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A B S T R A C T  
 

 

In this paper, using vortex blob method (VBM), turbulent flow in a channel is studied and physical 

concepts of turbulence are obtained and discussed. At first, time-averaged velocities, u  and v , and 

then their fluctuations are calculated. To clarify turbulence structures, velocity fluctuations u and v  

are plotted. It is observed that turbulence structures occupy different positions and move with 
convection velocity. To verify the second law of thermodynamics, averaged vorticity and its 

fluctuations as well as averaged entropy and its fluctuations are calculated. Contours of these 

fluctuations ( ,s )   show that their positions coincide with the positions of turbulence structures and 

both positions move with the same velocity. Correlation coefficient of velocity fluctuations between 
two points, and temporal correlation coefficient at a point, which have significant role in understanding 

physics of turbulence, are calculated and plotted. Having obtained these coefficients, time  and spatial 

micro-scales and then turbulence energy dissipation rate (  ) are obtained. Also, spatial-temporal 

correlation coefficients is calculated and then for turbulence structures microscale of time (memory), 

micro-scale of spatial (size) and convection velocity of structures are found. These scales estimate their 
life and size. Having obtained dual correlation coefficients, spectral studies of the velocity fluctuations, 

u and v , are performed, which include both frequency amplitude (related to temporal correlation 

coefficient) and wave number (related to special correlation coefficient). In fact, spectral study of 

fluctuations is Fourier transform (Cosine) of these fluctuations. Finally, dropping rate of this transform 
is compared with available data in turbulence literature. In this research, for the first time, the 

turbulence structures are visualized and presented by employing the vector of velocity fluctuations, 

vorticity and entropy generation fluctuations. 

doi: 10.5829/idosi.ije.2016.29.07a.14 
 

 
1. INTRODUCTION1 
 

In recent years, there has been significant attention 

toward understanding the characteristics of turbulent 

flows. This is realized when unsteady equations of 

motion can be solved. The current methods include the 

solution of Reynolds momentum equations which needs 

auxiliary equations. Common important disadvantage of 

these methods is that the constants of models are not 

universal. However, compared to those methods, fewer 
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problems exist in the methods such as large eddy 

simulation and random vortex method (RVM) in which 

vorticity distribution is modeled by a number of vortices 

with Lagrangian point of view. In Lagrangian 

formulation, motion of the particles are modeled as a 

system of ordinary differential equations, making their 

solution very easier [1-3]. In this method (RVM), 

motion of the vortices consists of two mechanisms 

including convection and diffusion. On the solid wall, 

vortices are produced resulting from satisfying 

boundary condition including zero tangential velocity, 

and then transferred into the main stream by the 
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convection and diffusion. Transport by the diffusion 

occurs because of the random motion of the vortices. 

Laitone [4] used random vortex method to predict 

numerically the growth of large-scale coherent vortex 

structure in the early stages of the development of 

turbulence in a two-dimensional co-flowing shear layer 

and determined RMS fluctuation in horizontal velocity. 

Cottet et al. [5] used the vortex-in-cell for the viscous 

diffusion scheme and compared with a spectral method 

for 128 grid points and concluded that the evolution of 

the energy spectrum, kinetic energy, dissipation, 

entropy and skewness were in excellent agreement. 

Totsuka and Obi [6] compared the spectral method with 

the vortex method using the core spreading method and 

a Laplacian model used in the moving particle semi-

implicit (MPS)[7], which is similar to the redistribution 

method in vortex methods. Yokota et al. [8] applied the 

vortex method to the calculation of a decaying 

homogeneous isotropic turbulence and compared the 

results with a spectral method calculation. Blot et al. [9] 

simulated the flow pattern around downstream of a 

rectangular bluff body inside a Channel. Gagnon and 

Huang [10] studied the flow behavior inside channels 

with and without lateral injection, and finally Martins 

and Ghoniem [11] simulated the non-reacting flow in a 

bluff-body burner. In this later work, authors gave an 

overview of vortex interactions in axisymmetric  mixing 

zones. Other applications of these schemes  can be 

found in combustion (Sethion [12]), biomechanics (Mc 

Cracken and Peskin [13], and the simulation of the wind 

flow over buildings (Summers et al. [14]). Many of the 

above-mentioned works have validated RVM for 

moderate and high Reynolds number flows, validating 

them against experiments or other numerical method. 

