8. Acharya, G.P. and Rani, M.A., "Survey of test strategies for

system-on chip and it's embedded memories", in Intelligent
Computational Systems (RAICS), IEEE Recent Advances in,

(2013), 199-204.

9. Lee, M., Denq, L.-M. and Wu, C.-W., "A memory built-in self-
repair scheme based on configurable spares", IEEE

Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Vol. 30, No. 6, (2011), 919-929.

10. Su, C.-L., Huang, R.-F., Wu, C.-W., Luo, K.-L. and Wu, W.-C.,

"A built-in self-diagnosis and repair design with fail pattern

identification for memories", IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, Vol. 19, No. 12,

(2011), 2184-2194.

11. Lin, B.-Y., Chiang, W.-T., Wu, C.-W., Lee, M., Lin, H.-C.,
Peng, C.-N. and Wang, M.-J., "Redundancy architectures for

channel-based 3d dram yield improvement", in Test Conference

(ITC), IEEE International, (2014), 1-7.

12. Stroud, C.E., "A designer's guide to built-in self-test, Springer

Science & Business Media, Vol. 19, (2002).

13. Youn, D., Kim, T. and Park, S., "A microcode-based memory
bist implementing modified march algorithm", in Test

Symposium,. Proceedings. 10th Asian, IEEE. (2001), 391-395.

14. Huang, S.-Y. and Kwai, D.-M., "A high-speed built-in-self-test
design for drams", in VLSI Technology, Systems, and

Applications,. International Symposium on, IEEE., (1999), 50-

53.

15. Tseng, T.-W., Li, J.-F. and Hou, C.-S., "A built-in method to

repair soc rams in parallel", IEEE Design & Test of Computers,

Vol. 27, No. 6, (2010), 46-57.

16. Aljumah, A. and Ahmed, M.A., "Design of high speed data

transfer direct memory access controller for system on chip

based embedded products", Journal of Applied Sciences, Vol.
15, No. 3, (2015), 576-582

17. Zivarian, H., Soleimani, M. and Mohammadi, M.D., "Field

programmable gate array–based implementation of an improved
algorithm for objects distance measurement (technical note)",

International Journal of Engineering-Transactions A: Basics,

Vol. 30, No. 1, (2016), 57-64.

18. Mandal, A. and Mishra, R., "Design and implementation of

digital demodulator for frequency modulated cw radar", IJE

Trans. A: Basics, Vol. 27, No. 10, (2014), 1581-1590.

845 M. Altaf Ahmed et al. / IJE TRANSACTIONS C: Aspects Vol. 30, No. 6, (June 2017) 839-845

19. Hou, L., Wu, W. and Zhu, J., "Mbist design and implementation

of a h. 264/avc video decoder chip", in Signal Processing

Systems (ICSPS), 2nd International Conference on, IEEE. Vol.

1, (2010), V1-87-V81-90.

Embedded Memory Test Strategies and Repair

M. Altaf Ahmeda, D. Elizabath Rania, S. A. Sattarb

a Department of ECE, GITAM Institute of Technology, GITAM University, Visakhapatnam, India
b Department of ECE, Royal Institute of Technology & Science, A. P. India

P A P E R I N F O

Paper history:
Received 13 July 2016
Received in revised form 24 April 2017
Accepted 24 April 2017

Keywords:
Embedded Memory
Self-testing
Memory Built-in self-repair
System on Chip
Memory Test Algorithm
Yield Improvement

 هچكيد

معمولا بخش SoCفزونی يافته است. معماری (SoC)درخواست برای خودآزمونی با اندازه حافظه در سيستم بر چيپ

سازوکار نياز به SoCافزايش چگالی حافظه های جاسازی شده، در طراحی می کند. با توجه به عمده سطح را با حافظه پر

اين مساله متمرکز بوده ويک حل هموار برای خود آزمونی معرفی می کند. در بر تحقيقاين ،خود آزمونی است بنابراين

خطا های پيدا شده را شمااين نيز شرکت دارد.الگوريتم آزمون حافظه پيشنهادی علاوه بر خود آزمونی، سازوکار بهسازی

تا از روی حافظه های جا سازی يکپارچه می شود. در اينجا کوشش شده است SoCاصلاح کرده و به سادگی با طرح

اين کار را برای آزمايش و اصلاح خطا ها پياده سازی کند. built-in-self-repair (MBISR)شده، معماری حافظه

از نظر سرعت و با سطح طی عمليات مربوط صورت می گيرد. روش ارائه شده شيوه بهتری جريمه زمانیسريع و بدون

 کم می باشد و بنا براين نقش قابل توجهی در بهبود نتيجه دارد.
doi: 10.5829/ije.2017.30.06c.03

