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A B S T R A C T  
 

 

Micro/nanocantilevers have been employed as sensors in many applications including chemical and 

biosensing. Due to their high sensitivity and potential for scalability, miniature sensing systems are in 

wide use and will likely become more prevalent in micro/nano-electromechanical systems (M-
NEMSs). This paper is mainly focused on the use of sensing systems that employ micro/nano-size 

cantilever beams for sensing gaseous molecules. Micro/nanocantilever-based gas sensing is concerned 

with determining the micro/nanocantilever resonance shift or detecting the micro/nanocantilever 
deflection due to adsorption event. This paper has considered the former approach, i.e., determining the 

resonance shift. In order to explain these changes more clearly, a micro/nanobeam has to be modeled 

by considering some micro/nanoscale parameters. A model based on classic elasticity theory 
potentially is unable to consider micro/nanoscale parameters which have considerable effects on the 

behavior of the micro/nanobeams. The effect of couple stress on the stiffness of cantilever beams 

remains an outstanding problem in the physical sciences. So in this paper, a modeling based on couple 
stress theory has been applied to explore the behavior of a micro/nanobeam due to the adsorption of 

gaseous molecules. This work has attempted to advance the field of micro/nanocantilever based gas 

sensing by shedding more light on the mechanical behavior of micro/nanocantilever. 

doi: 10.5829/idosi.ije.2016.29.06c.15 
 

 
1. INTRODUCTION1 

 

While the results of the elementary theories like the 

Euler-Bernoulli beam theory and the method of 

assumed modes do match the experimental results in 

many situations, both of these theories assume that the 

constitutive model is independent of length scale (e.g., 

Hooke's Law). It is realized that additional parameters 

are needed to relate stress and strain at the 

micro/nanoscale [1-4] and describe mechanical 

properties of micro/nanoscale structures like Young’s 

Modulus [5]. This assumption works well for macro-

scale structures, but experimentally, some structures 

show an increasing resistance to certain deformation 

modes as the length scale diminishes, a phenomenon 

neglected by formulations based on the Hooke's. 

Tortonese and Kirk introduced a static method that 

involved pressing a test beam against a reference 
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micro/nanocantilever and measuring the deflections of 

the test beam by applying the optical lever method [6]. 

The so-called uni-constant elastic theory, which was 

presented by the Paris Academy [7], is an elementary 

model based on interatomic potentials and a highly-

idealized molecular structure and deformation. Since the 

model presented in that paper does not consider the 

length scale, it has found little usage. However, it has 

provided an important starting point for the classical 

theory of elasticity. Another well-known theory is the 

nonlocal elasticity theory, which predicts that the stress 

at a point is not only a function of the strain at that point 

but also a function of the strain in a small neighborhood 

around that point. The important point in this theory is 

that a neighborhood must be defined by choosing a 

position vector from the local position that defines the 

neighborhood space [8, 9]. The general idea of the 

micro/nanostructural and micro/nanomorphic elasticity 

theories (presented by Mindlin [10] and Eringen [9], 

respectively) is that the points of the continuum 

associated with a micro/nanostructure of finite size can 
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deform macroscopically (yielding the classical elasticity 

case) as well as micro/nanostructurally (producing the 

length scale effect). The couple-stress concept (the 

theory used for the modeling in this paper) has been 

presented by Searle [11]. However, the details of this 

idea were initially described by the Cosserats. The 

Cosserat brothers introduced their couple stress theory 

in 1909, taking into account not only the local 

translational motion of a point within a material body 

but also the local rotation of that point [12], and 

presented a constitutive model which was nonlinear 

from the beginning. Some researchers tried to employ 

the strain gradient theory in their modeling, which is 

very similar to the couple stress theories. The strain 

gradient theory uses the second order deformation 

gradients but decomposes these gradients into two 

independent parts: the stretch gradient tensor and the 

rotation gradient tensor [13, 14]. Recently, some 

researchers have applied the non-classic theories of 

elasticity to study the mechanical behavior of 

electrostatically actuated micro/ nano-beams [15-18]. 

