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A B S T R A C T  
 

 

In recent years, some researches have been done on simultaneous monitoring of multivariate process 
mean vector and covariance matrix. However, the effect of measurement error, which exists in many 

practical applications, on the performance of these control charts is not well studied. In this paper, the 

effect of measurement error with linearly increasing variance on the performance of ELR control chart 
for simultaneous monitoring of multivariate process mean vector and covariance matrix is investigated. 

The multiple measurement approach is also extended to reduce this effect. Also, the performance of the 

proposed multiple measurement approach is evaluated in terms of average run length (ARL) and 
standard deviation run length (SDRL). Finally, the application of the proposed monitoring method is 

illustrated by a real data in manufacturing industry. 

 

doi: 10.5829/idosi.ije.2016.29.04a.10 
 

 
1. INTRODUCTION1 

 

The control charts in the literature for monitoring the 

process mean and variability are usually developed 

separately assuming that the other parameter is in 

control. In practice, the control charts for monitoring 

both process mean and variability should be 

implemented together because assignable causes can 

affect both of them. In recent years, quality practitioners 

are interested in joint monitoring problem of process 

mean and dispersion in both univaraite and multivariate 

cases. Simultaneous monitoring of the process mean 

and process variability in univariate cases was studied 

by Khoo et al. [1], Guh [2], Memar and Niaki [3], Teh 

et al. [4], Tasias and Nenes [5], Sheu et al. [6] and 

Chowdhury et al. [7]. The simultaneous monitoring of 

multivariate process mean vector and covariance matrix 

has been also addressed by several authors such as 

Khoo [8], Hawkins and Maboudou-Tchao [9], Niaki and 

Memar [10], Zhang et al. [11], Ramoset al. [12], Wang 

et al. [13] and Maleki and Amiri [14]. For detailed 

                                                           

1 *Corresponding Author’s Email: amiri@shahed.ac.ir (A. Amiri) 

information on simultaneous monitoring of the process 

location and dispersion refer to review paper provided 

by McCracken and Chakraborti [15]. 

In real production systems, process practitioners are 

faced with the error which is due to the measuring 

equipment called measurement error. Once the samples 

are taken from a process, the presence of measurement 

error in data collection is an inevitable issue because the 

measuring instruments are not entirely accurate. 

Recently, the effect of measurement error on control 

charts has been analyzed by several researchers such as 

Linna et al. [16], Huwang and Hung [17], Maravelakis 

[18], Chakraborty and Khurshid [19], Chakraborty and 

Khurshid [20], Ding and Zeng [21], Hu et al. [22], Haq 

et al. [23], Noorossana and Zerehsaz [24] and Abbasi 

[25]. 

In most researches in the literature, the variance of 

measurement error is considered as constant values. 

However, in many practical situations in industry, the 

variance of the measurement error component depends 

on the mean level of the underlying process. 

Montgomery and Runger [26] and Linna et al. [16] 

addressed some examples where the variance of 

RESEARCH 

NOTE 
 

mailto:amiri@shahed.ac.ir
mailto:amiri@shahed.ac.ir


M. R. Maleki et al. / IJE TRANSACTIONS A: Basics  Vol. 29, No. 4, (April 2016)   514-523                                             515 

 

measurement error is linearly increasing type. Recently, 

Dizabadi et al. [27] studied the effect of measurement 

error with linearly increasing variance on the 

performance of maximum exponentially weighted 

moving average and mean-squared deviation (MAX-

EWMAMS) control chart. In this paper, we consider 

another control chart called ELR control chart for 

simultaneous monitoring of mean vector and covariance 

matrix and investigate the effect of measurement error 

with linearly increasing variance on this control chart. 

In addition, we propose the use of multiple 

measurements to decrease the effect of measurement 

error. This study is done in Phase II. Also a classical 

additive covariate model is considered in order to 

describe the relationship between the measured and 

actual values of quality characteristics. The rest of this 

paper is organized as follows: in next section, first we 

discuss the classical covariate model in the case of 

multivariate quality characteristics considering the 

linearly increasing variance for the error terms. After 

that we construct a multivariate control chart in the 

presence of measurements in error for simultaneous 

monitoring of the process mean and variability. In 

Section 3, we reconstruct the control chart provided in 

Section 2 based on multiple measurements in each 

sample in order to reduce the effect of measurement 

error. In Section 4, an illustrative example is given to 

demonstrate the effect of measurement error on 

simultaneous monitoring of multivariate process mean 

and variability and the capability of multiple 

measurement approach. The application of proposed 

control chart and extended remedial approach is 

evaluated through a real data example in Section 5. 

