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A B S T R A C T  
 

 

In this study, artificial neural network was used to predict the microhardness of Al2024-multiwall 

carbon nanotube(MWCNT) composite prepared by mechanical alloying. Accordingly, the operational 

condition, i.e., the amount of reinforcement, ball to powder weight ratio, compaction pressure, milling 
time, time and temperature of sintering, as well as vial speed were selected as independent input and 

the mean micro-hardness of composites was selected as model output. To train the model, a Multilayer 

perceptron neural network structure and feed-forward back propagation algorithm has been employed. 
After testing many different ANN architectures, an optimal structure of the model i.e. 7-25-1 was 

obtained. The predicted results, with a correlation relation between 0.982 and 0.9952 and 3.26% mean 

absolute error, show a very good agreement with the experimental values. Furthermore, the ANN 
model was subjected to a sensitivity analysis and the significant inputs affecting hardness of the 

samples were determined. 

doi: 10.5829/idosi.ije.2016.29.12c.11 
 

 
1. INTRODUCTION1 
 

Weight reduction of automobile and aircraft is one of 

the most important methods of improving the energy 

efficiency. Hence, a growing demand for application of 

metal matrix composites (MMCs) with higher strength 

to weight ratio was evolved. Due to high strength and 

stiffness of carbon nanotube (single wall and multi 

wall), they had excellent properties as strengthening 

agent for preparation of composites [1, 2]. Experimental 

results on multi-wall carbon nanotube (MWCNT) 

showed Young’s modulus to be between 600 and 1100 

GPa while the tensile strength ranged from 35 to 110 

GPa [3]. These excellent mechanical properties 

combined with low density, i.e., 1.8 g/cm
3
 make CNTs 

ideal candidate as reinforcement agent to prepare the 

high specific strength Nano-composites [4]. To the best 

of own knowledge, the main research efforts in the past 

decade have been done on the CNT reinforced polymer 

or ceramic matrix composites [5-7]. Some research were 

                                                           

1*Corresponding Author’s Email: khayatireza@gmail.com (G. R. 

Khayati) 

focused to manufacture the CNT/metal composites by 

different techniques such as sintering [8], hot extrusion 

[9, 10], spark plasma sintering [11-13], spark plasma 

extrusion [14], casting [15] and friction stir processing 

[16]. 

Mechanical alloying includes continuous impact, 

welding, fracturing and re-welding of powders through 

high energy ball milling of powder, e.g., planetary ball 

mill. In this method, the constituents would be 

effectively and homogeneously distributed within [17]. 

Artificial neural network (ANN) is a useful 

mathematical tool for materials research community 

[18-24]. ANN can solve relatively complex, nonlinear, 

multi-dimensional functional relationships after training 

by experience data. In this method, the transfer function 

between the elements plays a key role in quality of 

prediction. To the best of our knowledge, the 

multilayered perceptron (MLP) is the most common 

strategy in ANN [25]. In the present study, a MLP 

neural network was used for prediction of 

microhardness of Al2024-CNT composite, using 

reported data in literature as input.  
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2. PRINCIPLE OF ARTIFICIAL NEURAL NETWORK 
 
As illustrated in Figure 1, an ANN structure commonly 

is divided into three parts: input layer, hidden layer and 

output layer. The nodes or neurons, are connected by 

weighted inter-connections which resemble the intensity 

of the bioelectricity transferring among the nodes cells 

in an actual neural network. The trained results can be 

summarized in terms of weights and the biases [26]. 

The neurons numbers in the input and the output 

layer are fixed to be equal to that of input and output 

variables, whereas the hidden layer can include more 

than one layer, and in each layer the number of neurons 

is tolerant. Adjusting the structure of a network is a key 

role in improvement of performance network [27]. The 

structure of network can be expressed as: 

                
1 2

N N N N N
in h h out

     
     (1) 

where Nin and Nout refer to the number of input and 

output variables, respectively. Subscript h shows the 

number of hidden layers, while N1, N2 and Nh are the 

number of neurons in each hidden layer. 

 

 

 
Figure 1.The schematic construction of an artificial neural 

network with input, output and testing parameters 

 

 

 
Figure 2. A schematic description of the relationship between 

the input and output vectors of one neuron 

The network gets information from the input layer, 

analyses the data in the hidden layers, and then exports 

the results via the output layer. In each hidden layer and 

output layer, the neurons take the output of the neurons 

in the preceding layer as the input. The data are 

analyzed by transfer function with weights and bias in 

the neurons to obtain the output as shown in Figure 2, 

described by: 

      (n) (n 1) (n)
  ƒ w x b

ji i j   i

n
X i

 
  

 
 

    (2) 

where Xj
(n)

 is the output of node j in the nth layer, Wji
(n)

 

the weight from node i in the (n 
__ 

1)th layer to node j in 

the nth layer, and bj
(n)

 the bias of node j in the nth layer 

[28]. For ANN modeling commonly three transfer 

functions are used for the hidden and the output layers 

(Table 1). 