Rezazadeh et al. [19-21] have studied the application of 

piezoelectric layers and also the effect of length scale 

parameter in electrostatic MEMS actuators. Alashti and 

Abolghasemi [22] investigated a formula for a Euler- 

Bernoulli beam based on a new model of couple stress 

theory. Noori and Jomehzadeh [23] used the modified 

couple stress theory to study vibration analysis of 

functionally graded rectangular micro-plates. 

In this paper, the behavior of a micro/nano-beam 

under electrostatic actuation is modeled by considering 

the couple stress theory and then the sensory behavior 

of the micro/nanocantilever due to the adsorption of an 

investigated analyte. This paper has been organized as 

follows. Section 2 describes in detail the sensory 

mechanism proposed in this paper and mathematical 

modeling for the attempted problem is formulated in 

this section. The mathematical modeling has been 

separated to four subsections to improve readability of 

the paper. A numerical method to solve the proposed 

mathematical model is presented in Section 3. Some 

benchmark problems adopted from the literature are 

solved in Section 4 to compare the performance of the 

proposed numerical method against the existing 

approaches in the literature. This section is followed by 

the results of our modeling. Finally, the concluding 

remarks are presented in Section 5. 
 

 

2. MATHEMATICAL MODEL 
 

2. 1. Model Description        The model consists of a 

deformable micro/nanocantilever as an electrode and 

another plate as a stationary base of a micro/nano-

capacitor subjected to a voltage (see Figure 1). The 

length, thickness, width, surface area, cross-sectional 

moment of inertia, density and Young’s modulus of the 

micro/nanocantilever are represented by L, h, b, A, I, ρ, 

and E, respectively. The surface of the 

micro/nanocantilever is coated with a layer which is 

sensitive to a specific gas (this will be explained in 

Section 2.3).When the micro/nanocantilever interacts 

with a gas sample from the environment, a layer-gas 

molecule complex forms and leads to a change in 

resonance frequency. On the other hand, the capacitive 

method [24] is based on the notion that the capacitance 

of a plane capacitor changes when a cantilever deflects 

due to the adsorption of gas molecules. 

 

2. 2. Capacitive Force       Finding the force between 

the plates of a standard flat capacitor by ignoring the 

boundary effects, yields the results as a function of 

constant charge Q, for an isolated capacitor, and as a 

function of constant voltage V, for a capacitor 

connected to an ideal voltage generator. In this paper, 

the term “capacitive force” refers to the electrostatic 

force generated when a voltage is applied between the 

plates (deformable cantilever and stationary plate) of a 

capacitor. The electrostatic pressure is calculated as 

follows. If A is the surface area of the plates, the surface 

charge density (on the inner surfaces) will be ±σq= ±Q/A 

and the uniform field (E*) inside the capacitor will be 

E*=σ/ε0. Then the electrostatic pressure can be obtained 

as:  
2

0

1
*

2 2
P E





   (1) 

Since the electrostatic pressure is normal to the charged 

inner surfaces, force Fc is an attractive force and is 

given as a function of Q by: 

 
2 2

0 02 2
c

Q A Q
F PA A

A 
    (2) 

Written as a function of Q, Fc is independent of the 

distance d between the plates. It is necessary to have 

this force in terms of distance d. So, Q is replaced by V 

via Q = CV, where C = ε0A/d. Thus: 

 
2 2

0

2

02 2
c

CV V A
F

A d




   (3) 

In this equation, 12 2 1 2

0 8.854 10 C N m      is the 

permittivity of vacuum within a gap and V is the applied 

electrostatic voltage. 

 

 

Figure 1. The deflection induced in a micro/nano-capacitor by 

the adsorbed gas molecules 
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2. 3. Adsorption Process Modeling        By coating 

the surfaces of a micro/nanocantilever with an 

appropriate layer to which an analyte could be attracted, 

the existing analyte in the surrounding environment 

would form a bond with that layer. For example, if the 

surfaces of a micro/nanocantilever are coated (using an 

electron beam evaporator, for example) with a layer of 

gold (which is attractable to thiol), a gold-thiolate bond 

would form upon the adsorption of thiol. 

