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A B S T R A C T  
 

 

Crack growth analysis has remained one of the challenging problems in the fracture mechanics of 
structures. On the other hand, the fatigue crack growth is a common phenomenon in the components of 

structures like airplanes, navies and fluid storages where the fracture due to crack should be considered 

in the design of these structures. In this paper, the finite volume method (FVM) is extended for the 
modeling of static and fatigue crack propagation for two-dimensional problems. In the present method, 

due to the crack growth, no global remeshing is needed where only a cell dividing near the crack tip 
can be used which is easy to implement during the analysis. The accuracy of the method is studied by 

solving several benchmark problems and the results are compared with the available analytical and 

numerical results. It is observed that the results are good in accuracy comparing with those found in the 
references. 

doi: 10.5829/idosi.ije.2016.29.07a.03 
 

 
1. INTRODUCTION1 
 

The modeling of growing cracks with arbitrary 

trajectory is a considerable problem in the 

computational mechanics. On the other hand, one of the 

main sources of failure in engineering structures such as 

airplanes, tanks pressure vessel and wall ships is failure 

due to fatigue crack propagation. Estimating the fatigue 

life of these structures under cyclic loading is an 

essential task that needs detailed fracture analysis of the 

components of these structures. Nowadays, mainly two 

numerical methods are employed to model the fracture 

and crack growth problems, namely the finite element 

method and the boundary element method. Although the 

finite element method, which uses singular element or 

enriched element, is efficient for simulating the 

singularity of crack tips, but it needs a burdensome 

remeshing of the domain in each step of analysis. Also, 

the boundary element method may be efficient for 

solution of some problems, but applying it for models 

with nonlinear materials and complicated loading has 

some limitations. After the work presented by 

                                                           

1*Corresponding Author’s Email: fallah@guilan.ac.ir (N. Fallah) 

Belytschko et al. [1] which is based on the smoothed 

particle hydrodynamics and called as the Element-Free 

Galerkin Method (EFGM), a series of creative 

approaches named as meshless methods have been 

developed by researchers [2-6]. These methods have 

widely been used in problems with moving boundaries 

such as crack growth due to their mesh free feature. 

EFGM is the prevalent meshless method which has been 

used in crack growth analysis [7-11]. However, in this 

method since the conservation law is applied to the 

global domain, the solution leads to spurious crack 

extension; although this shortage is solved with 

approaches such as extrinsic and intrinsic enriched 

methods that results in accurate solution [12]. 

Nevertheless, it should be mentioned that the former 

method cannot evaluate the stress intensity factors 

accurately, because its sensitivity to perturbation and 

also applying the latter for problems with multiple 

cracks is accompanied to cost of computational 

complexity. The extended finite element method 

(XFEM) [13], which has been established by importing 

both discontinuous fields and crack tip asymptotic 

functions in the finite element structure through the 

Partition of Unity Method (PUM), has been found as a 

superior method in the crack problems. This character 
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emanates from this fact that the finite element method is 

a mature technique that satisfies both stability and 

convergence requirements perfectly. One drawback of 

the XFEM is the need for a variable number of degrees 

of freedom per node [13]. Also for evaluating the 

integral in energy equation, elements cut by the crack 

geometry should be divided into sub-triangles, 

otherwise, inaccurate solution is obtained. These issues 

in XFEM arise due to the existence of inflexible mesh 

used in the finite element method. In both EFGM and 

XFEM the weak form of the energy equation is satisfied 

in global domain. This property as mentioned above 

involves some limitations in solving of problems with 

moving boundaries such as crack growth.  

The Meshless Local Petrov-Galerkin (MLPG) 

method developed by Atluri et al. [5] based on a local 

symmetric weak form, is considered as a truly meshless 

method. In MLPG, there is no need to any mesh for 

approximating the problem variables as well as the 

integration of energy equation. In this method, the 

equilibrium equation is written locally corresponding to 

each node of the discretized domain, thereupon; the 

conservation law is satisfied locally. In one type of the 

MLPG called as MLPG5, the Heaviside function is 

assumed as the weighting function [14]. By using this 

weighting function, the integration over the domain is 

eliminated and integration is only applied on the domain 

boundaries. This can lead to less computation time, thus 

the MLPG5 is found as an efficient method in 

computational mechanics that competes with the finite 

element and boundary element methods [14]. 