These high Reynolds number validation studies confirm 

the capability of vortex methods to simulate accurately 

complex flows. Furthermore, the numerical 

convergence of this method for spatial and time 

discretization parameters is extensively explored 

separately. 

The main advantage of random vortex method is that 

instant velocity distribution is calculated and then time 

averaged velocity and velocity fluctuations are found 

easily. Calculating velocity fluctuations help us to 

calculate characteristics of turbulent flow depending on 

these fluctuations. RVM has advantages and 

disadvantages. Some of its advantages include: (1) 

There is no simplification of the Equations. (2) Contrary 

to turbulence models, it does not need auxiliary 

Equations. (3) It is used for laminar and turbulent flows. 

(4) Employing Lagrangian method, it is used to 

calculate velocity in the high gradient regions. And 

some of its disadvantages include: (1) Because of 

employing Lagrangian method its computation time is 

high. (2) This method cannot be used for three 

dimensional flows, because this method is based on the 

two dimensional vorticity transport equation which is 

solved in two steps of convection and diffusion (in the 

3D vorticity transport equation the source term exists 

that cannot be solved in two mentioned steps). Also, in 

this method, the equation should be solved in the 

transformed plane by Schwarz-Christoffel mapping that 

is a two dimensional mapping. 

Various researches have been performed in the field 

of turbulent flows in channels. Rostami et al. [15] used a 

white light particle image velocimetry (WL-PIV) 

system in order to provide a cost-efficient and safe 

alternative to laser systems while keeping the accuracy 

limits required for hydraulic model tests. The accuracy 

and integrity of the experiments were validated by 

comparison to the results which were obtained with 

empirical models of the mean velocity and Reynolds 

stress distribution in the boundary layer. Javid and 

Mohammadi [16] focused on a hydraulic radius 

separation approach used to calculate the boundary 

shear stress in terms of bed and wall shear stress 

proposed in a trapezoidal channel. Bonakdari et al. [17] 

investigated the use of the Tsallis entropy to predict the 

shear stress distribution in rectangular channels. Given a 

definition of the Tsallis entropy, it is maximized using 

the probability density function, which then is used to 

attain a novel shear stress equation. It should be stated 

that in the mentioned papers, the mean quantities of 

characteristics are obtained but the turbulence 

characteristics are not investigated in detail such as 

temporal and spatial and spatial-temporal correlation of 

fluctuations, dissipation energy and etc. in which they 

play an important role in transport equation of 

turbulence quantities.   

In this work, using random blob method velocity 

fluctuations are calculated. Then, by using these 

velocity fluctuations, turbulent flow characteristics are 

calculated including correlation coefficient between two 

points, temporal correlation coefficient and temporal–

spatial correlation coefficients. Having obtained these 

coefficients, different scales of turbulence structures are 

estimated. In other words, scale and size of turbulence 

structures and  time of their memory before losing their 

characteristics are calculated.  

Energy dissipation always exists in a turbulent flow. 

Small and large eddies significantly increase energy 

dissipation. Entropy generation can be an indicator of 

energy dissipation. Having obtained instant velocity 

distribution and its gradients, instant entropy generation, 

time averaged entropy and entropy fluctuations are 

obtained. It is concluded that maximum entropy 

fluctuations occurs near the walls and decreases as 

distance from the wall increases. 

This result can be shown with the calculation of 

vorticity in a constant grid similar to the grid used for 

entropy generation. Variation of averaged vorticity and 

its fluctuations is similar to those of entropy generation 

in that both of them are produced due to the rotation of 

fluid.  
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Wherever there is no rotation, there will be no 

entropy generation and no energy dissipation. 
By employing the vector of velocity fluctuations, for 

the first time, the turbulence structures are visualized. 

After plotting the vector of velocity fluctuations, these 

structures are appeared in some parts of channel mostly 

near the walls. By demonstrating these structures in 

different time steps, it is observed that not only they are 

not stationary but also they are moving with a certain 

velocity which is named convection velocity (in 

turbulence literature). It should be noted that by plotting 

the velocity vector, these turbulence structures cannot 

be visible and only by plotting the velocity fluctuation 

this purpose can be achieved. Moreover, these structures 

are visualized by the use of vorticity fluctuations and 

entropy generation fluctuations. 