Finally, Section 6 concludes the proposed methods and 

provides a recommendation for future study.  

2. PROBLEM DEFINITION 
 

The monitoring procedures using control charts are 

classified in two major categories including Phase I and 

Phase II. The purpose of Phase I monitoring is 

providing an analysis on the preliminary data for 

estimating the process parameters. The main purpose of 

Phase II monitoring is designing a control scheme to 

detect different out-of-control scenarios in the process 

parameters. In this paper, we focus on Phase II 

simultaneous monitoring of process mean and 

variability. 

Most previous works on simultaneous monitoring of 

the process mean and variability are focused on 

univaraite cases. However, there are many situations in 

which the overall quality of an item is determined by 

several (say p) correlated quality characteristics. 

Examples of such processes include the following: in a 

lumber manufacturing plant the quality of lumber may 

be monitored by measuring the stiffness and bending 

strength of the lumber; in a chemical industry, the 

process may be a function of temperature, pressure as 

well as viscosity; and in an automobile plant, the 

usefulness of an automobile part may depend on an 

inner diameter and outer diameter. The process is 

considered to be statistically in-control if all critical 

product quality characteristics are simultaneously in-

control [28].The notations and definitions used to 

formulate the problem are presented in Table 1.  

 

2. 1. Additive Measurement Error      In this 

section, we extend the effect of measurement error on 

the proposed control chart by Zhang et al. [11]. 

 
TABLE 1. The notations and definitions 

Notation Description 

p Number of quality characteristic 

n Sample size 

ijr
x Observation j in the subgroup i related to the original r quality characteristics 

X
μ The in-control mean vector of the original quality characteristics 

X
Σ The in-control covariance matrix of the original quality characteristics 

i
ε Additive error term for subgroup i following multivariate normal distribution with mean vector of 0 and the covariance matrix

Σ 

Σ The covariance matrix for error 

i
Y The observed value with measurement error 

β p pMatrix which contains the coefficients of the original quality characteristics in the covariate model 

α 1p  Vector of constants 

 Smoothing parameter 

i
S The ith sample covariance matrix 

c,d Known constants vector 
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Consider a p-dimensional multivariate normal process 

in which the quality of a product in  j
th

 sample of i
th

 

subgroup is expressed as follows: 

1 2 ,ijpij ij= (X ,X ,..., )XijX  (1) 

when the process is statistically in-control, let 
x

μ and
x

Σ

denote the mean vector and covariance matrix of the 

original quality characteristics, respectively. Due to the 

measurement error in real process monitoring 

applications, we cannot observe the original 

multivariate quality characteristics of interest. In this 

paper, a classical additive covariate model is used in 

order to relate the observed and original quality 

characteristics. The covariate model considered in this 

paper correspond to the  ith subgroup is given according 

to: 

,  i i iY α βX ε  (2) 

where α is a p×1 vector of intercept constants and β
 
is 

an invertible p p  matrix which contains the slope 

coefficients of the original quality characteristics in the 

covariate model. In order to simplify the model, the 

matrix β  is considered as a diagonal matrix.  In 

Equation (2), 
iε  is assumed to be a 1p   normal 

random vector which is independent form iX . Here it is 

assumed that the variance of the error component 

changes linearly with mean of  X.  As  a result, iε  
follows a normal distribution with the mean vector of 0 

and covariance matrix of εΣ ( ~ MVN
i ε
ε (0,Σ ) , where 

1 1 1

2 2 2

ε

          0                   0

    0                        0
Σ ,

                                            

   0                                  
p p p

c d

c d

c d







  
 

  
 
 
   

 (3) 

In Equation (3),  rc ’s  and rd ’s; 1,...,r p  are 

assumed to be known constants. Obviously, the 

obtained p-dimensional vector of covariates 

; 1,2,...i 
i

Y follows multivariate normal distribution 

with mean vector of 
i

α +βμ and covariance matrix of

T

X εβΣ β +Σ , i.e. ~ MVN T

i i X ε
Y (α+βμ ,βΣ β +Σ ) . 