The finite volume method (FVM) is a well-known 

approach for the solution of fluid dynamics problems. In 

this method, the domain is discretized to a set of cells 

connected together in their boundaries. The weak form 

of energy equation is satisfied in each cell individually 

by assuming the Heaviside step function as the 

weighting function which implies that integration of 

energy equation is only applied on the cell boundaries. 

These features, i.e. satisfying the balance law in a local 

domain and also integration just on cell boundaries, 

make the FVM similar to MLPG5 as a stable and 

efficient method. Nevertheless, usually in FVM, the 

derivatives of field variables are simply approximated 

by using differential techniques like central difference 

scheme. The finite volume method (FVM) has also been 

extended to model the solid mechanics problems due to 

the above mentioned simplicity and accuracy. Onate et 

al. [15] studied the general application of this method 

for structural problems. Ivankovic et al. [16] applied the 

FVM for dynamic fracture problems. Their work has 

been focused on problem of rapid crack propagation 

(RCP) in simple specimens in two dimensional body 

problems. Also Ivankovic et al. [17] presented a finite 

volume modeling of full-scale test on medium density 

polyethylene gas pressurized pipes. The crack speed and 

pressure profile are prescribed in the analysis and both 

steady-state and transient RCPs are considered. Fallah et 

al. [18] described a three dimensional FVM procedure 

for the analysis of geometrical nonlinear problems. 

They solved a number of benchmark problems where 

the results converged to the exact solutions. Stylianou 

presented a new finite volume approach for dynamic 

fracture analysis using concepts of cohesive zone and 

node release [19, 20]. Atluri et al. [21] implemented a 

meshless finite volume method in which, similar to 

MLPG5, the Heaviside function has been used as the 

weighting function in the local weak form. Also in the 

above work, a mixed approach has been applied in 

which the strains as well as displacements are 

interpolated independently by using the moving least 

squares (MLS).   

Moosavi et al. [22] presented a finite volume method 

called as orthogonal meshless finite volume method in 

which an orthogonal weighted basis for constructing the 

shape functions and  a displacement function around the 

crack tip developed in Ref. [21] have been used. This 

method has been successfully applied for solving some 

of crack problems. Ebrahimnejad et. al. [23] introduced 

two new techniques in the meshless finite volume 

method (MFVM), by using Delaunay triangulation 

scheme, for approximating the displacement and its 

derivatives at every point of two dimensional domains. 

Mahmoodabadi et. al. [24] applied the MLPG5 to 

analyze the thick-walled isotropic laminated cylinders 

under elasto-static pressure.  

In the present study, the FVM is extended for the 

analysis of the crack growth in two dimensional bodies 

in which the moving least squares (MLS) approximation 

is used for constructing the interpolation functions and 

its derivatives.  

In the crack growth analysis by the use of finite 

element methods usually a fine mesh must be used 

around the crack tip. Also, in the extended finite 

element version in which the singularity of the crack tip 

is approximated by the use of enrichment technique, the 

discontinuity of stress fields in the elements adjacent to 

crack geometry can decrease the accuracy of solution, 

although this issue can be resolved by using the 

triangulation technique for evaluating the integrals. In 

addition to the above drawbacks, the finite element 

based methods use an inflexible mesh for connecting the 

nodes. However in the present finite volume method the 

applied mesh is completely flexible and new field nodes 

can be added during the analysis if necessary. Also no 

need to use the triangulation technique for evaluating 

the energy integral in the CVs adjacent to crack line 

because the integration is performed on the CV faces. 