 

 

2. GOVERNING EQUATIONS AND MODEL 
DESCRIPTION  
 

The R.V.M is a numerical technique to solve unsteady 

Navier-Stokes equations converted to a rotational non-

primitive formulation. These equations are the Poisson 

equation: 

2  (1) 

and the vorticity transport equation is obtain by 

operating the curl of  Navier-Stokes equations with 

considering the continuity equation )0.( U   as:  

21

t Re


    


U  (2) 

where   is dimensionless vorticity, U  is the vector of 

velocity, 
0 0Re U H   is the Reynolds number, 

0U  is 

the magnitude of the inlet velocity of the channel, 
0H  is 

the vertical distance between its two parallel walls,   is 

kinematic viscosity and t  is dimensionless time.  

In this method, vorticity transport equation is solved 

at two stages including convection and diffusion [1] as 

follows. 

0
t


  


U  (3) 

21

t Re


  


 (4) 

By solving Equations (3) and (4), vorticity transport 

equation solution is obtained. Equation (3) is solved 

using Lagrangian approach for vortices. This solution is 

performed using stream function and Biot-Savart law 

as follows [1]: 

  'dX)'X()'XX(k)X(U  (5) 

2
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1
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xy
Xk




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where, k is the kernel of Poisson equation for stream 

function, dX dxdy  , and r
2
x

2
+y

2
. Equation (5) links 

velocity to vorticity distribution. Using Kelvin-

Helmholtz theory, Equation (3) is written in an 

alternative form: If (x0, t) denotes position of a particle 

passing the position x0 at time t and (x0) represents 

vorticity distribution at time t0, then Equation (3) is 

expressed as: 

)(),(( 00 xtx   (7) 

where is the solution of the following equation: 

0 0 0( ( , )) ( , 0)
d

U x t with x t x
dt


     (8) 

In fact Equation (8) is a system of equations whose 

number is equal to the fluid particles number. To reduce 

the number of equations, vorticity field is replaced with 

finite number of vortex elements having a circulation 

i defined as 

iii AXdXX   )()(  (9) 

where, Ai is the area of each vortex. Using Core 

function [1] vorticity distribution is expressed as: 

)y,x(f)y,x(

N

1i

i 



  (10) 

to omit singular point of each vortex, where f is a radial 

and symmetric function. Substituting Equation (10) into 

Equation (5) yields  

1
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and 

r

0

(r) 2 rf (r)dr     (13) 

where,  is radius of each vortex, and   denotes 

circulation function inside each vortex element. Chorin 

[1], and Ghoniem and Gagnon [2] defined f(r) as: 


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Now, using finite number of differential equations and  

Lagrangian approach, vortex motions are expressed as: 
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Substituting Equation (12) into Equation (15), induced 

velocity on j
th

 vortex is calculated, which expressed in 

compact form as: 
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where, Wu+iv, zx+iy, i 1 , W is conjugate 

velocity and N is number of vortices. At the next step, 

transport of the vorticity of Equation (4) is performed 

with random convection of vortices based on a Gausian 

random variable. One-dimensional solution of Equation 

(4) is obtain by Green function as:  

)
4

Re
(

4

Re
(),( 2x

t
EXP

t
txGr 


  (17) 

which is similar to the density of Gauss probability 

function with random variable zero average and 

standard deviation  

)
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





  (18) 

The two mentioned equations are the same if 

2 Ret 
. Similarly, these procedures are applied to 

two-dimensional cases. Diffusion stage of vorticity 

transport consists of two perpendicular displacements 

which in fact are random variables with Gauss 

distribution, zero average, and standard deviation as 

2 Ret  . In which t is time step. Therefore, if zj(t) 

denotes position of j
th

 vortex at time t, its position at 

time t+t is calculated as follows: 

jjj tW)t(z)tt(z   (19) 

where, j  xiy in which x and y are Gauss 

random variables and W  is calculated as: 

i j

N N
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  
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where the first term indicates the induction velocity of 

all vortices on j
th

 vortex, the second term denotes 

induction velocity of the images of all vortices on j
th

 

vortex, and the third term is convective potential at Zj, 

and )(F  is Schwarz-Christoffel mapping function. As 

stated before, to impose zero normal velocity on the 

wall of polygonal geometries, conformal mapping of 

Schwarz-Christoffel and images of vortices are used. 