Back-propagation (BP) algorithm is an iterative 

gradient descent approach, (i.e., one of the most widely 

used as training strategies for multi-layer networks) to 

minimize the mean squared error (MSE) between the 

predicted and desired values: 

   
1 2

     
2 1

L
MSE d t p t

L T

   


 (3) 

where L shows to the number of training patterns, d(t) is 

the desired output value, and p(t) the target output value 

predicted by the ANN for the tth pattern. During the 

training step, the network is represented with the data 

hundreds of cycles, the weights and biases are adapted 

until the suitable error level is obtained or the maximum 

iteration is achieved. This iterative adjustment of the 

weights and biases can be obtained as following: 

 
 

 
 

 
         1    

n n E
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 
    –  1  

n n E
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b
j




 



 (5) 

where α represents the learning rate, and k refers to the 

iteration [29]. 
 
 

 

TABLE 1. Transfer functions used in this study 

Serial Transfer function Formula 

1 Hyperbolic tangent sigmoid  
   

   

exp exp

exp exp

x x
f x

x x

 


 
 

2 Linear  f x x 

3 Log-sigmoid  
 

1

1 exp
f x

x


 
 

Hidden layers Output layer 

Hardness 

Connect with weight factor Neuron 

Input layer 

Material compositions: 

CNT 

 

 

 

 

 

Manufacturing parameters: 

(1) Sintering temperature 

(2) Sintering time 

(3) Compact pressure 

(4) Milling time 

(5) Vial speed 

(6) Ball to powder ratio 

  

  

  

  

  

 

 

 

 
 

 



M. Mahdavi Jafari and G. R. Khayati / IJE TRANSACTIONS C: Aspetcs  Vol. 29, No. 12, (December 2016)    1726-1733              1728 
 

 

3. IMPLEMENTATION 
 

Practically, an adequate amount of experimental data is 

necessary to develop a neural network with good 

performance. The architecture, transfer function, 

training strategy and other factors of the neural network 

should be carefully determined and changed through 

optimization. Thus, the well trained neural network can 

be applied to model the new input data in the same 

domain of the practical data base.  

This procedure can be summarized as the following 

steps: 

1. Collect and pre-procedure the practical data; 

2. Train the ANN, and improve its configuration; 

3. Evaluate the performance of the ANN, return to step 

2 if the performance is not satisfactory; 

4. Use the trained ANN for simulation or prediction. 

The ANN programs were written in MATLAB 

software. A database containing 44 independent 

hardness experiments of Al2024-CNT composites 

performed under various conditions as well as different 

compositions gathered from the literature [8, 30-34], 

were used to train (35 groups of data) and test the ANN 

(9 groups of data). Material composition and 

manufacturing parameters were selected as the input 

parameters, and hardness was chosen as the output 

parameter (Table 2). 

First, to increase the efficiency of the neural 

network, the experimental database was normalized. 

The applied normalizing process is represented by: 

 
   0.8 0.1

X X
min

Xn
X X

max min


  

  
(6) 

where Xmax and Xmin are the maximum and minimum 

values of the independent variable X. Second, the 

experimental database was randomly divided into two 

parts. 

 

 
TABLE 2. Input and output parameters of artificial neutral 

network 

Input 
 

Material composition Matrix (95-100 wt. %) 

 
CNT (0-5 wt. %) 

Manufacturing 

parameters 

Sintering temperature (ST) , i.e.,  450-550 °C 

Sintering time (St) , i.e.,  0.25-2 h 

Compact pressure (CP) , i.e., 41.36-1500 MPa 

Milling time (Mt) , i.e.,  1-30 h 

Vial speed (VS), i.e., 300-350 rpm 

Ball to powder weight ratio (BPR) , i.e., 5-10 

Output 
Hardness (67.6-290.9 HV) 

Mechanical property 

One part was used to train the network, and the other to 

test it. To facilitate the comparisons of performance for 

different network configurations, mean absolute 

percentage error (MAPE), sum of square errors (SSE) 

and root mean square error (RMSE) were introduced: 

   

 

1       
           100

1

L d t p t
MAPE

L d tT

 
  
 

   
(7) 

     2
 

1

L
SSE d t p t

T
 
  

(8) 

RMSE MSE
 

(9) 