Furthermore in the present FVM the displacements of 

field nodes are approximated by the use of MLS 

approximation which is considered as a high order 

approximation, hence accurate results can be obtained 

by applying less degrees of freedom comparing to the 

FEMs.      
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In the present work, a mesh of elements or cells are 

used for the domain discretization as has been applied in 

Ref. [23], thus the discretization process is different to 

MFVM used in Ref. [14] where the local domains may 

be overlapped. However, in this work, a mesh of 

connected cells is created, but this mesh is very flexible 

and every cell can be divided to the new cells. In the 

present method, the displacement in each point of 

domain is approximated using MLS interpolation over 

the cell centers located in the support domain of desired 

point. In the traditional FVM, presented in Ref. [15], the 

displacement function and its derivatives are calculated 

in every point of cell faces linearly in terms of cell 

centers adjacent to that face. By using the higher order 

polynomials in the MLS approximation, one is able to 

approximate the displacement function with higher 

continuity which is not easy to accommodate in the 

classic finite volume approximation such as cell-

centered and cell-vertex finite volume methods 

described in Ref. [15]. In this way, the FVM is 

enhanced for the solution of fracture problems, 

particularly crack growth analysis in structures. 

Satisfying the energy equation locally and also using a 

flexible mesh indicate the potential of this method for 

the analysis of fracture and crack growth problems.  

The outline of this paper is as follows: in the second 

section, first, the weak form of the governing equations 

is derived by enforcing the weighted residual method 

over the CVs; then the MLS technique for 

approximation of displacement field is expressed. In the 

third section, M-Integral for calculating the stress 

intensity factors and also fatigue crack growth law are 

presented. In the fourth section, several examples are 

solved using the present method. Finally, conclusions 

are given in the last section.   

 

 

2. GOVERNING EQUATIONS  
 
2. 1. Discretizing The Equilibrium Equation            
In order to discretize the differential equation for a 

cracked body, by applying the weighted residual 

method, weak form of equilibrium equations for the CV 

corresponding to each field node is derived. The CVs in 

FVM can be constructed by any size and any shape, e.g. 

rectangular, circular and polygonal for 2D problems and 

also can be overlapped and non-overlapped. As 

aforementioned in Sec.1, in this paper, we use the non-

overlapping CVs which are formed around the 

distributed field nodes by considering the crack 

geometry.            
The differential equation of equilibrium of a CV in a 

2D cracked linear elastic solid under the external loads 

in case of infinitesimal deformations is expressed as 

follows:  

                          (1)  

where   and    denote the stress and body force vectors, 

respectively, and differential operator   is defined as 

follows: 

   [
   ⁄     ⁄

    ⁄    ⁄
]  (2) 

The boundary conditions for a cracked solid are 

expressed as follows:    

{

             
               
               

  (3) 

where, as illustrated in Figure 1,   ,    and    represent 

the essential, natural and crack surface boundaries, 

respectively.    and    are the prescribed displacements 

and tractions, respectively,    is a matrix containing the 

components of the unit outward normal to the crack 

surface, and   is a matrix containing the components of 

unit outward normal to the boundaries of CV as follows:  

  [
     

     
]               [

       

       
]  (4) 

By applying the weighted residual method to Equation 

(1), one can obtain the following equation for each CV 

∫  ,      -   
 

   
    (5) 

where     represents the control volume and   is the 

weighting function. By applying the divergence 

theorem, one can rewrite Equation (5) as follows 

∫  (  )   ∫ (  )     
 

   
 ∫    

 

   
   

 

    
 

   
(6) 

In the finite volume method, the Heaviside function is 

considered as the weighting function, which is defined 

as follows [23]: 

{
                                                 
                                              

  (7) 

 

 

 
Figure 1. Definition the local domain in a tow-dimensional 

body 
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By substituting the Heaviside function as the weighting 

function in Equation (6), a domain integral in Equation 

(6) will be vanished, since     . This results in 

reduction of computational cost in evaluating the 

integrals in Equation (6).  

Also, as illustrated in Figure 1, the boundaries of CV 

may intersect with the global boundaries, i.e.      
               . Since both the free global 

boundary   and crack surface    are free of traction, the 

corresponding integrals are vanished. Also, the first 

integral in Equation (6) can be cast to three parts:  the 

one part of CV’s boundary which is inside the global 

domain,    , the one part of CV’s boundary which 

intersects with the essential boundary,     , and the one 

part of CV’s boundary which intersects with natural 

boundary,    , thus we have: 

 ∫       
 

  
∫       
 

   
∫      
 

   
 ∫   

 

   
    (8) 

By substituting the constitutive equation as     , in 

which   is the elasticity matrix and   is the strain vector 

defined in terms of the displacement as      and also 

substituting Equation (3) in Equation (8) we have: 

 ∫         
 

  
∫        
 

   
 ∫   

 

   
    

∫      
 

   
  

(9) 

The unknown displacement u can be approximated in 

terms of nodal parameters  ̂ as: 

    ̂  (10) 

 where   is a matrix containing the interpolation 

functions related to the field nodes which are obtained 

by MLS method presented in the following Section. 