Conformal mapping of Schwarz-Christoffel for a two 

dimensional channel is as follows [3]: 

0

d
F( )

dz H

 
     (21) 

0

z
(z) Exp( )

H


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0H
z( ) Ln( )  


 (23) 

where, z x iy   is a complex number that indicates a 

point in the channel and   is a point corresponding to 

the point z  in the transformed plane. The inlet flow of 

the channel is simulated with a source located at the 

center point of the transformed plane and the outlet flow 

of it is simulated with a sink located at the infinity point 

of the transformed plane (Figure 1). 

As already mentioned, the main goal of the present 

work is to solve the vorticity equation in the two stages 

of convection and diffusion. To satisfy zero tangential 

velocity on the walls, generation of similar vortices 

(having similar radius and circulation) is used. To 

satisfy zero normal velocity for the multi-lateral 

geometries, conformal mapping of Schwarz-Christoffel 

and vortex image are used.  

Vortices produced on the walls as a result of 

satisfying zero tangential velocity leave the walls and 

enter into the flow by diffusion process, and then 

continue their motion by convection and diffusion 

means. The motion resulted from the diffusion of the 

vortices is composed of two perpendicular motions. 

These two motions are random variables with zero mean 

Gauss distribution and standard deviation of 2 t / Re  . 
 

 

3. RESULTS AND ANALYSIS 
 

3. 1. Calculation of Average Velocity Field      
When vortices occupies almost entirely the 

computational domain and their number approaches a 

constant limit, fluid velocity can be calculated in a 

constant grid. This velocity is composed of velocity of 

potential flow and velocity induced by vortices and their 

images. 
 

 

 
Figure 1. Demonstration of physical plane (z) and 

transformed plane ( )  
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In order to show the power of  random vortex method, 

velocity field of a laminar flow with Re=250 is 

calculated. Figure 2 shows the comparison between the 

velocity field of this case resulted from the present work 

and parabolic profile of the fully developed flow. The 

results show good agreement. In this flow standard 

deviations of the velocity fluctuations are very small, 

actually are zero. 
For turbulent flow with Re 50000 , after 

calculating instant velocities on a constant grid, time 

averaged velocity in the interval of 400 time steps by 

using the following formula is calculated.  

M

j

j 1

w

W
M





 

(24) 

where, w u iv   is complex velocity of the fluid and 

M  is the number of time steps. Figure 3 illustrates axial 

velocity profile and compares it with velocity 

distribution of Prandtl
’
s power law (n=7) in different 

sections and a good agreement between them is 

observed. 

 

 
Figure 2. Comparison between the velocity profile of the 

present model and analytical solution (indicated with the 

symbol *) at Re=250 in four sections 

 

 
Figure 3. Comparison between the velocity profile of the 

present model with velocity distribution of Prandtl,s power 

law (n=7) (indicated with the symbol *) at Re=50000 in four 

sections 

3. 2. Calculation of Velocity Fluctuations      After 

calculating instant velocity and time-averaged velocity, 

velocity fluctuations is calculated using  the relation 

w (t) w(t) w    in which w u iv    . Having 

calculated velocity fluctuations, standard deviations of 

them and Reynolds stresses can be calculated. 

Moreover, by using them, small structures of turbulence 

can be illustrated. 

Figure 4 shows variation of 2u , 2v and u v   , 

which were made non dimensional by mass average 

velocity in the channel at x 90  . Although small 

turbulence structures can not be illustrated by plotting 

instant velocities, they can be shown very easily by 

plotting velocity fluctuations. Therefore, velocities must 

be calculated in a fine grid. A grid is assumed from 

x 90   with x y 0.01     . After calculating 

velocity fluctuations in the constant grid, their velocity 

vectors are plotted. It is seen that small vortices are 

being formed and moves with a specific velocity and 

then disappear after moving some distance. Also, the 

scale of structures is different. 

