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ABSTRACT

In this study, nonlinear bending of solid and annular functionally graded (FG) sector plates subjected
to transverse mechanical loading and thermal gradient along the thickness direction is investigated.
Material properties are varied continuously along the plate thickness according to power-law
distribution of the volume fraction of the constituents. According to von-Karman relation for large
deflections,the two set of highly coupled nonlinear equilibrium equations are derived based on both
first order shear deformation theory (FSDT) and classical plate theory (CPT). The dynamic relaxation
(DR) method in conjunction with the finite difference discretization technique is used to solve the
nonlinear equilibrium equations. To demonstrate the efficiency and accuracy of the present solution,
some comparison studies are carried out. Effects of material grading index, boundary conditions, sector
angles, thickness-to-radius ratio and thermal gradient are studied in detail. Also, to consider the effect
of shear deformation and nonlinearity on the results, some linear and nonlinear analyses are carried out

based on both CPT and FSDT for different thickness-to-radius ratios and boundary conditions.

doi: 10.5829/idosl.ije.2016.29.06¢.17

1. INTRODUCTION

The sector plates combine light weight and high load-
carrying capacity, economy and technological
effectiveness, so they get extensive applications in all
fields of engineering such as airplane, nuclear,
aerospace and marine structures [1]. Because of the both
theoretical interest and practical importance for the
design purposes, some researchers have carried out
linear analysis of isotropic and orthotropic sector plates
[2-8]. The governing equations of sector plates
undergoing moderately large deflections are more
complicated than the governing equations of the
rectangular plates and are not amenable to closed form
or exact solutions and, finite element, finite difference
etc., are used as a necessity [9]. In spite of being well
established numerical methods, non-linear studies
pertaining to isotropic sector plates are quite limited in
extent [10-12]. Recently, the development of a new
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class of materials known as ‘‘functionally graded
materials” (FGMs) in which the material properties
change continuously in one or more directions
consistent with a specific profile became significant.
These non-homogeneous composite materials were first
established by some researchers in Japan in 1984 [13].

FGMs are mainly manufactured by depositing ceramic
layers on a metallic substrate or by high speed
centrifugal casting [14]. Some studies have been
considered static small deflection analysis of
functionally graded circular and sector plates. Nosier
and Fallah [15] reformulated the governing equations of
the first-order shear deformation plate theory for FG
circular plates into those describing the interior and
edge-zone problems. They presented analytical
solutions for axisymmetric and asymmetric bending
behavior of functionally graded circular plates under
mechanical and thermal loadings. Using a perturbation
technique in conjunction with Fourier series method,
Nosier and Fallah [16, 17] investigated the non-linear
axisymmetric and asymmetric bending behavior of FG
circular plates with various boundary conditions under
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mechanical and thermal loadings. By reformulating the
governing equations of the first-order theory into those
describing the interior and edge-zone problems of the
plate, Nosier and Fallah [18] presented closed-form
solutions for bending analysis of thermo-mechanical
loaded FG circular sector plates with simply supported
radial edges and various types of constraints for circular
edges. Jomehzadeh et al. [19], Sahraee [20], Aghdam et
al. [21] studied small deflection behavior of FG sector
plate based on first order shear deformation theory
(FSDT). Saidi et al. [22] decoupled the five highly
coupled partial differential equations of FG solid sector
plate under static loading using the boundary layer
function and obtained analytical solutions for linear
analysis of FG sector plates with various boundary
conditions. This method is previously used by Nosier
and coworkers [23, 24] for decoupling the highly
coupled npartial differential equations governing the
small deflection of circular and sectorial plates. Using
multi-term extended Kantorovich method, Mousavi and
Tahani [25] analysed small deflection behavior of
radially functionally graded (RFG) sector plates based
on FSDT. Similar linear analysis is also conducted by
Fereidoon et al. [26] for isotropic and RFG sector plates
using the EKM and CPT. Until now, the various types
of analytical solution methods have been applied for
considering the linear bending and buckling analyses of
FG plate [27-29]. Recently, authors [30-32] using the
dynamic relaxation (DR) method together with the finite
difference  discretization  technique  investigated
axisymmetric large deflection analysis of circular and
annular FG plates/disks under thermo-mechanical
loadings. However, according to the best knowledge of
the authors, no work has been reported concerned with
the large deflection thermoelastic analysis of moderately
thick solid/annular functionally graded sector plates
based on both CPT and FSDT. In the present paper, in
order to fill this gap the linear and nonlinear bending
formulation of moderately thick solid and annular FG
sector plates under thermal and mechanical loadings are
derived and solved based on both CPT and FSDT.
Along this way, to consider the shear deformation
effects, large deflection of FG sector plate has been
analyzed for different thickness-to-radius ratios based
on CPT and FSDT. The plate with various boundary
conditions (simply supported and clamped) was
subjected to uniform pressure loading and thermal
gradient through the thickness. The DR method along
with the finite difference discretization technique is
employed to solve the equilibrium equations. Finally, in
the parametric study the effects of material composition,
thickness-to-radius ratio, shear deformation, boundary
conditions and thermal gradient as well as the plate
geometry parameters on the nonlinear thermoelastic
response of the FGM plate are considered in detail.
Furthermore, some studies are carried out to consider
the effect of various parameters on the differences