 

2. 2. ME-ELR Control Chart   Let 

, ,..., ; 1,2,...i i1 i2 inY Y Y  represent the i
th

 sample of size 

n drawn from the process in the presence of 

measurement error. We assume that the observation 

within each vector ij
Y and between vectors of ij

Y ’s are 

independent. Let 
1

1 n

jn 

 i ijY Y

 

and 

1

1
( ) ( )

n

jn 

  i ij i ij iS Y Y Y Y

 

be the  i
th

 sample mean 

vector and sample covariance matrix, respectively. 

Simultaneous monitoring of the mean vector and 

covariance matrix is equivalent to the following 

hypothesis test [11]: 

0

1

:       and     

:       and     

H

H

  


  

y X y

y X

T

x

T

x εy

εβΣμ α +βμ Σ

μ α

β Σ

βΣβ β Σ+ μ Σ
 (4) 

The generalized likelihood ratio (GLR) statistic 

(proposed by Zhang et al. [11]) corresponding to i
th

 

subgroup in the presence of measurement error (we call 

it ME-LRi statistic) is computed as follows: 

 
1

21
- ( log( ) 1) || || ,p

i
ME LR np tr n

p
   

i i i
S S Y  (5) 

where (.)tr  is the trace operator which computes the 

sum of diagonal elements in a given square matrix, | . |  

is the matrix determinant value and  || . ||  represents the 

Euclidean distance of a given vector. It can be easily 

statistically proved that when n   then iLR

approximately follows a chi-square distribution with 

( 3) 2p p  degrees of freedom. The large value of iLR

corresponding to i
th

 sample taken, leads to rejection of 

the null hypothesis. Zhang et al. [11] used the EWMA 

procedure in construction of LR  statistic and proposed 

ELR control chart to increase the sensitivity of this 

control scheme in detecting small or moderate shifts. In 

this paper, we extend ELR control chart which is 

affected by measurement error and propose the 

multivariate ME-ELR control chart for simultaneous 

monitoring of mean vector and covariance matrix of 

multivariate normal processes. The proposed 

simultaneous multivariate monitoring scheme is 

constructed based on two EWMA-based statistics.The 

EWMA-based statistics for monitoring the mean vector 

and covariance matrix are derived based on the sample 

mean vector 
iY and the sample covariance matrix

iS

according to Equations (6) and (7), respectively: 

 1 ,   i i i-1U Y U  (6) 

 1 ,   i i i-1V VS  (7) 

where
0 XU = α+βμ ,  T

0 X ε
V βΣ β +Σ  and iS  is computed 

according to Equation (8): 

1

1
( ) ( ),

n

jn 

  i ij i ij iS Y U Y U  (8) 
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where ;0 1    denotes the smoothing parameter.In 

comparison with large values of  , using the small 

values of this parameter can improve the performance 

of the proposed control chart in detecting small and 

moderate shifts. It is usual that the smoothing parameter 

be considered in the range of [0.1,0.25] . Finally, the 

following equation is suggested for simultaneous 

monitoring of the mean vector and covariance matrix 

under measurement error with linearly increasing 

variance: (denoted as ME-ELR statistic): 

 
1

2 1 01
- log( ) 1 || || .

0 1

p
iME ELR np tr n

p

   
      
    

i i iV V U  (9) 

Note that, the term 2
i|| U ||  reflects the changes in the 

process mean whereas  
1

1
log( ) 1ptr

p
 i iV V contribute to 

the variance changes. The control chart triggers an out-

of-control signal at i
th

 sample if - iME ELR UCL . It is 

worth mentioning that UCL is set to obtain a 

predetermined in-control ARL. 

 

 

 

3. MULTIPLE MEASUREMENTS 
 

A technique suggested by Linna & Woodall [29] in 

order to decrease the measurement error effect is taking 

more than one measurement in each sampled unit. 

Taking several measurements and averaging them leads 

to a more precise measurement. Moreover, the variance 

of the measurement error component in the average of 

the multiple observations becomes smaller as the 

number of multiple measurements increases. Therefore, 

ideally, if the number of multiple measurements 

becomes infinite, the variance of the measurement error 

component will approach to zero. Although, the larger 

number of multiple measurements leads to reducing the 

effect of measurement error, however, the additional 

cost and time are needed for these observations.  

