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A B S T R A C T  
 

 

In this study, nonlinear bending of solid and annular functionally graded (FG) sector plates subjected 
to transverse mechanical loading and thermal gradient along the thickness direction is investigated. 

Material properties are varied continuously along the plate thickness according to power-law 

distribution of the volume fraction of the constituents. According to von-Karman relation for large 
deflections,the two set of highly coupled nonlinear equilibrium equations are derived based on both 

first order shear deformation theory (FSDT) and classical plate theory (CPT). The dynamic relaxation 

(DR) method in conjunction with the finite difference discretization technique is used to solve the 
nonlinear equilibrium equations. To demonstrate the efficiency and accuracy of the present solution, 

some comparison studies are carried out. Effects of material grading index, boundary conditions, sector 

angles, thickness-to-radius ratio and thermal gradient are studied in detail. Also, to consider the effect 
of shear deformation and nonlinearity on the results, some linear and nonlinear analyses are carried out 

based on both CPT and FSDT for different thickness-to-radius ratios and boundary conditions. 

doi: 10.5829/idosi.ije.2016.29.06c.17 
 

 
1. INTRODUCTION1 
 

The sector plates combine light weight and high load-

carrying capacity, economy and technological 

effectiveness, so they get extensive applications in all 

fields of engineering such as airplane, nuclear, 

aerospace and marine structures [1]. Because of the both 

theoretical interest and practical importance for the 

design purposes, some researchers have carried out 

linear analysis of isotropic and orthotropic sector plates 

[2-8]. The governing equations of sector plates 

undergoing moderately large deflections are more 

complicated than the governing equations of the 

rectangular plates and are not amenable to closed form 

or exact solutions and, finite element, finite difference 

etc., are used as a necessity [9]. In spite of being well 

established numerical methods, non-linear studies 

pertaining to isotropic sector plates are quite limited in 

extent [10-12]. Recently, the development of a new 
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class of materials known as ‘‘functionally graded 

materials” (FGMs) in which the material properties 

change continuously in one or more directions 

consistent with a specific profile became significant. 

These non-homogeneous composite materials were first 

established by some researchers in Japan in 1984 [13].  

FGMs are mainly manufactured by depositing ceramic 

layers on a metallic substrate or by high speed 

centrifugal casting [14]. Some studies have been 

considered static small deflection analysis of 

functionally graded circular and sector plates. Nosier 

and Fallah [15] reformulated the governing equations of 

the first-order shear deformation plate theory for FG 

circular plates into those describing the interior and 

edge-zone problems. They presented analytical 

solutions for axisymmetric and asymmetric bending 

behavior of functionally graded circular plates under 

mechanical and thermal loadings. Using a perturbation 

technique in conjunction with Fourier series method, 

Nosier and Fallah [16, 17] investigated the non-linear 

axisymmetric and asymmetric bending behavior of FG 

circular plates with various boundary conditions under 
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mechanical and thermal loadings. By reformulating the 

governing equations of the first-order theory into those 

describing the interior and edge-zone problems of the 

plate, Nosier and Fallah [18] presented closed-form 

solutions for bending analysis of thermo-mechanical 

loaded FG circular sector plates with simply supported 

radial edges and various types of constraints for circular 

edges. Jomehzadeh et al. [19], Sahraee [20], Aghdam et 

al. [21] studied small deflection behavior of FG sector 

plate based on first order shear deformation theory 

(FSDT). Saidi et al. [22] decoupled the five highly 

coupled partial differential equations of FG solid sector 

plate under static loading using the boundary layer 

function and obtained analytical solutions for linear 

analysis of FG sector plates with various boundary 

conditions. This method is previously used by Nosier 

and coworkers [23, 24] for decoupling the highly 

coupled partial differential equations governing the 

small deflection of circular and sectorial plates. Using 

multi-term extended Kantorovich method, Mousavi and 

Tahani [25] analysed small deflection behavior of 

radially functionally graded (RFG) sector plates based 

on FSDT. Similar linear analysis is also conducted by 

Fereidoon et al. [26] for isotropic and RFG sector plates 

using the EKM and CPT. Until now, the various types 

of analytical solution methods have been applied for 

considering the linear bending and buckling analyses of 

FG plate [27-29]. Recently, authors [30-32] using the 

dynamic relaxation (DR) method together with the finite 

difference discretization technique investigated 

axisymmetric large deflection analysis of circular and 

annular FG plates/disks under thermo-mechanical 

loadings. However, according to the best knowledge of 

the authors, no work has been reported concerned with 

the large deflection thermoelastic analysis of moderately 

thick solid/annular functionally graded sector plates 

based on both CPT and FSDT. In the present paper, in 

order to fill this gap the linear and nonlinear bending 

formulation of moderately thick solid and annular FG 

sector plates under thermal and mechanical loadings are 

derived and solved based on both CPT and FSDT. 