between the linear and nonlinear bending behaviors of
FG sector plates based on CPT and FSDT.

2. GOVERNING EQUATIONS

Elastic solid and annular FG sector plates with the
thickness, sector angle, inner and outer radiuses of 4,

a, r; and r,, respectively, subjected to a transverse

uniform loading ¢ and thermal gradient A7 through
the thickness are considered here. The geometry,
loading and coordinate system of the solid and annular
FG sector plates are shown in Figure 1(a, b),
respectively. Based on the FSDT assumptions,
displacement field in polar coordinates can be defined
as:

U(r,0,z)=u(r,0)+ze (r,0),
V(r,0,z)=v(r,0)+zp,(r,0), (1)
W(r,0,z)=w(r,0),

where, /', Vand W are displacement fields while u,
vand w are displacement components of the mid-
surface in the r, @and zdirections, respectively.
Moreover, ¢, and ¢, are rotations of tangents with
respect to the middle surface. Substituting Equation (1)

into the von-Karman strain-displacement relations gives
the following expressions [12]:
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where, (&/,£5,£0,,€%,&5) are the membrane strains,

and (x,,k,k,) are the flexural (bending) strains,

known as the curvatures [33]. The equations are
obtained from a consideration of translational
equilibrium in r, gand zdirections and rotational
equilibrium about the r and ¢ axes.
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where, in-plane resultant forces ~,, N, and N, and

out of plane resultant forces and @, and @, can be
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defined by integrating corresponding stresses along the
thickness as:

h/2

W NN = [ (0,0,0,)dz,
b2
©.Q)=k [ (0,.0,)dz,

~h/2

(4)

In this work, according to [34-36], the shear correction
factor ks2 is taken as 5/6. Figure 2 shows the ‘force’

system used to derive the following equilibrium
equations (for more detail see [12]). Moreover, similar

to Equation (4), the resultant moments ., M, and

M g are:

r

h/2
M, M, M )= J. (0,,0,0,)zdz. (5)

~h/2

Furthermore, stress- strain relationship for FG sector
plates can be written as:
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Figure 1. The geometry and coordinate system of the, (a)
solid and (b) annular FG sector plates.
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Figure 2. The internal and external forces and moments acting
on the cross section areas of the sector plate.

where, v is the Poisson ratio and is considered to be
constant [37]. Moreover, £ is Young modulus and is
assumed to vary continuously throughout the thickness
of the plate, according to the volume fraction of the
constituent materials based on a power law function as
[38]:

E(z):(EC—Em){ZZZZ}I} +E 0

where subscripts Cand M denote ceramic and metal,
respectively, z is distance from mid-surface of the plate
along z axis (-A/2<z<h/2) and n is the volume
fraction exponent of a FGM. According to this
distribution, the bottom surface (z=-A/2) of the
functionally graded plate is pure metal, and the top
surface (z=h/2) is pure ceramic. Using (2), (4), (5)
and (6) gives the following constitutive relations:
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where the stiffness coefficients are defined as:
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(Aﬁs,Bﬁﬁ,Dﬁs)_7!/22(“‘/)(1,2,2 Ydz.