If the adsorption surface area of a layer for an 

analyte (which is known for some analyte-layers; for 

example, thiol is known to self-assemble on gold 

surfaces forming a dense, closely packed monolayer, 

and taking up 0.21 nm
2 

of surface area per molecule 

[25-27]) is Aadsorption, the number of molecules that could 

be adsorbed on that layer can be calculated as:  

Layer

Molecules

Adsorption

A
N

A


 
(4) 

where ALayer is the surface area of the layer that could be 

exposed to an analyte and adsorb its molecules. 

Knowing the surface area of the layer and the molecular 

weight of the molecules bonded with it, the adsorbed 

mass of a perfect monolayer is determined from: 

LayerMolar

added Molecular Molecules

Avogadro Adsorption

AM
m M N

N A
   

 
(5) 

where MMolecular, MMolar and NAvogadro are the mass of one 

molecule, the molar mass of the analyte and the 

Avogadro’s number, respectively. 

 

2. 4. Mechanical Modeling Considering Couple 
Stress Effect         In order to investigate the 

mechanical behavior of a micro/nanocantilever due to 

the electrostatic force and the presence of gas 

molecules, the Euler-Bernoulli assumptions are used. 

The governing differential equation for the deflection of 

the cantilever is fully described in this section. 

A schematic representation of the proposed 

structures is shown in Figure 2. The upper beam is a 

cantilever. The structure is electrostatically actuated 

over an initial ideally-uniform gap that changes to a 

position-dependent gap d by increasing the DC bias 

voltage between the fixed-ground conductor and the 

conducting deformable structure with an ideally-fixed 

end. When a voltage is applied between the upper and 

lower electrodes, the upper deformable beam is pulled 

down due to the electrostatic force. The static pull-in 

voltage is determined by coupling the mechanics to a 

nonlinear voltage dependent electrostatic pressure term 

and finding the lowest voltage at which the system is 

unstable.  

Two-dimensional Euler-Bernoulli beam bending 

theory is employed here to model the mechanics of the 

assumed structure. This theory considers the following  

 
Figure 2. An electrostatically-actuated micro/nanocantilever

 
 

 

assumptions (these assumptions are valid for typical 

vertically-actuated MEMS geometries which have large 

in-plane dimensions relative to their thicknesses and 

gaps): 

 Small deflections for which the radius of curvature 

equals the inverse of the second derivative of 

deflection,  

 No shear deformation due to transverse loading, 

 No in-plane (longitudinal, width-wise or radial) 

curvature adjustments due to the transverse (vertical) 

extension or contraction of the thickness resulting 

from a transverse (vertical) load, 

 The anticlastic curvature along a beam’s width (b) is 

geometrically insignificant, but the plate-like 

changes in stiffness, as w increases, can be modeled 

by adjusting the effective modulus, 

 The supports are ideally fixed and 

 A uniform initial gap of go exists in the unloaded 

state. 

Now, it is time to introduce the governing equation 

for the beam illustrated in Figure 2, by considering the 

couple stress effects. Considering the coordinate system 

(x, z) shown in Figure 2, the x-axis coincides with the 

centroidal axis of the undeformed beam and the z-axis is 

the axis of symmetry. In the linear couple stress theory, 

the strain energy of a deformed body is assumed to 

depend on strain ε and rotation gradient κ, so that the 

associated stress includes the symmetric Cauchy stress 

tensor σ and the deviatoric couple stress tensor µ [3]. 

Consequently, the strain energy Es in a deformed 

isotropic linearly elastic material occupying region V is 

expressed as: 

1
( : : )

2
s

V
E dv       (6) 

In addition, the kinetic energy of a body in motion is 

obtained as follows: 

1
.