Along this way, to consider the shear deformation 

effects, large deflection of FG sector plate has been 

analyzed for different thickness-to-radius ratios based 

on CPT and FSDT. The plate with various boundary 

conditions (simply supported and clamped) was 

subjected to uniform pressure loading and thermal 

gradient through the thickness. The DR method along 

with the finite difference discretization technique is 

employed to solve the equilibrium equations. Finally, in 

the parametric study the effects of material composition, 

thickness-to-radius ratio, shear deformation, boundary 

conditions and thermal gradient as well as the plate 

geometry parameters on the nonlinear thermoelastic 

response of the FGM plate are considered in detail. 

Furthermore, some studies are carried out to consider 

the effect of various parameters on the differences 

between the linear and nonlinear bending behaviors of 

FG sector plates based on CPT and FSDT.  

 

 

2. GOVERNING EQUATIONS 

 

Elastic solid and annular FG sector plates with the 

thickness, sector angle, inner and outer radiuses of h , 

 , ir  and or , respectively, subjected to a transverse 

uniform loading q  and thermal gradient T  through 

the thickness are considered here. The geometry, 

loading and coordinate system of the solid and annular 

FG sector plates are shown in Figure 1(a, b), 

respectively. Based on the FSDT assumptions, 

displacement field in polar coordinates can be defined 

as:  
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( , , ) ( , ) ( , ),
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where, U , V and W  are displacement fields while u , 

v and w  are displacement components of the mid-

surface in the r ,  and z directions, respectively. 

Moreover, r and   
are rotations of tangents with 

respect to the middle surface. Substituting Equation (1) 

into the von-Karman strain-displacement relations gives 

the following expressions [12]: 
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(2) 

where, ( 00000 ,,,, zrzrr   ) are the membrane strains, 

and (
  rr ,, ) are the flexural (bending) strains, 

known as the curvatures [33]. The equations are 

obtained from a consideration of translational 

equilibrium in r ,  and z directions and rotational 

equilibrium about the r  and   axes.  
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(3) 

where, in-plane resultant forces rN , N  and rN   and 

out of plane resultant forces and rQ  and Q  can be 
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defined by integrating corresponding stresses along the 

thickness as: 

/2

/2
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In this work, according to [34-36], the shear correction 

factor 
2
sk  is taken as 5/6. Figure 2 shows the ‘force’ 

system used to derive the following equilibrium 

equations (for more detail see [12]). Moreover, similar 

to Equation (4), the resultant moments rM , M  and 

rM   are:  
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Furthermore, stress- strain relationship for FG sector 

plates can be written as:  
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(a) 

(b)  

Figure 1. The geometry and coordinate system of the, (a) 

solid and (b) annular FG sector plates.  

 
Figure 2. The internal and external forces and moments acting 

on the cross section areas of the sector plate. 
 

 

where,   is the Poisson ratio and is considered to be 

constant [37]. Moreover,E  is Young modulus and is 

assumed to vary continuously throughout the thickness 

of the plate, according to the volume fraction of the 

constituent materials based on a power law function as 

[38]: 
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where subscripts c and m denote ceramic and metal, 

respectively, z is distance from mid-surface of the plate 

along z axis ( /2 /2h z h   ) and n is the volume 

fraction exponent of a FGM. According to this 

distribution, the bottom surface ( /2z h  ) of the 

functionally graded plate is pure metal, and the top 

surface ( /2z h ) is pure ceramic. Using (2), (4), (5) 

and (6) gives the following constitutive relations: 
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where the stiffness coefficients are defined as: 
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(10) 

It is noticed that because of gradually varying the 

composition of the constituent materials in the thickness 

direction only and in-plane isotropic properties of the 
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FG plate, the statements 
11 22 11 22 11 22. ,A A B B D D    are 

taken to be account for the extensional, extension-

bending coupling, and bending stiffness matrices A, B, 

D, respectively. The membrane forces and bending 

moments induced by thermal loading per unit edge 

length in Equation (8) can be computed as: 
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It is notable that expressions T T
rN N  and T T

rM M  are 

considered owing to the in-plane isotropic material 

properties of the FG plate. For thermal loading 

problems, it is assumed that the temperature variation is 

only along the thickness direction. The one-dimensional 

heat transfer equation for the z-direction is given by:  
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( ) 0

d dT z
K z

dz dz

 
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, (12) 

where the thermal conductivity coefficient ( )K z  in 

Equation (12) obeys the simple rule of mixture as 

follows:  
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Hence, it is easy to obtain the temperature function 