 
3. 1. Selection of ANN Architecture       Defining the 

architecture of the network can dramatically influence 

the performance of network. However, there is no 

distinct way to determine the hidden layer for a 

particular application [35]. In this case, a program has 

been presented to test various architectures of feed-

forward back propagation ANN to determine the 

structure with the lowest mean absolute percentage error 

(MAPE) for the testing data set as depicts the flowchart 

in Figure 3. The program was run to find the optimum 

configuration among four variables pertinent to the 

ANN which is shown in Table 3.  
The parameters include: algorithm of ANN, transfer 

functions of hidden and output layer and the number of 

neurons in the hidden layer. It is well known that 

different algorithms fit different problems. Therefore, 

choosing an appropriate algorithm is necessary. Details 

about the training algorithms used in present work are 

summarized in Table 4. Normally, it is accepted that 

increasing the number of neurons can enhance the 

prediction quality of the network. But, this number 

cannot be increased unlimitedly because one may reach 

a saturation value, resulting in the over-fitting issues. 

The best structure was deduced that the optimum 

configuration has been found out between 1890 

numbers of architectures. The training and testing 

process was repeated hundereds of times in each model 

to find best weights and biases that cause lowest MAPE 

and the results of the ANN performance test and were 

saved in a five dimensional matrix.  

 
 

TABLE 3. The ANN architecture variables 

Number of neurons in hidden layer 1-30 

Activation function of hidden layer logsig, tansig, purelin 

Activation function of output layer logsig, tansig, purelin 

Training algorithms for back 

propagation 

trainlm, traincgb, trainscg, 

trainbfg, traingdx, traingda 



1729                   M. Mahdavi Jafari and G. R. Khayati / IJE TRANSACTIONS C: Aspetcs  Vol. 29, No. 12, (December 2016)    1726-1733 
 

 

Then, at the end of run, the resulting matrix was 

passed through a sort program to find the best 

architecture with the lowest MAPE. When the program 

found the optimum architecture in one hidden layer, it 

was developed for fining of the lowest MAPE in two 

hidden and three hidden layer with optimum 

architecture. 
 
3. 2. Results of Modeling and Discussion       The 

results of performed program (Figure 4) show that BFG 

and LM training algorithm are the best among six 

algorithms with lowest MAPE. The characteristics of 

architectures after training by BFG algorithm showed in 

Figure 5. The MAPEs were scaled with respect to the 

minimum MAPE found for the optimized architecture 

and the smaller the radius of the circle showed the less 

MAPE for that special architecture. 
 

 

 
Figure 3. The flowchart of finding suitable the ANN 

architecture 

 

 
Figure 4. Comparison of (MAPE) for various training 

algorithms 

 

 

The final architecture among of structures is 7-[25]-1 

with Quasi-Newton method (BFG) algorithm and log-

sigmoid transfer function as an activation function for 

hidden layer and tangent sigmoid for output layer which 

have 3.26% error. 
 
 

TABLE 4. The description of the algorithms applied for 

training of network

Algorithms Description 

LM–Levenberg-Marquardt 

algorithm 

One of the fastest training algorithms 

for networks of moderate size 

CGB–Powell-Beale 

conjugate gradient algorithm 
The converge rate is generally faster 

SCG–scaled conjugate 

gradient algorithm 

Combine credible interval method 

and conjugate gradient algorithm 

with no line search 

BGF–BFGS Quasi-Newton 

method 

Usually converges in fewer iterations 

but requires to estimate Hessian 

matric 

GDX–adaptive learning rate 

algorithm 

Faster than basic gradient descent 

algorithm 

GDA–adaptive learning rate 

algorithm 

Slower than GDX without 

momentum 

 

 
Figure 5. MAPE errors for different architectures using Quasi-Newton method technique for training the networks, the smaller the 

circles, the better the architecture 
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The mean absolute percentage error (MAPE), mean 

square error (MSE), root mean square error (RMSE) 

and sum of square errors (SSE) of training and testing 

data sets are shown in Table 5. Based on Figures 6 and 

7, the conclusion can be made that the prediction of 

hardness by neural network is closer to the measured 

values; the high coefficient of determination values 

show that the prediction was acceptable. As shown in 

Figure. 8, by increasing of CNT wt% and milling time, 

the hardness was increased.  