2
k

V

E dv  u u  (7) 
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where u  is the velocity vector. The constitutive 

equations of the theory are derived by considering the 

following expression for the strain energy density es 

[28]: 

2( trε ) : :
1

ε ε 2 2
2

: T

se       κ κ κ κ
 

(8) 

where λ and µ are two Lame’s constants of the classical 

elasticity, whereas η and η’ are two non-classical Lame-

type material constants which introduce the couple 

stress effects. Equation (8) leads to the following 

constitutive equations: 

   : 2se
 


  


I  


 

4 4 Tse
 


  


μ κ κ

κ  

(9) 

The displacement components of a Euler-Bernoulli 

beam, disregarding the mid-point displacement in the x 

direction, can be expressed as [29]:  

,  0,   ( , )
w

u z v w w x t
x


   

  
(10) 

where u, v and w are the x, y and z components of the 

displacement vector, respectively. In view of Equation 

(10), the components of the symmetric strain tensor for 

the plane strain conditions are as follows: 

2

2xx

u w
z

x x


 
  
   

(11)  Plane strain: 

2

2
0, ,  0

(1 )
yy zz xy yz zx

w
z

x


    




    

 
 

where ν is the Poisson’s ratio of the cantilever material. 

The components of the rotation vector can be written as: 

,   0y x z

w

x
  


   

  
(12) 

Now, the components of the asymmetric rotation-

gradient tensor are found as: 

2

2xy

w

x



 


 

0xx yy zz yx xz zx zy yz              
 

(13) 

By substituting Equation (11) and Equation (13) into 

Equation (9) the following relation is obtained for strain 

energy density in plane strain conditions: 

22 2

2

1
2

2
s

u w
e E

x x

   

    
    

 
(14) 

E is the elastic modulus of the material in plane strain 

conditions, and can be obtained from: 

2 2

2

1 2
2 1

1 11

E
GE

 


 

    
              

 (15) 

where G is the shear modulus of the material. 

Considering Equation (14), if the width of a beam (b) is 

equal to or greater than five times of its thickness (h), 

i.e.,b≥5h, the plain strain condition will be satisfied (the 

beam in this situation will be called a wide beam) 

and 21E E   ; but if b< 5h then E E . As indicated 

by Equation (14), the strain energy in the considered 

beam model does not depend on η’, and only one non-

classical material constant appears in this model, which 

is defined as [3]: 

2Gl 
 

(16) 

where l is the material length scale parameter [28-30]. 

 

2. 5. Universal Model          Considering the mentioned 

equations in Sections 2. 2, 2. 3 and 2. 4, and applying 

the Hamilton principle, the following governing 

vibration equation is obtained for the cantilever: 

    *
4 2

2

4 2
4 added c

w w
EI GAl A

x
m F

t


 
   

   
(17) 

with the following boundary conditions: 

0
w

w
x


 


at 0x   

and  

2 3

2 3
0

w w

x x

 
 

 
at x L  

(18) 

In Equation (17), F*c and madded are the electrostatic 

force and the added mass, which are respectively 

calculated by Equation (3) and Equation (5) divided by 

L (the length of the beam) to make the equation 

dimensionally compatible, and d is the total distance 

between the capacitor plates. Because of the 

electrostatic force generated by the applied voltage and 

the deflection of the upper beam towards the lower 

stationary beam, the total distance between the beams 

will be d=g0-w; where, g0 is the initial gap between the 

beams. So the F*c and madded values will be updated as: 

2

* 0

2

0

   
2( )

c

bV
F

g w




 ,

Molecular Molecules

added

M N
m

L


  (19) 

Equation (17) can be converted into a non-dimensional 

form, for convenience.  
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So, the transverse displacement, w, and the spatial 

coordinate, x, are respectively normalized by the 

characteristic lengths of the system, i.e., the initial gap 

size and beam length, according to:
0ŵ w g and 

x̂ x L . Time t in the non-dimensional form is 

expressed as: *t̂ t t where * 4 1/ 2( / )t bhL EI  is the 

classical characteristic fundamental period of the 

system. By substituting these parameters into Equation 

(17), the following non-dimensional equation is 

obtained: 

 
4 2

4

2

22

ˆ ˆ

ˆ
(1 ) 1

ˆ ˆ(1 )

w Vw

x wt





 
 


 

 
 

2

2

48 l

Eh


  , 

addedm

A



 ,

4

0

3 3

0

6 L

Eh g


 

 

(20) 

 
 