( )T z from Equation(12) as follows [39]:  
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where cT T  at /2z h and mT T  at /2z h  . It 

must be noted that ( )T z  is measured from the stress 

free state
0
0oT C . Substituting the resultant forces and 

moments obtained from Equations (8) and (9) into 

Equation (3), the five equilibrium equations are 

obtained in terms of the displacement field. For the sake 

of brevity, only the first equation is given as below 
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In this paper, in order to consider the effect of shear 

deformations on the results, the computed results based 

on FSDT are compared with the ones obtained based on 

CPT. Thus, the large deflection analysis of the FG 

sector plate are carried out based on both FSDT and 

CPT. The three equations which describe the state of 

equilibrium in the presence of both in- and out-of plane 

deformations within CPT are given in [11, 33]: 

It is clear that the main differences between FSDT 

and CPT are originated from the definition of 

displacement field of each theory. So that compared to 

the displacement field based on FSDT, the rotations of 

tangents with respect to the middle surface in CPT are:

rwr  / and   rw / . Therefore, the 

radial, tangential and twisting curvatures of Equation (8) 
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and 2 2(2/ )( / ) (2/ )( / )r w r r w        , respectively, 

based on CPT. Now, according to the described 

rotations and curvatures based on CPT, by replacing the 

displacement and strain fields of CPT in Equation (8) 

and the stiffness coefficients expressed in Equation (10) 

which is identical for both FSDT and CPT, the 

statement of the constitutive equations (

, , , , ,
r r r r

N N N M M M
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displacement field of CPT. 

The equilibrium equations have to be accompanied 

by a set of boundary conditions which are here all-round 

clamped and simply supported. The constraints on the 

displacements and stress resultants/couples at the 

circumferential and radial plate edges imposed in each 

case are given as follows: 

(a) On the radial edges ( o0 and   ) for 

simply supported edges: 

0,
r

u v w M


    
 

(16) 

for clamped edges: 

0,
r

u v w


     
 

(17) 

(b) On the circumferential edges (
i

r r and 
o

r r ) for 

simply supported edges: 

0,
r

u v w M


    
 

(18) 

for clamped edges:  

0,
r

u v w


     
 

(19) 

For the sake of brevity, the boundary conditions of FG 

sector plate based on CPT are omitted, (see [33]). 

 

 

3. NUMERICAL SOLUTION OF THE SECTOR PLATE 

EQUATIONS 

 

The five non-linear equilibrium equations which show 

the large deflection response of a FG sector plate under 
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combined thermal and mechanical load is very complex 

and is not amenable to a closed form solution. Among 

the numerical solution methods like finite element, 

finite difference, finite strip, relaxation, etc., the 

dynamic relaxation (DR) technique [40] in conjunction 

with a central finite difference discretization scheme has 

been used here to solve the nonlinear differential 

equations of the solid and annular FG sector plates. The 

DR algorithm has been selected for solving the 

governing equations of plate because of two reasons: (1) 

the equations of large deflection FG sector plate have 

not previously been solved by this method and also by 

any other technique and (2) the authors [30-32, 41, 42] 

and others [43-45] have demonstrated its effectiveness 

for elastic and elasto-plastic large deflection plate 

analysis. To solve the plate equations using DR method 

they are transformed from a boundary value problem to 

an initial value format to facilitate the integration of the 

governing equations via a simple time-stepping iterative 

procedure.The first stage of the transformation process 

is to render the equilibrium equations ‘quasi-dynamic’ 

by adding damping and inertia terms to their right-hand 

sides. Hence, the Equation (3) based on FSDT takes the 

following form: 

 
2

2

1 1




 
    

 

r r
r u u

N N d u du
N N m c

r r r dt dt  
(20) 

Similarly, Equation (20) can be transformed to a quasi-

dynamic equation based on CPT. The second stage of 

the process is to replace the velocity and acceleration 

terms introduced in Equation (20) by the following 

approximate relations:  

 
1

12 / ,


  
n

n n nX X X
 

(21) 

1 1

2 2( ) / .
 

  
n n

n nX X X  
(22) 

where, , , , ,rX u v w    is the approximate solution 

vector at the n th
 iteration and   is the increment of 

fictitious time. By substituting Equations (21) and (22) 

into the right-hand side of Equations (20), the velocity 

equations are obtained. For instance, the first velocity 

equations of FSDT are given as follows: 