It is noticed that because of gradually varying the
composition of the constituent materials in the thickness
direction only and in-plane isotropic properties of the
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FG plate, the statements 4,=4,,.8,,=8,,,0,,=D,, are

taken to be account for the extensional, extension-
bending coupling, and bending stiffness matrices A, B,
D, respectively. The membrane forces and bending
moments induced by thermal loading per unit edge
length in Equation (8) can be computed as:
h/2
N =Ny = | f( ) (T (2)dz,
W s GEN
M, =M, :7;1[/2 - a(2)T(2)zdz,

It is notable that expressions v7=n) and m” =pm] are

considered owing to the in-plane isotropic material
properties of the FG plate. For thermal loading
problems, it is assumed that the temperature variation is
only along the thickness direction. The one-dimensional
heat transfer equation for the z-direction is given by:

[ ()dT(Z)] 0 (12)

where the thermal conductivity coefficient £(z) in

Equation (12) obeys the simple rule of mixture as
follows:

K(2)=(K. —Km)(zzzzh] +K,. (13)

Hence, it is easy to obtain the temperature function
T(z) from Equation(12) as follows [39]:

) (14)

T(2)=T,+(T - m).[ 2 w2 K(z)

K(z)

where T=7. at z=h/2and T=7, at z=-h/2. It
must be noted that 7(z) is measured from the stress
free state 7, =0°C . Substituting the resultant forces and

moments obtained from Equations (8) and (9) into
Equation (3), the five equilibrium equations are
obtained in terms of the displacement field. For the sake
of brevity, only the first equation is given as below
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In this paper, in order to consider the effect of shear
deformations on the results, the computed results based
on FSDT are compared with the ones obtained based on
CPT. Thus, the large deflection analysis of the FG
sector plate are carried out based on both FSDT and
CPT. The three equations which describe the state of
equilibrium in the presence of both in- and out-of plane
deformations within CPT are given in [11, 33]:

It is clear that the main differences between FSDT
and CPT are originated from the definition of
displacement field of each theory. So that compared to
the displacement field based on FSDT, the rotations of
tangents with respect to the middle surface in CPT are:
¢ =—owlorand ¢, =—ow/rog. Therefore, the
radial, tangential and twisting curvatures of Equation (8)
are—(&°w jor*?), —-(1/r>)(@w/o6*)—(1/r)(@w /ér)
and —2/r)(&*w /oreo)+(2/ r*)(ow /06), respectively,
based on CPT. Now, according to the described
rotations and curvatures based on CPT, by replacing the
displacement and strain fields of CPT in Equation (8)
and the stiffness coefficients expressed in Equation (10)
which is identical for both FSDT and CPT, the
statement of the  constitutive  equations  (
N.,N,N,M,M,M,) can be written based on the

displacement field of CPT.

The equilibrium equations have to be accompanied
by a set of boundary conditions which are here all-round
clamped and simply supported. The constraints on the
displacements and stress resultants/couples at the
circumferential and radial plate edges imposed in each
case are given as follows:

(@) On the radial edges (@ =0°and & =) for
simply supported edges:

u=v=w=¢ =M, =0, (16)

for clamped edges:

u=v=w=¢ =¢,=0, 17)

(b) On the circumferential edges (r=r,and r=r ) for
simply supported edges:

u=v=w=g¢,=M, =0, (18)
for clamped edges:

u=v=w=¢ =¢,=0, (19)

For the sake of brevity, the boundary conditions of FG
sector plate based on CPT are omitted, (see [33]).

3. NUMERICAL SOLUTION OF THE SECTOR PLATE
EQUATIONS

The five non-linear equilibrium equations which show
the large deflection response of a FG sector plate under
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combined thermal and mechanical load is very complex
and is not amenable to a closed form solution. Among
the numerical solution methods like finite element,
finite difference, finite strip, relaxation, etc., the
dynamic relaxation (DR) technique [40] in conjunction
with a central finite difference discretization scheme has
been used here to solve the nonlinear differential
equations of the solid and annular FG sector plates. The
DR algorithm has been selected for solving the
governing equations of plate because of two reasons: (1)
the equations of large deflection FG sector plate have
not previously been solved by this method and also by
any other technique and (2) the authors [30-32, 41, 42]
and others [43-45] have demonstrated its effectiveness
for elastic and elasto-plastic large deflection plate
analysis. To solve the plate equations using DR method
they are transformed from a boundary value problem to
an initial value format to facilitate the integration of the
governing equations via a simple time-stepping iterative
procedure.The first stage of the transformation process
is to render the equilibrium equations ‘quasi-dynamic’
by adding damping and inertia terms to their right-hand
sides. Hence, the Equation (3) based on FSDT takes the
following form:

AN, 10N, 1 du  du

42N

+=(N,=N,)=m,—5+¢,—
o r o0 r(r 2 Ydt? Y dt

(20)

Similarly, Equation (20) can be transformed to a quasi-
dynamic equation based on CPT. The second stage of
the process is to replace the velocity and acceleration
terms introduced in Equation (20) by the following
approximate relations:

Xn%:(x"—x”*l)/c”, (21)

1

1
$n=x"2 X2y (@2)

where, X=u,v,w,p.,p, is the approximate solution

vector at the »" iteration and ¢ is the increment of
fictitious time. By substituting Equations (21) and (22)
into the right-hand side of Equations (20), the velocity
equations are obtained. For instance, the first velocity
equations of FSDT are given as follows:

n+1/2 n
° 2" oN 1 1 0N
u  =—t (m)™ —"+—(N —N())+——’9

247! " or r‘ "' r 00 .

(23)

Z—T”C;] o 1-1/2
+ u;
2+7"c!

where, mfl. [u,v,w,0,,0,] are elements of the diagonal

fictitious mass matrices M. Here, to guarantee the
numerical stability, the element of matrix M is
determined by the Gershgdrin theorem as (for more
detail see [46, 47]):

1
kf/’

N
m,>.25(z") X |kl (24)
j=1

where kij is the element of the stiffness matrix K and is
obtained by:

_0OP

K=—:.
oX

(25)

Similar relation between M and 5’ is used for

elements of diagonal fictitious damping matrices ¢ and
Ci'i. By employing the Rayleigh principle for node i at

the nth iteration, the instant critical damping factor can
be computed as follows [46]:

n~\T . n 1/2
51{12{("1‘)/’/} . (26)

(X;’)Tml’.l'.xf
Thus, different C values are introduced for each node to
obtain the form used for DR as follows [46]:
C; =¢;my, i=1..,N (27)
To calculate the displacements, the velocity equations
are integrated after each time step as follows:

° n+1/2

un+1 =un +Tn+1 u

(28)

Similar equations can be employed to obtain the other
displacement components. After computing the
displacement field and applying the boundary
conditions, strains and resultant stresses can be
calculated. For the sake of brevity, the DR algorithm
which clearly explained in [31, 41] is omitted.

4. NUMERICAL RESULTS AND DISCUSSIONS

4. 1. Comparison Study To demonstrate the
efficiency and accuracy of the present solution, some
illustrative examples were solved for linear/nonlinear
bending of solid and annular FGM sector plates with
different boundary conditions.

Example 1. In this section, as a part of validation of
our analysis, the present results for the linear behavior
of moderately thick FG sector plates subjected to
uniform transverse loading g are compared with those
obtained by Ref. [21] based on FSDT. Comparisons
between the results of present work and those obtained
by Aghdam et al. [21] are shown in Figure 3 for the

dimensionless deflection w=1000wz #* /qr}. Again, it

is clear that present results are in good agreement with
the analytical solutions obtained by Aghdam et al. [21].
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Figure 3. Comparisons between the present work and the
results obtained by Aghdam et al. [21] for the dimensionless

deflection (1 ) along the radial direction (9 =c/2).

Example 2. In this case, the DR solutions are compared
with the ones reported by Fallah and Nosier [18] for the
thermal bending response of functionally graded
circular sector plates with simply supported boundary
conditions. As shown in Figure 4, the obtained
dimensionless deflections (w=w/A) of the circular

sector plate (¢ =60°,/4/r,=0.1) are in good consistency
with those reported by Fallah and Nosier [18].