3. NUMERICAL SOLUTION 
 
In the numerical solution, it is assumed that a DC 

voltage, Vs, deflects the micro/nanocantilever and then 

the dynamic motions of the system are analyzed by 

considering these conditions. Thus, the total deflection 

of the micro/nanocantilever consists of the following 

two parts: 

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( , )s dw x t w x w x t   (21) 

ˆ ˆ( )sw x  is the static deflection of the cantilever and 

ˆˆ ˆ( , )dw x t is the dynamic deflection about the ˆ ˆ( )sw x . For 

getting the pull-in voltage of the system, the cantilever’s 

static deflection should be calculated, and then Equation 

(17) should be used to obtain the frequency response. 

 

 

3. 1. Static Deflection        The static equation can be 

derived by removing the time-dependent term from the 

dynamic equation of motion (Equation (20)) as follows: 

4

4

2

2

ˆ
(

ˆ(1 )
1 )

ˆ
s

s

s

x

Vw

w





 


 (22) 

Due to the nonlinearity of the derived static equation, 

direct application of either the Galerkin method or the 

finite difference method will produce a set of nonlinear 

algebraic equations. To avoid this problem, the step-by-

step linearization method (SSLM) [31] is applied 

followed by the Galerkin method to linearize and solve 

the obtained linear set of algebraic equations. For using 

the SSLM, it is assumed that ˆ k

sw  is the displacement of 

the beam due to the applied voltage
kV . It is supposed 

that ˆ kw  is the non-dimensional displacement of the 

micro/nanostructure when subjected to 
kV . Then, with 

a small increase in the voltage, the deflection of the 

(k+1)
th 

step can be obtained as: 

1k kV V V    & 1ˆ ˆ ˆ ˆk k kw w w w     
 

(23) 

where V is the voltage change between two successive 

steps. By considering a small V value,  will be small 

enough so that the first term of the Taylor expansion in 

each step could be used instead of the whole main 

excitation function. The equation for the k
th

 step is: 

4 2

4 2

ˆ ( )
(1 )

ˆ ˆ(1 )

k

k

k

d w V

dx w


 

  
(24) 

and for the (k+1)
th

 step we have: 

4 1 2

4 1 2

1

ˆ ( )
(1 )

ˆ ˆ(1 )

k

k

k

d w V

dx w










 
  

(25) 

Based on the calculus of variation theory, and using the 

Taylor’s expansion series, the second part of Equation 

(25) can be written as: 

1 2

1 2

2 2 2

2 2 3

( )

ˆ( 1 )

( ) 2 ( ) 2 ( )

ˆ ˆ ˆ(1 ) (1 ) (1 )

k

k

k k k

k k k

V

w

V V V
V

w w w



  
 








 
  

 
(26) 

By substituting Equation (26) into Equation (25) and 

then subtracting Equation (25) from Equation (24) and 

considering Equation (23) we get: 

4 2

4 3 2

2 ( ) 2
(1 )

ˆ ˆ ˆ(1 ) (1 )

k k

k k

d V V
V

dx w w

  
  

 
   

    
(27) 

Now, the obtained linear differential equation can be 

solved by the Galerkin method. Based on the function 

space, ˆ  ( )x  may be expressed as:  

   
1

ˆ ˆ
j j

j

x a x 




  (28) 

ˆ( )j x is the j
th

 shape function which satisfies the given 

boundary conditions. In this paper, the shape functions 

are selected as the linear undamped natural mode shapes 

of the beam. The unknown ˆ  ( )x  is approximated by 

truncating the summation series to a finite number, n: 

   
1

ˆ ˆ
n

n j j

j

x a x 


  (29) 

By substituting Equation (29) into Equation (27), 

multiplying the resulting equation by ˆ( )j x (a weight 

function in the Galerkin method) and integrating the 

outcome from ˆ 0x   to 1 a set of linear algebraic 

equations is generated as: 
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1

      ,      1, ,
n

ij j i

j

K a F i n


    (30) 

where: 

 

 

2
1

3

0

(1 ) 2
ˆ1

ˆ

k

i j
k

s

iv

ij j

w
K

V
xd    

 
  
 
 

  

 

1

2

0

ˆ2
ˆ1

k

i
k

s

iF x
V

dV d
w

 
 
 
 
 

  

(31) 

In Equation (31), Kij represents the stiffness of the 

micro/nanocantilever.  