Figure 5 depicts the movements of the vortices 

plotted at two different times. After calculating 

velocities of the vortices named as convection 

velocities, it is observed that their values are 

approximately as much as 0.8 times the maximum 

velocity of the fluid in the channel and agree favorably 

with experimental data of Souhar [18] and Sabot [19].  

 
3. 3. Calculation of Correlation Coefficients 
Correlation coefficients between the two points play an 

important role in the theory of turbulence. Using these 

coefficients, scales of turbulence showing schematic 

organization of turbulent flow are found. In addition, 

these coefficients are effective in the averaged Reynolds 

equations. 

 

 

 

Figure 4. Variations of 2u , 2v and u v  , made non-

dimensional by mass average velocity in the channel versus Y* 

at x*=90 
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Figure 5. Vector plots of velocity fluctuations and 

demonstration of turbulence structures at two different times 

(a) 310 t , (b) 312 t  

 
 

Dual spatial correlation coefficient indicates the 

existence of large turbulence structures, and temporal 

one shows the existence of the memory for vortex and 

indicates its life time. 
Spatial correlation of velocity fluctuation 

components between two points A and B in the physical 

domain with 
B Ax x r  , in the time t  is defined as 

follows [20]: 

iA jB

ij A
2 2

iA jB

u ' (t)u ' (t)
R (x , r, t)

u ' u '


 (25) 

and temporal correlation of velocity fluctuation at point 

A in the time interval t  and t    in which   is delay 

time is defined as follows: 

iA jA

ij A
2 2

iA jA

u ' (t)u ' (t )
R (x , t, )

u ' (t) u ' (t )

 
 

 
 (26) 

For a small delay time, using Taylor expansion gives: 

2 2

ii
ii 02 2 2

it it

1 1 R ( )
R ( ) 1 , ( )

2 2


  
    

  
 (27) 

Where 
it  is time micro-scale or Taylor scale in the  

direction i  which is obtained by using osculatrice 

parabola. 

The second time scale is 
i ii

0

T R ( )d



    referred to as 

macro-scale or integral scale and indicates a time which 

after that, velocities are not correlated with each other. 

it  is not the lower limit of time for  the  decaying of 

small-scale structures of turbulence, which depend to 

Kolmogorov time micro-scale. If turbulent flow is 

assumed at least locally homogeneous and isotropic, 

spatial correlation coefficient does not depend on the 

chosen point:  

i i
ii

2 2

i i

u ' (0, t)u ' (r, t)
R (r)

u ' (0, t) u ' (r, t)


 (28) 

Similarly, for small r  using Taylor expansion gives: 

2 2

ii
ii r 02 2 2

ir ir

r 1 1 R (r)
R (r) 1 , ( )

2 2 r



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  
 (29) 

where 
ir  is spatial micro-scale. The second spatial 

scale is 
ii ii

0
L R (r)dr



   known as spatial macro-scale. 

For a homogeneous, isotropic turbulent flow the relation 

between 
11R (r)  and 

22R (r)  is as [20]: 

11
22 11 f g

1 R (r)
R (r) R (r) r , 2

2 r


    


 (30) 

where, 
11R (r)  and 22R (r)  are respectively correlation 

coefficients of u and v in the longitudinal direction, 

f  and 
g  are respectively micro-scales of u  and v , 

obtained by the intersection of osculatrice parabola with 

horizontal axis. The physical importance of Taylor 

micro-scale is that by using it, dissipation rate (  ) can 

be obtained as:  

2 2

2 2

f g

u ' u '
30 15    

 
 (31) 

Figure 6 demonstrates the variations of temporal 

correlation coefficients of velocity fluctuations u  i.e. 

11R ( )  and v  i.e. 
22R ( )  versus time. Figure 7 shows 

variations of spatial correlation coefficients of velocity 

fluctuations u  i.e. 
11R (r)  and v  i.e. 22R (r)  in the 

center of the channel and x 90   versus distance 

between two points r. The intersection of osculatrice 

parabola with horizontal axis shows spatial micro-scale. 