We consider the covariate model
ij i ij  Y α βX ε , for

1,2,...,i n and 1,2,...,j k . Here, for each iX ,k 

measurements are taken, where k is a positive integer.  

Note that for fixed ,i j : 

~ ( ),ij N
k

T ε
X X

Σ
Y α +βμ ,βΣ β +  (10) 

where: 

1

1
,

k

ij

l
k



  ijlY Y  (11) 

Then, for 1,2,...i   

1 1
~ ( ( ))i N

n k

T
X X εY α +βμ , βΣ β + Σ  (12) 

where 

1

1
n

i

j
n



  ijY Y . 

 

 

4. PERFORMANCE EVALUATION 

 

Run length is defined as the number of consecutive 

observations which is required to be plotted on a control 

chart until an out-of-control condition is detected. In 

this section, the capability of the proposed methodology 

in detecting different out-of-control scenarios is studied 

in terms of average run length (ARL) and standard 

deviation run length (SDRL) criteria. In this regard, 

different values for parameters  , n, p  and εΣ  under 

different shifts in the mean vector Xμ  and the 

covariance matrix XΣ  individually and simultaneously 

are considered. Consider a multivariate normal process 

with three quality characteristics where the correlation 

coefficients
12 0.2  ,

13 0.1  and
23 0.2  exist 

between the quality characteristics. Recall that 

;ij i j    represents the correlation coefficient 

between i
th

 and j
th

 quality characteristics. The random 

samples of size n=5 and the smoothing parameter of 

0.2   are used to simulate data. The in-control mean 

vector and covariance matrix are supposed to be equal 

to (4,3,2)  
xμ , and 

4 0.8 0.2

0.8 4 0.4 ,

0.2 0.4 1

 
 

  
 
 

xΣ  respectively. 

The performances of the proposed multivariate  ME-

ELR control chart in terms of ARL and SDRL for 

detecting various shift types based on 10000 simulation 

replicates are shown in Table 2. Note that in each 

column, the value of upper control limit ( )H  is set such 

that the in-control average run length (ARL0) 

approximately equals to 200. Then, we compute the out-

of-control average run length (ARL1) values.  

Table 2 contains the results of multivariate  ME- 

ELR control chart for different values of d when c=0. 

Note that when , c d 0 , multivariate ELR and ME-

ELR control charts are the same ones. Comparing the 

first column (No error) with the other one ( d 0 ) in 

Table 2, we can conclude that in the presence of 
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measurement error the performance of ELR control 

chart under various shift magnitudes decreases.  

Table 2 also shows that as the components of the 

vector d increase, the ARLs and SDRLs increase. Now, 

we assess the effect of parameter c on multivariate ME-

ELR control chart at fixed value of d=1 and summarize 

the ARLs and SDRLs in Table 3. Table 3 shows that 

components of the vector c increase, the effect of 

measurement error on detecting performance of control 

chart is getting larger. Additionally both Tables 2 and 3 

show that in the case of measurement error with linearly 

increasing variance error extra precaution is needed to 

interpret the ARLs and SDRLs. 

Table 4 represents the ARLs and SDRLs of ME-

ERL control chart under different values of parameter 
 . It is obvious that the best performance of 

multivariate ME-ELR control chart in detecting small 

shifts is obtained under 0.1  . It is also seen that 

multivariate ME-ELR control chart has the best 

performance in detecting large simultaneous shifts when 

0.4  . Generally, in order to detect small shifts, we 

select small values for parameter   while large values 

of parameter   are suitable for detecting large shifts. 

Figure 1 depicts the results of utilizing multiple 

measurements approach for different values of 

parameter K in terms of 1( )Log ARL  criterion. We see 

that as the value of parameter K increases, the effect of 

measurement error on detecting capability of 

multivariate ME-ELR control chart diminishes. Figure 2 

also illustrates the SDRL of multivariate ME-ELR 

control chart under K=1 and multiple measurements 

(K=2 and K=3). The results show that as the value of K 

increases, the SDRL of multivariate ME-ELR control 

chart decreases.  