 
1/2

1

1/2

2 1 1
( )

2

2

2

nn n
l rr

i ii rn n

i i

nn n

i
i

n n

i

NN
u m N N

r r rc

c
u

c





















 
        





 

(23) 

where, :[ , , , , ]l
ii rm u v w    are elements of the diagonal 

fictitious mass matrices M . Here, to guarantee the 

numerical stability, the element of matrix M is 

determined by the Gershgörin theorem as (for more 

detail see [46, 47]):  

2

1
.25( ) ,

N
l n l

ii ij
j

m k


 
 

(24) 

where 
ijk is the element of the stiffness matrix K and is 

obtained by: 

.
P

K
X



  

(25) 

Similar relation between M  and l
iim  is used for 

elements of diagonal fictitious damping matrices C  and 
l

iic . By employing the Rayleigh principle for node i at 

the nth iteration, the instant critical damping factor can 

be computed as follows [46]: 

1/2
( )

2 .
( )

n T n
n i i
i n T n n

i ii i

x p
c

x m x

 
 

  
    

(26) 

Thus, different c  values are introduced for each node to 

obtain the form used for DR as follows [46]: 

Nimcc iiiii ,...,1, 
 

(27) 

To calculate the displacements, the velocity equations 

are integrated after each time step as follows:  

1/2

1 1

no
n n nu u u



    
(28) 

Similar equations can be employed to obtain the other 

displacement components. After computing the 

displacement field and applying the boundary 

conditions, strains and resultant stresses can be 

calculated. For the sake of brevity, the DR algorithm 

which clearly explained in [31, 41] is omitted.  

 

 

4. NUMERICAL RESULTS AND DISCUSSIONS 

 

4. 1. Comparison Study     To demonstrate the 

efficiency and accuracy of the present solution, some 

illustrative examples were solved for linear/nonlinear 

bending of solid and annular FGM sector plates with 

different boundary conditions. 

Example 1. In this section, as a part of validation of 

our analysis, the present results for the linear behavior 

of moderately thick FG sector plates subjected to 

uniform transverse loading q  are compared with those 

obtained by Ref. [21] based on FSDT. Comparisons 

between the results of present work and those obtained 

by Aghdam et al. [21] are shown in Figure 3 for the 

dimensionless deflection 3 41000 /c oW wE h qr . Again, it 

is clear that present results are in good agreement with 

the analytical solutions obtained by Aghdam et al. [21].  
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Figure 3. Comparisons between the present work and the 

results obtained by Aghdam et al. [21] for the dimensionless 

deflection (W ) along the radial direction ( /2  ). 

 

 

Example 2. In this case, the DR solutions are compared 

with the ones reported by Fallah and Nosier [18] for the 

thermal bending response of functionally graded 

circular sector plates with simply supported boundary 

conditions. As shown in Figure 4, the obtained 

dimensionless deflections ( /w w h ) of the circular 

sector plate ( 60 , / 0.1o

o
h r   ) are in good consistency 

with those reported by Fallah and Nosier [18]. 

 
4. 2. Parametric Study       Metal/ Aluminum and 

ceramic/ Zirconia system of FGM was considered in 

which the ceramic rich top surface maintained at 300  , 

unless stated otherwise, and the metal rich bottom 

surface at 20  while the stress-free temperature is 

0 0T C
 
[30]. The results are defined in terms of the 

following dimensionless quantities 
2 2 4 2 3/ , / , / , /   o r r o c r r o cu ur h M M r E h N N r E h w w h

4 4, / o cq qr E h  which show the dimensionless radial 

displacement, radial moment, radial membrane force, 

deflection and load, respectively.  

 

 

 
Figure 4. Comparisons between the DR solutions and those 

reported by Fallah and Nosier [18] for the thermal bending 

response of FG circular sector plates ( /3  ) with simply 

supported boundary conditions. 

In the present work, a 60o  sector plate with 100or mm  

and a thickness-to-radius ratio of 0.1,0.15.02 

subjected to uniform transverse loading of 500q   and 

thermal loading 300T C   is considered, unless 

stated otherwise. The ratio of the outer-to-inner radius 

for the annular plate was assumed as / 0.4i or r  .  

Figures 5 and 6 show the vertical and radial 

displacements, respectively and radial forces and 

moments (w ,u , 
rN  and 

rM ) for clamped (CCCC) 

annular sector plate with 0.2   subjected to uniform 

mechanical loading with different material grading 

indices n.  