Figure 8 depicts variations of correlation coefficient of 

velocity fluctuations v  i.e. 22R (r)  in the center of the 

channel and its comparison with 22R (r)  obtained from 

isotropic relation. It is observed that at small distances 

between two points, turbulent flow is locally isotropic, 

and as the distance between two points increases, 
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deviation from isotropic turbulence becomes larger. As 

already mentioned, by knowing the correlation 

coefficients, the spatial and temporal micro-scales 

 ir it,   can be obtained by employing the osculating 

parabola. The dissipation rate (  ) which has an 

important role in turbulent flows, can be achieved by 

using these micro-scales (Equation (31)). Also, Figure 8 

shows in little distance ( r 0.2 ) that the behavior of 

turbulence is isotropic and homogenous which allows to 

use Equation (31) for calculating the dissipation rate.  

 
3. 4. Calculation of Spatial-temporal Correlation 
Reduction of spatial-temporal correlation coefficient 

11 mR (r,0,0, )  related to longitudinal velocity 

fluctuation u can be calculated. 

 

 

 
Figure 6. Variations of temporal correlation coefficients of 

velocity fluctuations u  i.e. R11() and v  i.e. R22() in the 

center of the channel and X*  90 

 

 

 
Figure 7. Variations of spatial correlation coefficients of 

velocity fluctuations u  i.e. R11(r) and v  i.e. R22(r) in the 

center of the channel and X*  90, and demonstration of 

turbulence micro-scales 

 

 

 
Figure 8. Variations of correlation coefficient of velocity 

fluctuations v  i.e. R22(r) and its comparison with R22(r) 

obtained from isotropic relation in the center of the channel 

and X*  90 

Figure 9 shows the spatial-temporal correlation 

coefficient  in the center of the channel. In this figure, 

r 0  coincides with x 90  , and r 1,2,...,10  

denotes different distances from that point. Each of the 

curves of 
11 mR (r,0,0, )  depends to r  and  has a 

maximum which occurs at 
m . In fact, the curves 

passing through maximum points show variation of 

11 mR ( )  versus 
m . It is observed that 

11 mR ( )  

approaches uniformly to zero. Obtaining this curve, 

scale of time integral is calculated from the following 

relation [20]: 

11 11 m m
0

R ( )d


     (32) 

where, 
11  is temporal correlation (memory time) of the 

longitudinal velocity fluctuations. Using this, length 

macro-scale is calculated as follows: 

2

11 11L u   (33) 

At the distance r , convection velocity is defined as 

c mU r  . At large r , convection velocity approaches 

to a limit value 
c,lU  which is an index for the velocity 

of turbulence structures. The curves of Figure 9 shows 

this velocity is 0.8 times as much as the maximum 

velocity of the flow in the channel.  

 
3. 5. Calculation of Vorticity          The most 

important quantity that distinguish real and rotational 

flow from ideal and potential flow is vorticity vector . 

Similarly, instant vorticity can be calculated using  

instant velocity field and its gradients, and then time 

averaged vorticity   and its fluctuation  can be 

found. Therefore, in a constant grid, using above 

equation and instant velocity field calculated before, 

vorticity field was calculated. 
 
3. 6. Calculation of Entropy Generation          The 

second law of thermodynamics is a basic law governing 

all processes and flows. Here, the turbulent structures 

form this points of view is investigated. In an adiabatic 

process, entropy generation per unit volume and per unit 

time in non- dimensional form is calculated from the 

following relation. 
 

 

 
Figure 9. Variations of spatial-temporal correlation coefficient 

in the center of the channel and X*=90 
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 (34) 

where, S  defined as: 

'''

gen

3

0 0 0

S
S

U T H



 (35) 

in which, 
0T  is fluid temperature and 

'''

genS  is entropy 

generation per unit volume and per unit time. Again, 

using instant velocity distribution and its gradients, 

instant entropy generation, time averaged entropy S  

and its fluctuations S (t)  can be evaluated. The entropy 

generation was calculated in a constant grid used for the 

calculation of vorticity. 

Figure 10 illustrates the turbulent structures resulted 

respectively from plotting velocity fluctuations, 

contours of vorticity fluctuation  , and contours of 

entropy generation fluctuation S (t)  in a specific time.  

It is concluded that: 

(1) Position and rotation center of each structure is the 

same in the three curves. In other words, 

information of each turbulence structure can be 

found from distribution of velocity fluctuations, 

contours of vorticity fluctuation  , and contours 

of entropy fluctuation S (t) . 