Substituting Equation (10) in to Equation (9) results in: 

 ∫      ̂    
 

  
∫      ̂   
 

   
 ∫   

 

   
    

∫      
 

   
    

(11) 

Equation (11) represents the discretized form of 

equilibrium equation presented in Equation (1) for the 

CV corresponding to a field node. One can write this 

equation in the following well known form: 

  ̂     (12a) 

 where   and   are the local stiffness matrix and local 

force vector, respectively, as follows: 

   ∫         
 

  
∫        
 

   
  

(12b) 
  ∫   

 

   
    ∫      

 

   
  

Equation (12) can be written for all the CVs constructed 

around the field nodes. The provided equations are 

assembled to form the global equation as follows: 

      (13) 

where K, F and U are the global stiffness matrix, global 

force vector and global displacement vector, 

respectively.  

The essential boundary condition, Equation (3), in 

FVM can be enforced using the collocation technique 

[21]. Thus, the discretized Equation (12) for the CVs 

corresponding to the nodes located on the essential 

boundary    can be replaced by the equations generated 

from the collocation technique for the constrained 

degrees of freedom as follows: 

 ( (  ))   (  )  (14) 

 

2. 2. Moving Least Squares (MLS) Approximation       
In the MLS approximation, for a given set of nodal 

points scattered on the domain  , the unknown function 

 ( ) at a desired point   in the domain is approximated 

continuously as follows [1]: 

 ( )  ∑   ( )
 
     ( )    ( )  ( )  (15) 

where   is the number of the basis functions.   ( ) 

presents the vector of basis functions and can be 

selected as follows:  

For linear basis: 

  ( )  *     +  (16) 

and for quadratic basis: 

  ( )  *              +  (17) 

 

 

 
(a) 

 
(b) 

Figure 2.(a) Definition the support domain for a gauss point on 

the face of a cell.(b) definition variables θ and r 
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In Equation (15),  ( ) is the associated unknown 

coefficient and   ,   -  is a vector of space 

coordinates. Coefficients in  ( ) are obtained by 

minimizing a weighted discrete L2 norm as follows: 

  ∑  ( 
       ), ( )   (  )-

  ∑  ( 
     

  ),∑   ( )
 
     ( )   (  )-

   
(18) 

  

  
  ( ) ( )   ( ) ̂     (19) 

where   is the number of nodes in an area named as 

support domain which can be assumed as a rectangle 

shape centered at the desired point  , as shown in Figure 

2. The dimensions of support domain,      and     , 

are determined as follows: 

             and                   (20) 

which    is the multiple factor of the average nodal 

spacing. The appropriate value for this coefficient is 

determined by numerical experiments [1]. 

In Equation (18),   presents the weight function, 

which is equal to unity in the vicinity of point    and 

zero on the edges of support domain. In this work, the 

quartic spline function is used as the weight function. 

This function is defined as follows:  

 (    )  {
    ̅ 

    ̅ 
    ̅ 

        ̅   
                                                 ̅     

   (21) 

where  ̅  
  

  
 ,    |    | is the distance from node    

to the sampling point   and    is the size of support 

domain that is equal to     and     in x and y directions, 

respectively.   

In Equation (19),  ̂ is the vector of nodal parameter, 

and the moment matrix  ( ) and matrix  ( ) are 

defined by the following equations:  

  ( )  ∑  (    ) (  ) 
 (  )

 
     (22) 

 ( )  
, (    ) (  )     (    ) (  )        (  
  ) (  )-  

(23) 

By solving Equation (19),  ( ) is obtained as follows: 

 ( )     ( ) ( ) ̂  (24) 

Substituting Equation (24) in Equation (15) results in 

the following equation:  

 ( )  ∑   ( )
 
    (  )   ( )  ̂  (25) 

where the interpolation function for ith node,   , is 

defined as: 

  ( )  ∑   ( )
 
   (   ( ) ( ))   

  ( )(   ( ) ( ))   
(26) 

It should be noted that if crack line passes across the 

support domain, according to visibility criterion [12], 

the nodes of support domain located in opposite of 

crack line take out from the support domain as shown in 

Figure 2. 