 

(a) 

(b) 

(c) 

(d) 

Figure 5. Effects of material grading index n on the (a) w , 

(b) u , (c) rN  and (d) rM  along the radial direction (

/2  ) of a CCCC annular sector plate. 
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(a)  

(b)  

(c)  

(d)  
Figure 6. Variations ofw  (a), (b) and u  (c), (d) along the 

radial ( /2  ) and circumferential direction ( 0.6r  ) of 

a SSS FG solid sector plate. 

 

It is notable that Figures 5 and 6 are specified for 

/2   and 0.75r  , respectively. As it is expected, 

increasing n and tendency of material properties toward 

metallic phase cause increasing of w  andu , while 

decrease of n increases
rN . Moreover, variations of 

rM  

(Figures 5(d) and 6(d)) imply that the minimum of 
rM  

occurs at the center of homogenous metallic and 

ceramic plates and the variations of 
rM  in terms of n is 

not monotonic. Obviously, maximum amount of 
rN  and 

rM  take place at the inner edge and center of the plate, 

respectively.  

The effect of nonlinearity on the maximum 

dimensionless deflection 
maxw  of the FG solid sector 

plate subjected to uniform mechanical loading with  

n=1 and   are  considered in  Figure 7  (a, b)  for 

(a)  

(b)  

Figure 7. Comparisons of ( max max /w w h ) obtained by 

linear and nonlinear analyses based on both CPT and FSDT 

for (a) CCC and (b) SSS solid FG sector plate. 

 

 

CCC and SSS boundary conditions, respectively, based 

on both CPT and FSDT. As observed for both CCC and 

SSS boundary conditions, there is a huge amount of 

differences between the linear and nonlinear results 

predicted by CPT and FSDT. 

 

 

5. CONCLUSIONS 

 
Nonlinear bending behavior of solid and annular FG 

sector plates subjected to transverse mechanical loading 

and thermal gradient along the thickness direction is 

investigated. Material properties are varied continuously 

along the plate thickness according to power-law 

distribution of the volume fraction of the constituents. 

Based on Von Karman theory for large deflection, non-

linear equilibrium formulations were obtained based on 

CPT and FSDT. The DR numerical method combined 

with the finite difference discretization technique was 

employed to solve the highly coupled nonlinear 

equilibrium equations. Effects of material gradient 

constant, thermal loading, boundary conditions and 

different ratios of thickness-to-radius were studied. It 

was seen that unlike the linear analysis, the deflections 

obtained based on CPT had the larger values compared 

to FSDT for nonlinear behavior. While, with increase of 

thickness-to-radius ratios and shear deformation effects 

the larger amount of w  was predicted by FSDT 

compared to CPT for nonlinear bending analysis of 

CCC FG sector plate.  
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 هچكيد
 

 
در ایه مقبلٍ خمص غیر خطی قطبع غفحبت تببؼی تًپر ي حلقًی کٍ در مؼرض یک ببر مکبویکی ػرضی ي گرادیبن دمبیی 

در راستبی ضخبمت قرار داروذ، بررسی ضذٌ است. خًاظ مًاد بطًر پیًستٍ در راستبی ضخبمت غفحٍ بر اسبس قبوًن 

َبی بسرگ دي دستگبٌ مؼبدلات تؼبدل غیر خطی بر -اوذ. بب استفبدٌ از رابطٍ ين کبرمه برای تغییر ضکلتًاوی تًزیغ گطتٍ

اوذ. برای حل ایه دستگبٌ مؼبدلات از َبی برضی مرتبٍ ايل ي تئًری کلاسیک استخراج گطتٍاسبس تئًری تغییر ضکل

َبی دقت پبسخ ت. بمىظًر وطبن دادن غحت يَبی رَبیی پًیب ي اختلاف محذيد مرکسی استفبدٌ ضذٌ استرکیب ريش

ای ارائٍ گطتٍ است. اثرات ضبخع تببؼی مبدٌ، ضرایط مرزی، زايیٍ قطبع، بذست آمذٌ از حل حبضر، چىذیه مطبلؼٍ مقبیسٍ

َبی برضی وسبت ضخبمت بٍ ضؼبع ي اختلاف دمبیی مًرد مطبلؼٍ قرار گرفتٍ است. َمچىیه بمىظًر بررسی اثر تغییر ضکل

َبی خطی ي غیر خطی بر اسبس َر دي تئًری برضی مرتبٍ ايل ي میت تحلیل غیر خطی بر ريی وتبیج، برخی تحلیلي اَ

 َبی مختلف ضخبمت بٍ ضؼبع ي ضرایط مرزی اوجبم ضذٌ است.کلاسیک برای وسبت
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