 

 

 
Figure 10. Demonstration of turbulent structures obtained 

respectively from plotting velocity fluctuations, contours of 

vorticity fluctuation (t) , and contours of entropy generation 

fluctuation S (t)  

 

 

(2) Because of high velocity gradients near the walls, 

large scale turbulence structures are located in this 

regions and rarely seen in the central region. 

(3) It seems that turbulence structures are circular. By 

using the contours of vorticity fluctuation   

(4) If in a region vorticity fluctuations is high, entropy 

generation and as a result dissipation rate are high 

in that region. 

 

3. 7. Spectral Analysis of Velocity Fluctuations 
Studying physics of the turbulent flow is performed in 

frequency domain or wave numbers [20]: 

2

0

1
E(f*) u ' R( )Cos(f )d

2



   
 

 (36) 

where f   is non-dimensional frequency, and E(f ) is 

density of spectral energy. Therefore, obtaining 

temporal correlation coefficient, makes possible the  

spectral study of 2u . Furthermore, for an isotropic 

turbulence Fourier analysis gives: 

2

11 11

0

1
E (k ) u ' R (r)Cos(k r)dr



 
 

 (37) 

2

22 22

0

1
E (k*) v' R (r)Cos(k * r)dr




 

 (38) 

where, 
iiE (k )  is Cosine Fourier transform and k  is 

non-dimensional wave number. It should be stated that 

by obtaining correlation coefficients of velocities, their 

spectrums can be evaluated. While energy decreases, 

there is a region in which dissipation rate   is constant, 

known as equilibrium region. In this region energy 

spectrum does not depends to molecular viscosity and is 

governed by the following general law [20]:  

2 5

3 3E (k*)


   (39) 

After this region energy varies as: 

4E (k*)  (40) 

Figure 11 shows spectral density of energy for 2u  and 
2v  in the frequency domain, and Figure 12 shows 

spectral energies of 2u  and 2v  in the longitudinal 

direction at different distances of Y
*
. Having obtained 

correlation coefficients, these quantities are calculated 

and plotted. In all of these curves, lines with slope of -

5/3 and -4 are drawn and it is seen that by approaching 

to the channel center, the slope of energy drop 

approaches to the isotropic turbulence and shows an 

acceptable agreement.  

 

 

 



993                                             B. Zafarmand et al. / IJE TRANSACTIONS A: Basics  Vol. 29, No. 7, (July 2016)   985-994 

 

 
Figure 11.Spectral density of energy for 2u  and 2v  in 

longitudinal direction near the wall and in the center of the 

channel 
 

 

 
Figure 12. Spectral energies of 2u  and 2v  in longitudinal 

direction near the wall and in the center 
 

 

4. CONCLUSION  
 
Most of the previous studies have been carried out only 

to calculate the time averaged velocities. However, in 

this work, using vortex blob method, which despite of 

its simplicity is very exact, a comprehensive study of a 

turbulent flow inside a two dimensional channel was 

performed to give a better understanding of the 

characteristics and physical concepts of turbulent flow. 

For this purpose, having calculated velocity 

fluctuations, spatial correlation coefficient between two 

points, temporal correlation coefficient at a point, and 

then time and spatial micro-scales were calculated. 

Importance of the micro-scales is in that when turbulent 

flow is locally turbulent, dissipation rate can be 

obtained after calculating them. Time micro-scale 

indicates a time after which velocities are not connected 

with each other. Spatial macro-scale is an indicative of 

the size of the turbulence structures. Turbulence 

structures were shown by plotting contours of vorticity 

fluctuations. These structures were also shown by 

plotting velocity fluctuations vectors and plotting 

contours of entropy fluctuations. In fact second law of 

thermodynamics verifies energy dissipation of turbulent 

flow and states that this dissipation is due to the 

generation and decaying of turbulence structures in the 

channel flow, which often occurs near the walls. By 

calculation and plotting components of Reynolds stress 

tensor in the fully developed region it was shown that 

turbulent intensity is larger near the walls than that of 

other places of the channel. After calculating velocities 

of the vortices named as convection velocities, it is 

observed that their values are approximately as much as 

0.8 times the maximum velocity of the fluid in the 

channel and agree favorably with experimental data. 