 

 

3. COMPUTATIONAL MECHANICS OF CRACK 
GROWTH  
 

3. 1. Calculation of Stress Intensity Factors       
Mainly three criteria are used to evaluate the crack 

growth: maximum circumferential stress criterion, 

maximum energy release rate criterion and minimum 

strain energy density criterion. In the present work, the 

maximum circumferential stress criterion is used [25]. 

According to this criterion, it is supposed that a crack in 

the direction perpendicular to the circumferential stress 

grows up. In other words, the crack growth occurs in the 

direction that the shear stress is zero. Hence, the angle 

of path of crack growth can be obtained by setting the 

shear stress of crack tip to zero which results in the 

following equation [9]: 

           (
   √  

      
 

    
)  (27) 

in which    and     are the so-called stress intensity 

factors (SIF’s) corresponding to the first and second 

mode, respectively and    is the angle of direction 

which crack growth occurs along with. Then, the 

equivalent SIF can be calculated using [9]: 

          
   

 
        

   

 
   

  

 
  (28) 

Computing SIFs for crack tips is a post-processing task 

in the analysis of crack growth problems. Therefore, 

after obtaining the displacement field of problem, one 

can calculate the SIF’s values for modes I and II of the 

crack tip. 

In Figure 3, the deformed shapes due to the different 

crack modes are displayed. Since in the present work 

the crack growth analysis is studied in the two 

dimensional bodies which are considered under the 

plane stress and plane strain states, the out-of-plane  

deformation of crack faces is omitted, therefore the first 

and second modes are considered. 
 
 

 
Figure 3. Deformation in the different crack modes 

Y
X

Z

Mode I Mode IIIMode II
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The SIF factors can be obtained by using domain form 

of so-called interaction integral. This integral is derived 

from a path-independent integral known as J-integral 

using the following relations [26, 27]: 

 (   )  
 

  
(  

( )  
( )     

( )   
( ))  (29a) 

where     is defined as follows: 

   {
                                             

  (    )                        
  (29b) 

and  (   ) is interaction integral that is expressed as 

follows [9]:  

 (   )  ∫ ,   
( )    

( )

   

 

 
    

( )    
( )

   
 (   )   -

  

   
    (30) 

in which variables superscripted by (1) are related to the 

actual state and variables superscripted by (2) are 

related to the auxiliary state. To calculate stress 

intensity factor corresponding to each mode, 

displacement and stress corresponding to the auxiliary 

fields of each mode should be substituted in Equation 

(30). One can gain auxiliary stress and displacement 

field from Westergard’s solution for stress and 

displacement fields of crack tip [28]. The domain of 

interaction integral is a square centered on the crack tip 

that its edges are set along with the last segment of 

crack increment (as shown in Figure 4).  

 

3. 2. Quasi-Static Crack Growth         Usually, two 

types of crack growth analysis are studied: quasi-static 

growth and fatigue crack growth. In the quasi-static 

type, after determining the direction of crack growth, a 

convenient increment value for the crack length must be 

considered. say about 0.1    , where     is initial crack 

length [9]. A very small crack length increment 

assumption increases the time of analysis; On the other 

hand, assuming a large crack length increment leads to 

an inaccurate prediction of crack growth path.  In this 

study, by using the numerical experiments, this value is 

considered about 0.1    , where     is the last crack 

length. The fracture continues until the equivalent SIF 

obtained from Equation (28) exceeds the fracture 

toughness (   ) of material, which is obtained by 

experiments, i.e.         . At this point, crack is 

unstable and analysis will be stopped. 
 
 

 
Figure 4. Interaction integral domain 

3. 3. Fatigue Crack Growth          In the fatigue type of 

crack growth, to predict a crack increment value, the 

Paris law [29] is used which formulated as follows: 

  

  
  (     )

   (  )  

in which C and m are material properties,    is crack 

increment length,    is number of loading cycles 

required to extend the crack from the last state to the 

new state with extended length.       is called efficient 

stress intensity factor and obtained by the following 

relation [29]: 

      (         )
   (  )  

Using Equation (31) is possible in two ways, supposing 

the crack increment    and calculating the number of 

load cycle    or vice versa, supposing the number of 

load cycles    and calculating the crack increment   . 