 

 
TABLE 5. Actuarial parameters of the ANN model for 

predicted hardness in different hidden layer 

Number of 

Hidden 

layer 

Data MAPE SEE MSE RMSE 

One 

Testing 

set 
3.265 0.00444 0.000247 0.0157 

Training 

set 
4.136 0.00738 0.000305 0.0225 

 

 

 
Figure 6(a). Regression analysis of predicted and 

experimental hardness for testing data 
 

 

 
Figure 6 (b). Regression analysis of predicted and 

experimental hardness for all data 

 
Figure 7. Comparison of experimental hardness with 

predicted hardness 
 

 
Moreover, the comparison of Figure 8(a) and 8(b) 

indicate that the proposed model has relatively good 

accuracy. 

 
3. 3. Sensitivity Analysis             The sensitivity test 

was conducted to investigate the sensitivity of the 

model outputs to the input parameters variation. 

Sensitivity analysis allows an operator to quickly 

recognize the optimum conditions of input parameters 

for better selection of appropriate production conditions.  

In this analysis, a step-by-step method was carried 

on the trained ANN by varying each of the input 

parameters, one at a time, at a constant rate. Various 

constant rates 5 and 10 were selected in this study. For 

every input parameter, the percentage was changed in 

the output as a result of the change in the input 

parameter. The sensitivity of each input parameter was 

calculated by the following equation: 

 
1  %    

100
%    1

N
change in output

S i N change in inputj j

 
   

  
%  (10) 

where Si (%) is sensitivity level of an input parameter 

and N the number of datasets applied to test the 

network. Figure 9 indicates the change in hardness with 

each of the input variables. The results showed that the 

sintering temperature and amount of MWCNT have the 

greatest effect, while BPR has comparatively less 

influence on samples hardness. Also, the sintering 

temperature shows an adverse effect and the amount of 

reinforcement has a direct effect on Al2024-CNT 

nanocomposite hardness. It was realized that by 

increasing sintering temperature, the tendency of carbon 

to react with Al matrix and formation of needle shape 

Al4C3 phase was increased and consequently 

deteriorated the hardness of Al-CNT nanocomposites 

[8]. In addition, the hardness in Al2024 composite 

reinforced with CNTs shows a rapid increase with 

increase of CNT concentration [30]. 
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Figure 9. Significance of input parameters on the mechanical 

properties. 

 
 
4. CONCLUSION 
 
This work demonstrates the excellent capability of an 

ANN technique for simulation of mechanical properties 

of Al2024 reinforced with multiwall carbon nanotubes. 

In particular, the hardness was predicted by a 

sufficiently trained neural network based on material 

compositions and manufacturing parameters as input 

parameters. The prediction accuracy was satisfactory, 

but its dependence on the number of training data shows 

that the accuracy could be further enhanced by 

extending the experimental database for network 

training. Furthermore, a well-trained neural network 

prepares more appropriate data from a relatively limited 

practical database. This means a considerable saving of 

cost and time, which could benefit the industry to build 

more general and specific databases of material 

properties. 
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 چكيده
 

 
 یَا ؼذٌ با واوً لًلٍ یتتقً Al2024 یتکامپًز یظخت یکريم بیىیپیػ مىظًر بٍ مصىًعی عصبی ؼبکٍ از پصيَػ ایه در

 بٍ گلًلٍ وعبت کىىذٌ، تقًیت فازمقذار  یه،. بىابرااظت ؼذٌ اظتفادٌ مکاویکی ظازی آلیاشريغ  بٍظاختٍ ؼذٌ  یًارٌچىذ د یکربى

 ي يريدی معتقل َای پارامتر عىًان بٍ ظیاکاریآ ظرعت ي جًؼیتف زمان دما، کاری، آظیاب زمان پرض، فؽار پًدر،

 یٍچىذ لا یظاختار ؼبکٍ عصب ازآمًزغ مذل،  یبرا .اوذ ؼذٌ اوتخاب خريجی پارامتر عىًان بٍ کامپًزیت متًظط میکريظختی

 ٍب یىٍمتفايت، ظاختار مذل بُ ANN یَا یبعذ از امتحان معمار .اظت ؼذٌ اظتفادٌ خطا اوتؽارپط یتمپرظپترين ي الگًر

 میاوگیه خطای درصذ 22/3 ي 9922/0 ي 0/ 982  بیه َمبعتگی وعبت با ؼذٌ بیىییػپ یج. وتامذآ دظت ٍب 7-22-1صًرت 

 اَمیت کردن پیذا مىظًر بٍ عصبی ؼبکٍ مذل ایه، بر علايٌ. دَذمی وؽان تجربی مقادیر با خًبی بعیار ظازگاری مطلق،

 .گرفت قرار حعاظیت آوالیس تحت َاومًوٍ مکاویکی خًاؾ بر مًثر يريدی پارامترَای
doi: 10.5829/idosi.ije.2016.29.12c.11 

 

 

 