Using Fourier Transform, spectral frequencies or wave 

number of velocity fluctuations was calculated and 

plotted. It was observed that energy variation is 

proportional to the power of -5/3 of the wave number in 

a narrow band, while it is proportional to power of-4 of 

the wave number in a broad band. These results 

demonstrate a good agreement with the turbulence 

literature. 
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 هچكيد
 

 
ّبی تصبدفی بِ بررسی جریبى درّن در داخل یک کبًبل ٍ استخراج هفبّین فیسیکی جریبى در ایي هقبلِ بب استفبدُ از گردابِ

گردًذ.  بِ ّبی آًْب هحبسبِ هیٍ سپس ًَسبى u ،vّبی هتَسط زهبًی آشفتِ پرداختِ شذُ است. در ابتذا سرعت

رسن شذًذ ٍ دیذُ  u ٍ'v'هٌظَر ٍاضح ًوَدى سبختبرّبی جریبى آشفتِ، بردارّبی ًَسبًبت سرعت طَلی ٍ عرضی

دیگر بب سرعت هشخصی  ّبی هختلف قرار هی گیرًذ. بِ عببرتّبی هختلف، سبختبرّب در هَقعیتشذ کِ در زهبى

(Convection Velocity) شًَذ ٍ برای ّبی آى هحبسبِ هیدرحرکت ّستٌذ. ّوچٌیي کویت ٍرتیسیتِ هتَسط ٍ ًَسبى

ّبی آى ًیس در هقبطع هختلف ًشبى دادى تأییذ قبًَى دٍم ترهَدیٌبهیک در جریبى آشفتِ، تَلیذ آًترٍپی هتَسط ٍ ًَسبى

,'بی ًَسبًبت ٍرتیسیتِ ٍ آًترٍپی )گردًذ. رسن کبًتَرّهحبسبِ هی s'دٌّذ کِ هَقعیت آًْب دقیقبً هٌطبق ( ًشبى هی

برهَقعیت سبختبرّبی جریبى آشفتِ بَدُ ٍ بب ّوبى سرعت جببجبیی در حرکت ّستٌذ. ضریب ّوبستگی ًَسبًبت سرعت 

( کِ در تئَری فیسیکی جریبى آشفتِ ًقش اسبسی ٍ Correlationًقطِ )در دٍ ًقطِ ٍ ضریب ّوبستگی زهبًی در یک 

 ّبی ّبی زهبًی ٍ هکبًیسبختوبىشًَذ. بب داشتي ایي ضرایب، هیکرٍاشلهْوی دارًذ ًیس هحبسبِ ٍ رسن هی

(Structures) شًَذ کِ بب استفبدُ از آًْب جریبى آشفتِ هحبسبِ هی تلفبت اًرشی(Dissipation)  ًیس استخراج هی-

ًیس هحبسبِ ٍ از آًجب هبکرٍاشل زهبًی  (Spatial-Temporal)زهبًی  -گردد. ّوچٌیي ضرایب ّوبستگی هکبًی

ترتیب ِ ّب بشًَذ. ایي هقیبس)حبفظِ(، هبکرٍاشل هکبًی )اًذازُ( ٍ سرعت جببجبیی سبختبرّبی جریبى آشفتِ هشخص هی

چٌیي بب داشتي ضرایب ّوبستگی دٍگبًِ، هطبلعِ طیفی ازُ ٍبسرگی آًْب را تخویي هی زًٌذ. ّنزهبى حیبت گردابِ ّب ٍ اًذ

( (Spectral ًَسبًبت سرعت'u  ٍ'v گیرد کِ شبهل دٍ داهٌِ فرکبًسی )هربَط بِ ضریب ّوبستگی ًیس اًجبم هی

وبستگی هکبًی( هی ببشذ. در ٍاقع بررسی طیفی ًَسبًبت عببرت است از تبذیل زهبًی( ٍ عذد هَج )هربَط بِ ضریب ّ

فَریِ )کسیٌَس( ایي ًَسبًبت. آٌّگ سقَط ایي تبذیل بب هقبدیر هَجَد در هقبلات هربَط بِ جریبًبت آشفتِ هقبیسِ 
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