4. 2. Parametric Study Metal/ Aluminum and
ceramic/ Zirconia system of FGM was considered in
which the ceramic rich top surface maintained at 300 °C,
unless stated otherwise, and the metal rich bottom
surface at 20°C while the stress-free temperature is
T,=0°C [30]. The results are defined in terms of the
following dimensionless quantities
T =ury/h® M, =M, 12/ Ech* N, =N,rZ / Ech®,w=w/h
,g=ary /Ech* which show the dimensionless radial

displacement, radial moment, radial membrane force,
deflection and load, respectively.

0.7
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riry
Figure 4. Comparisons between the DR solutions and those
reported by Fallah and Nosier [18] for the thermal bending
response of FG circular sector plates (=7 /3) with simply
supported boundary conditions.

In the present work, a 60 sector plate with r =100mm

and a thickness-to-radius ratio of 1=0.1,0.15.02
subjected to uniform transverse loading of =500 and
thermal loading A7 =300°c is considered, unless
stated otherwise. The ratio of the outer-to-inner radius
for the annular plate was assumed as r; /1, =0.4.
Figures 5 and 6 show the vertical and radial
displacements, respectively and radial forces and
moments (w,z, §, and sz, ) for clamped (CCCC)

annular sector plate with 21=0.2 subjected to uniform
mechanical loading with different material grading
indices n.
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Figure 5. Effects of material grading index n on the (a) w,

(b) @, (c) N, and (d) M, along the radial direction (
0=« /2)ofaCCCC annular sector plate.
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Figure 6. Variations of w (a), (b) and & (c), (d) along the
radial (@=c« /2) and circumferential direction (7 =0.6) of
a SSS FG solid sector plate.

It is notable that Figures 5 and 6 are specified for
O=a /2 and r=0.75, respectively. As it is expected,
increasing n and tendency of material properties toward
metallic phase cause increasing of w andiu, while
decrease of n increases v, . Moreover, variations of 47,
(Figures 5(d) and 6(d)) imply that the minimum of sz
occurs at the center of homogenous metallic and
ceramic plates and the variations of 47 in terms of n is
not monotonic. Obviously, maximum amount of x4 _and
#, take place at the inner edge and center of the plate,
respectively.

The effect of nonlinearity on the maximum
dimensionless deflection »  of the FG solid sector

plate subjected to uniform mechanical loading with
n=land A=0.2 are considered in Figure 7 (a, b) for

25 1 n=1.0-CCC
—o— CPT-Linear
204 —o—FSDT-Linear
—a— CPT-Nonlinear
£ 15 —x—FSDT-Nonlinear

0 100 200 300 400 500

(a) qroYEch?

n=1.0-SSS
1 —o—CPT-Linear

—o—FSDT-Linear
40 1 —a—CPT-Nonlinear
- —x—FSDT-Nonlinear

0 100 200 300 400 500
(b) qro*/Ech®

Figure 7. Comparisons of (w w,___/h) obtained by

max = max
linear and nonlinear analyses based on both CPT and FSDT
for (a) CCC and (b) SSS solid FG sector plate.

CCC and SSS boundary conditions, respectively, based
on both CPT and FSDT. As observed for both CCC and
SSS boundary conditions, there is a huge amount of
differences between the linear and nonlinear results
predicted by CPT and FSDT.

5. CONCLUSIONS

Nonlinear bending behavior of solid and annular FG
sector plates subjected to transverse mechanical loading
and thermal gradient along the thickness direction is
investigated. Material properties are varied continuously
along the plate thickness according to power-law
distribution of the volume fraction of the constituents.
Based on Von Karman theory for large deflection, non-
linear equilibrium formulations were obtained based on
CPT and FSDT. The DR numerical method combined
with the finite difference discretization technique was
employed to solve the highly coupled nonlinear
equilibrium equations. Effects of material gradient
constant, thermal loading, boundary conditions and
different ratios of thickness-to-radius were studied. It
was seen that unlike the linear analysis, the deflections
obtained based on CPT had the larger values compared
to FSDT for nonlinear behavior. While, with increase of
thickness-to-radius ratios and shear deformation effects
the larger amount of w was predicted by FSDT
compared to CPT for nonlinear bending analysis of
CCC FG sector plate.
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