Crack growth continues until         , where      is 

obtained from Equation (28) and     is a material 

property named as the fracture toughness and is 

obtained by experiments as mentioned before. After 

reaching this limitation state, crack will be unstable and 

analysis is stopped.  

 

3. 4. A Scheme for Dividing the CVs in the Crack 
Growth Analysis          In the present approach for the 

crack propagation analysis, at the end of each step of 

analysis, the crack geometry is updated. Once the updated 

crack line enters a cell partially or passes it completely, 

the geometry of that cell is updated for the next step of 

analysis by splitting it to two separate cells. In case the 

crack line passes a cell completely, the division of that 

cell to two is obvious, but once the crack line just partially 

enters a cell, the last segment of the crack increment is 

extended virtually until it reaches the face of adjacent cell 

(see Figures 5a to 5c). By applying such scheme, the field 

node corresponding to the original cell is omitted and two 

new field nodes are considered at the center of the two 

newly generated cells. Also, it should be mentioned that 

for the cell partially passed by the crack line, by doing 

next step of analysis, the cell boundary aligned with the 

virtually extended part of the crack path is adjusted 

according to the new crack segment (see Figure 5(b)). It is 

understood that this cell dividing is easy to accomplish 

during the analysis and is not complicated. It should be 

noted that in the crack propagation analysis using the 

methods like finite element method, the traditional 

remeshing procedure is needed for producing a very fine 

mesh near the crack tip which is a burdensome task, 

hence researches have been encouraged to develop a new 

approach like XFEM. Also, in the XFEM method, a sub-

triangulation scheme is needed near the crack tip in which 

a large number of Gauss points is used in each triangle 

[13]. Such triangulation task is avoided in the present 

method. 

 crack line b

b

interaction domain



A. Amraei and N. Fallah / IJE TRANSACTIONS A: Basics  Vol. 29, No. 7, (July 2016)   898-908                                904 
 

 
(a) 

 
(b) 

 
(c) 

 
Figure 5. Dividing the CVs during the crack growth. 

 

 

4. NUMERICAL RESULTS 
 
In the following section, some benchmark problems are 

solved using the present method and results are 

compared with the results obtained by other numerical 

and analytical methods.     

 

4. 1. Edge Cracked Plate Under Tension     In this 

problem an edged-cracked plate under pure tension, as a 

mode I crack propagation is analyzed using the present 

method (see Figure 6(a)). The length of plate is L=2, 

width W=1 and initial crack length a=0.2. The tensile 

stress on top and bottom sides of plate is    . A finite 

volume model of plate consisting of 200 uniformly 

distributed cells is shown in Figure 6(b). A plane stress 

condition is assumed and also the elastic modulus and 

Poisson’s ratio are considered as E=207000 and   
   , respectively. A quadratic basis functions has been 

used for the construction of shape functions using MLS 

technique. For evaluating the integrals on faces of cells, 

two Gauss points are used. Size of interaction-integral 

domain for various crack lengths is selected in the range 

of (0.3 to 0.85)   . For evaluating the interaction 

integral, the interaction domain is divided into a     

square mesh in which the      quadrate Gauss points 

are used in every square. Table 1 shows the values of 

stress intensity factor    for crack length varying from 

0.2 to 0.5 where the error of the FVM predictions and 

also the predictions presented in Ref. [7] are calculated 

relative to the analytical results obtained by Tada et al. 

[30]. It can be seen that, using similar distribution of 

nodes, the present FVM results have better accuracy 

comparing with the values obtained by the meshless 

method presented in Ref. [7]. Also, it should be noted 

that due to the fact that the problem is considered as a 

first mode cracking, the value of     is obtained equal to 

zero. 
 

4. 2. Fatigue Crack Growth       One of the important 

issues for the design of components of structures 

undergoing cyclic loading is the fatigue-life prediction. 