 

3. 2. Dynamic Deflection      The dynamic loading 

response could be obtained by using a Galerkin-based 

reduced order model. The procedure is the same as that 

for static deflection. However, here, the time dependent 

term should be considered as well. In addition, the 

voltage in this mode of deflection will be 

0 sin( )sV V V t   . First, a static voltage (Vs) is 

applied, then, by applying a harmonic voltage 

(
0 sin( )V t ) with frequency , the beam is forced to 

oscillate at the frequency of the applied force. Since in 

this model, the applied AC voltage is much smaller than 

the DC voltage ( ),AC DCV V by linearizing Equation 

(20) in terms of the calculated ˆ ˆ( )sw x , the small linear 

vibrations could be obtained by the following equation: 

4 2

4 2

2 2

2 2 3

ˆ ˆ ˆ( )
(1 ) (1 )

ˆˆ

ˆ2 2
ˆ ˆ ˆ(1 ) (1 ) (1 )

s d d

s s s

s s s

w w w

x t

V V V
V w

w w w

 

    

  
   

 

 
  

 
  (32)  

here,
0 sin( )V V t   and ˆ ˆ

dw w  . By subtracting 

Equation (22) from Equation (32), the linearized 

equation of motion about the equilibrium position can 

be obtained as: 

4 2 2

4 2 3

0

2

ˆ ˆ 2
ˆ(1 ) (1 )

ˆˆ ˆ(1 )

2 sin( )

ˆ(1 )

d d s

d

s

s

s

w w V
w

x t w

V V t

w


 



 
   

  






    (33)  

To achieve a reduced order model,  ˆ ˆ ,ˆw x t may be 

approximated as: 

   
1

ˆ ˆˆ ˆ ˆ, ( )
n

j j

j

w x t T t x


  (34) 

By substituting Equation (34) into Equation (20), 

multiplying the resulting equation by ˆ( )i x (as a weight 

function in the Galerkin method) and integrating the 

outcome from ˆ 0  to 1x  , the Galerkin-based reduced 

order model is generated as: 

1 1

ˆ ˆ sin() ( ) )(
n n

jij

j

j j i

j

iTM T Ft K t t
 

    (35) 

where M and K are the mass and mechanical stiffness 

matrices, respectively. In addition, F introduces a force 

vector. The mentioned matrices and the vector are 

expressed as: 
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1

0

2

0

2
ˆ

1

s

i i

s

V V
F dx

w





  

(36) 

Now, Equation (35) can be integrated over time by 

various integration methods such as the Runge-Kutta 

method. 

 

 

4. RESULTS AND DISCUSSION 

 

4. 1. Numerical Method Validation        For the 

validation of the numerical solution, the micro/nano-

beam investigated by Osterberg [32] with its 

geometrical properties shown in Table 1 has been 

considered and to be able to compare the result, the 

length scale parameter has been considered as zero. 

Table 1 indicates that the calculated pull-in voltage is in 

good agreement with those in the previous works. 

Figure 3 illustrates the relevant pull-in voltages obtained 

by the model proposed in this paper. 

After considering the couple stress effect, the pull-in 

voltage shifts to 18.7, 29.5 and 66.5 when l is taken as 

0.1, 0.3 and 0.8h, respectively. The couple stress effect 

is going to be discussed in detail in the following 

subsections.  
 

4. 2. Static Behavior of the Sensor       To compare a 

model included couple stress effect with the classical 

model, the physical parameters of the 

micro/nanocantilever are considered to have the 

following values: L= 100, b= 20, h= 2, d= 1 µm, ρ 

=2331 kg/m
3
 and  =0.06. 