Hence, in the present test a problem of fatigue crack 

growth is studied by using the present method for an 

edge cracked plate under tension. Consider a rectangular 

plate with dimension               including an 

inclined edge crack with angle of 40 degrees and length 

of 20 mm under cyclic loading on top and bottom sides 

as shown in Figure 7(a). This problem also has been 

solved by boundary element method in Ref. [31]. 

 

 

 

 

a b 

Figure 6. Edge cracked plate under tension. (a) Geometry and 

loads; (b) Finite volume mesh 

 
 
TABLE 1. Results for SIF in edge cracked problem with 

various crack length 

a reference[7] FVM 
Analytical 

[30] 

Error %- 

Reference[7] 

Error%- 

FVM 

0.2 1.07811 1.0884 1.08648 0.77 -0.18 

0.24 1.25831 1.2734 1.27887 1.61 0.43 

0.28 1.48169 1.4840 1.49354 0.79 0.64 

0.32 1.72483 1.7255 1.73794 0.75 0.72 

0.36 2.0611 1.9900 2.02186 -1.94 1.58 

0.4 2.33212 2.3571 2.35802 1.10 0.04 

0.44 2.78036 2.7870 2.76256 -0.64 -0.88 

0.48 3.25899 3.2670 3.25542 -0.11 -0.36 

0.49 3.40369 3.3949 3.39516 -0.25 0.01 

0.5 3.52827 3.5401 3.54233 0.40 0.06 

Crack geometry

crack tip- iteration i-1

crack tip- iteration i

Crack geometry

crack tip- iteration i+1

Crack geometry
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The material properties are assumed the same as that 

used in that reference which are: the elasticity modulus, 

E=74000 MPa, the Poisson’s ratio,      , the fracture 

toughness,                  . The plane stress 

condition is assumed and the values of constants used in 

Paris law are,                  and m=3.32. The 

applied cyclic loading varying from a maximum value 

of          to a minimum value equal to zero. For 

the construction of shape functions, the linear basis is 

used in MLS. Also, For evaluating the interaction 

integral, a square domain with sides equal to        has 

been used. Three different types of meshes i.e.      , 

     , and       are used for the analysis of 

fatigue crack growth. The problem domain is discretized 

initially to a uniform mesh of quadrilaterals according to 

the crack geometry. The mesh is used for defining the 

CVs where the two divided parts of each element cut by 

the crack line are used as two individual CVs, see 

Figure 7(b). By using the above three mesh densities, 

the fatigue crack growth is studied by assuming a 

constant crack increment equal to 5 units. The results 

are shown in Figure 8(a). It can be seen that how the 

crack growth path is affected by the mesh density.  
 
 

 
 

(a) (b) 

Figure 7. (a) Geometry and loading of an inclined edge 

cracked plate under cyclic loading; (b) discretized domain, 

using the mesh 1121  

 

 
 

(a) (b) 

Figure 8. (a) The crack growth path using different mesh 

densities; (b) Deformed shape at the final step of analysis 

using the mesh 2141 

Figure 8(b) shows the displaced configuration of the 

plate corresponding to mesh       , at the end of 

tenth as the final step of analysis. At the end of the last 

step, equivalent stress intensity,     , reaches    , so the 

crack is unstable and analysis is stopped. To investigate 

the effect of crack increment value assumed in each step 

of analysis on the path of crack growth, the problem is 

analyzed using different crack increment values 

corresponding to mesh      . The predicted 

geometry of crack growth is shown in Figure 9. It can 

be seen that assuming the crack increments lesser than 

the dimension of CV leads to inaccurate path for crack 

growth.  

In Figures 10 and 11, fatigue-life diagram and 

        values in terms of crack growth are compared 

with the results presented in Ref. [31] that have been 

obtained using boundary element method (BEM). It can 

be observed that the results obtained by the present 

method are in good agreement with the reference 

results. Also, it can be seen that the present method is 

able to predict the fracture due to fatigue crack growth 

with a reasonable accuracy.  

 

4. 3. Crack Growth under Mixed Mode  
Investigation of crack growth trajectory is one of the 

important problems in the fracture analysis of structures.  

 

 

 
Figure 9. predicted path for growth of edge inclined crack 

using various crack increment 

 

 

 
Figure 10. Variations of SIF’s            in term of crack 

extension 
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Figure 11. Fatigue-life diagram for inclined edge cracked 

plate under cyclic loading 
 

 

 

In this test, the path of a crack growth in the mixed 

mode conditions is presented. Consider an edge cracked 

plate under shear stress,        , applied on top and 

fixed at the bottom as shown in Figure 12. Dimensions 

of plate are: length L=8 in., width W=7 in. and crack 

length a=3.5 in. The plate domain is discretized to 253 

cells using a mesh of 1129 with uniformly spaced 

centers except ones passed by crack line that are divided 

into two cells in both sides of crack line. The crack 

increment in each step is assumed 0.3 in. The plane 

stress condition is assumed and quadratic basis function 

is used for the construction of shape functions. Also, for 

evaluating the integrals relating to the internal forces on 

CVs’ faces, two Gauss points are considered on cell 

faces. Domain size used for the calculation of 

interaction integral is varied between         

and        . This variation in the domain size is needed 

to avoid interference of plate boundaries in the 

computation of interaction integral when crack tip 

approaches plate edges; otherwise, interaction integral 

are calculated inaccurately which results in wrong crack 

path. The trajectory of crack growth and also the final 

deformed shape of plate after 23 steps are displayed in 

Figures 13. The path of crack growth obtained by the 

meshless method and finite element method [32] are 

also presented in Figure 13. As can be seen, the crack 

growth path obtained by FVM has good agreement with 

the predictions by the two other methods. This result 

indicates the capability of the present method in 

estimation of crack growth path in problems involving 

both modes I and II of cracks. 
 

 

5. CONCLUSION 
 

In this work the finite volume method has been 

extended for crack growth analysis in two dimensional 

bodies.  

In this extended form of FVM, the MLS technique is 

used for the construction of interpolation functions for 

the integration points considered on cell boundaries. 

Several problems have been solved by this method and 

the results have been compared with the analytical, 

numerical and experimental results. The comparisons 

have shown that the predictions of the present method 

have good agreement with the reference results for SIF 

calculations and crack growth path predictions. One of 

the interesting features of the presented finite volume 

method is that in each step of analysis, due to crack 

growth, only cell dividing near the crack tip is needed 

which can be implemented easily rather than extensive 

remeshing which is needed in the finite element method. 

Also, the present study reveals the great potential of 

FVM for the fracture analysis of structures with a 

prospect of application for the existed challenges in the 

dynamic crack propagation. 

 

 

  
Figure 12. (a) Ggeometry and loading  of an edge cracked 

plate under Mixed mode; (b) displaced geometry of plate in 

the final step of analysis 

 

 

  
Figure 13. Crack growth trajectory in a plate under mixed 

mode loading 
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 هچكيد
 

 
رضذ تزک  ،َا باقی ماوذٌ است. اس طزفیتحلیل رضذ تزک بٍ صًرت یکی اس مسائل دضًار در مکاویک ضکست ساسٌ

باضذ. لذا بزرسی اثز ضکست َا ي مخاسن مایعات میَایی َمچًن بال ًَاپیماَا، کطتیخستگی، پذیذٌ ای  متذايل در ساسٌ

مذل  بزای. در ایه تحقیق ريش حجم محذيد ستَا ضزيریًع تزک خًردگی در طزاحی ایه گًوٍ ساسٌواضی اس ایه و

ضًد. در ريش حاضز ویاسی بٍ مص بىذی مجذد ومًدن پخص تزک استاتیکی ي خستگی در مسائل دي بعذی تًسعٍ دادٌ می

سادگی در ٍگزدوذ ي ایه امز بقسیم میَای ياقع در وًک تزک ت ي فقط سلًلویست، کل مسالٍ در َز مزحلٍ اس رضذ تزک 

گزدد. وتایج حاصل با وتایج تحلیلی ي گیزد. دقت ريش پیطىُادی با حل چىذیه مسالٍ مطالعٍ میطی آوالیش صًرت می

 وتایج دارای دقت خًبی در مقایسٍ با وتایج مزجع می باضذ.ایه ضًد کٍ مطاَذٌ میضذٌ ي وتایج عذدی مًجًد مقایسٍ 
doi: 10.5829/idosi.ije.2016.29.07a.03 

 

 

 

 