 
TABLE 1. Pull-in voltages, VPI (V), for micro/nano-cantilevr 

with properties: 
E = 169(GPa), ν = 0.06, b = 50(μm), h = 3(μm) & d = 1(μm)  

 
VPI (proposed 

model) 

CoSolve 
simulation 

[32] 

Closedform 2D 

model [32] 

L=150  m 16.9 16.9 16.8 
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Figure 3. Pull-in voltage for an electrostatically-actuated 

fixed-fixed micro/nano-beam 

 

 
Figure 4. Pull-in voltages for the cantilever-based sensor 

 

 

 
Figure 5. Frequency responses for the classic model and the 

non-classical models with l=0.1, 0.3, 0.8 and 1.0 h 
 

 

 
Figure 6. Time-history curves for the classical model and the 

non-classical model with l=0.1h 

Figure 4 shows the effect of couple stress on sensor 

behavior in the static mode. According to this Figure, 

the pull-in voltage without considering the couple stress 

effect (i.e., in the classical model) is lower than the 

situation while couple stress is considered. It is 

observed that by increasing the length scale of the 

material, the pull-in voltage shifts to higher values. 

Figure 4 reveals that for every voltage, two physically 

possible tip deflection values exist. The regions outlined 

by dashed lines are the regions in which the cantilever is 

unstable; in the other words, if the deflection of the 

cantilever reaches these regions, the system will 

collapse and the cantilever will touch the lower plate. 

 

 

4. 3. Dynamic Behavior of the Sensor      Figure 5 

demonstrates the effect of couple stress on sensor 

behavior in the dynamic mode. It is shown in this Figure 

that, as expected, the resonance frequency without 

considering the couple stress effect (i.e., in the classical 

model) is lower than the situation while couple stress 

effect is considered. It is shown that increasing the 

length scale of the material leads to a higher resonance 

frequency. These results are in complete agreement with 

the results of the static mode analysis.  

In Figure 6, the time history curves of the free 

vibrations have been plotted for the cases which 

consider classical model (l=0) and non-classical model 

with l=0.1× h. It is evident that with consideration of the 

couple stress effect, the vibration frequency is increased 

and the vibration amplitude is reduced. 

In view of Figures 5 and 8, it is easy to see that there 

is a difference between the classical model and the case 

which considers the length scale as a design parameter. 

After realizing that the length scale parameter should be 

taken into consideration when designing 

micro/nanoscale structures, it is now time to test the 

proposed model by exposing the system to gaseous 

molecules.  

 

 

 
Figure 7. Shifting of resonance frequency due to the 

adsorption of gas molecules 
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Figure 8. Time-history cureves 

 

 

In the following section, the adsorption of gaseous 

molecules on the beam surface and its effects on the 

response and behavior of the beam will be investigated. 

To make the results easier to illustrate, the length scale 

parameter considered to be 0.1×h. 

 
4. 4. Sensing Behavior of the Cantilever    For 

investigating the sensing behavior of the proposed 

model, the surface of the cantilever is assumed to be 

coated with gold, which has a high affinity to thiol 

molecules. As mentioned in Section 2.3, thiols are 

known to self-assemble on gold surfaces, forming a 

dense, closely packed monolayer (about 0.21 nm
2
 of 

surface area per molecule [25-27]). Since the area of the 

gold surface and the molecular weight of the molecules 

bonded to it are known, the adsorbed mass of a perfect 

monolayer could be easily calculated by Equation (5) 

presented in Section 2.3. As a case study, methane thiol 

(CH4S), which is a colorless, flammable and highly 

toxic gas with a boiling point of 5.95 ºC, is considered 

here. The adsorbed mass of a perfect monolayer for this 

gas on the cantilever mentioned in Section 4.2 is 

approximately -142.1225×10 kg . It is also assumed that 

the monolayer itself will not significantly increase the 

structural stiffness of the micro/nanocantilever. 

The natural frequency shift due to the added mass of 

the adsorbed gaseous molecules (2.1225e-14 kg) is 

illustrated in Figure 7. Having these plots and 

calibrating the system, the amount of adsorbed gaseous 

molecules on a micro/nanobeam can be determined. 

According to the Figure, the resonance frequency of the 

sensor, shifts as gaseous molecules are adsorbed on the 

cantilever surface. As depicted in the figure, the 

resonance frequency shift due to the adsorption of gas 

molecules is roughly 400 Hz. 

A complete time-history diagram will indicate the 

response of a structure over time during and after the 

application of a load. Here, in Figure 8, the time-history 

of the relevant sensor before and after the adsorption of 

gaseous molecules has been plotted. As shown in this 

figure, the adsorption of gaseous molecules on the 

cantilever surface has led to a reduction in vibration 

frequency. This figure confirms the results obtained 

from the frequency response curve. 
 

 

5. CONCLUSION REMARKS 

 

As crucial devices for various gas control tasks, gas 

sensors, will continue to evolve and be in high demand 

in the future. In this regard, particularly the M-NEMS-

based gas sensors need to be further innovated. The 

sensors of this class have been developed successfully, 

mostly on empirical bases, thanks to the excellent 

sensing devices that have been fabricated in various 

groups; however, further developments seem to be 

hampered by a lack of theoretical support. This research 

has revealed the importance of length scale parameter in 

micro/nano-scale beams which are used in gas sensing 

industry. 

In this paper, the static and dynamic responses of an 

electrostatically-actuated cantilever-based sensor 

considering couple stress theory were studied. The 

responses of micro/nanocantilever due to the adsorption 

of gaseous molecules were investigated. The calculated 

static pull-in voltages were validated by the results of 

previous works. It is shown that the length scale 

parameter plays an essential role in determining the 

stiffness of the cantilever which is widely used in the 

gas sensor. Finally, the frequency response and the 

time-history behavior of the sensor are investigated with 

the new model. 

The effect of couple stress on the stiffness of 

cantilever beams remains an outstanding problem in the 

physical sciences from an experimental point of view. 

The physical parameters of the structure material (grain 

size and grain shape which can probably give a more 

realistic length scale parameter for a material) could be 

further investigated in future works. Besides, further 

investigations could be carried out to develop a theory 

that deals with the receptor function of these sensors. 
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 هچكيد
 

 
گیزود. بعلت حسبسیت ببلا،  سزگیزدار بعىًان حسگز در بسیبری اس کبربزدَبی شیمیبیی مًرد استفبدٌ قزار می میکزيتیزَبی یک

دٌ اس َبی حسگزی کٍ بب استفب اود. ایه مقبلٍ بٍ کبربزد سیستم ای را پیدا کزدٌ َبی در مقیبس کًچک کبربزد گستزدٌ سیستم

َب بب تعییه شیفت  پزداسد. ایه سیستم گیزود، می َبی گبس مًرد استفبدٌ قزار می سزگیزدار بٍ مىظًر شىبسبیی مًلکًل میکزيتیز یک

کىىد؛ در ایه مقبلٍ تعییه شیفت  َبی گبس بز ريی سطح آن کبر می فزکبوسی ي  میشان خیش میکزيتیز در اثز جذة مًلکًل

َب، میکزيتیز ببیستی بب در وظز گزفته بزخی اس  تز رفتبر ایه سیستم گزفتٍ است. بٍ مىظًر تحلیل دقیقفزکبوسی مًرد بزرسی قزار 

َبی کلاسیک، قببلیت در وظز  ی تئًری َبی بز پبیٍ پبرامتزَبیی کٍ در مقیبس میکزي تبثیز گذار َستىد، مدلسبسی شًد. مدل

بر تبثیزگذار َستىد، ودارود. اثز تىش کًپل ريی سفتی میکزيتیز پبرامتز گزفته ایه پبرامتزَب را کٍ در مقیبس میکزي ي وبوً بسی

ای بب در وظز گزفته تىش  مُمی است کٍ در کبربزد ایه وًع حسگزَب ببیستی در وظز گزفتٍ شًد. بىببزایه، در ایه مقبلٍ مدلسبسی

 ز جذة گبس مًرد مطبلعٍ قزار گزفتٍ است.ی ایه مدل در اث کًپل بزای میکزيتیز ارایٍ شدٌ است ي رفتبر میکزيتیز بز پبیٍ

doi: 10.5829/idosi.ije.2016.29.06c.15 

 

 