 

 
TABLE 2. ARLs and SDRLs of multivariate ME- ELR chart under measurement error with linearly increasing variance for different 

values for components of vectord when p=3,n=5, 0.2  ,c=0, β = I ,α = 0  and IC ARL=200 

  No error d=1 d=2 d=3 

H 205.85 255.60 309.80 364.85 

δ γ ARL SDRL ARL SDRL ARL SDRL ARL SDRL 

(0.00, 0.00, 0.00) (1.00, 1.00, 1.00) 200.69 198.28 201.13 199.70 200.88 198.27 199.16 197.53 

 (1.25, 1.25, 1.25) 25.65 23.31 34.87 32.64 45.84 42.82 54.42 52.02 

 (1.50, 1.50, 1.50) 9.11 7.19 12.47 10.09 16.62 14.09 21.00 18.28 

 (1.75, 1.75, 1.75) 5.02 3.45 6.67 4.79 8.64 6.60 10.70 8.50 

(0.25, 0.25, 0.25) (1.00, 1.00, 1.00) 10.29 7.17 14.16 11.03 16.88 13.67 19.09 16.05 

 (1.25, 1.25, 1.25) 6.29 4.18 8.24 5.87 10.02 7.57 11.44 8.79 

 (1.50, 1.50, 1.50) 4.26 2.66 5.41 3.55 6.52 4.45 7.63 5.43 

 (1.75, 1.75, 1.75) 3.17 1.89 3.94 2.41 4.69 2.97 5.47 3.62 

(0.50, 0.50, 0.50) (1.00, 1.00, 1.00) 3.86 1.77 5.10 2.92 6.00 3.74 6.67 4.36 

 (1.25, 1.25, 1.25) 3.20 1.59 4.08 2.31 4.76 2.81 5.30 3.30 

 (1.50, 1.50, 1.50) 2.68 1.39 3.30 1.81 3.88 2.21 4.36 2.62 

 (1.75, 1.75, 1.75) 2.28 1.17 2.74 1.46 3.22 1.79 3.62 2.10 

(0.75, 0.75, 0.75) (1.00, 1.00, 1.00) 2.38 0.90 3.04 1.40 3.50 1.78 3.86 2.08 

 (1.25, 1.25, 1.25) 2.17 0.91 2.69 1.27 3.10 1.59 3.40 1.81 

 (1.50, 1.50, 1.50) 1.96 0.89 2.37 1.15 2.71 1.37 3.03 1.57 

 (1.75, 1.75, 1.75) 1.79 0.84 2.12 1.02 2.42 1.22 2.69 1.38 

(1.00, 1.00, 1.00) (1.00, 1.00, 1.00) 1.75 0.61 2.18 0.88 2.48 1.11 2.71 1.30 

 (1.25, 1.25, 1.25) 1.66 0.64 2.01 0.86 2.29 1.06 2.53 1.22 

 (1.50, 1.50, 1.50) 1.57 0.65 1.87 0.80 2.13 0.99 2.32 1.10 

 (1.75, 1.75, 1.75) 1.46 0.61 1.72 0.77 1.95 0.90 2.14 1.02 
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TABLE 3. ARLs and SDRLs of multivariate ME- ELR chart under measurement error with linearly increasing variance for different 

values for components of vectorc when p=3, n=5, 0.2  , d=1, β = I , α = 0  and IC ARL=200 

 No error c=0 c=1 c=2 

 205.85 255.60 272.35 289.78 

δ γ ARL SDRL ARL SDRL ARL SDRL ARL SDRL 

(0.00, 0.00, 0.00) (1.00, 1.00, 1.00) 200.69 198.28 201.13 199.70 200.88 199.48 200.12 199.69 

 (1.25, 1.25, 1.25) 25.65 23.31 34.87 32.64 37.66 33.95 40.30 37.23 

 (1.50, 1.50, 1.50) 9.11 7.19 12.47 10.09 13.29 10.94 14.63 12.31 

 (1.75, 1.75, 1.75) 5.02 3.45 6.67 4.79 7.14 5.36 7.79 5.83 

           

(0.25, 0.25, 0.25) (1.00, 1.00, 1.00) 10.29 7.17 14.16 11.03 15.68 12.51 17.50 14.44 

 (1.25, 1.25, 1.25) 6.29 4.18 8.24 5.87 9.00 6.57 9.74 7.20 

 (1.50, 1.50, 1.50) 4.26 2.66 5.41 3.55 5.86 3.94 6.29 4.31 

 (1.75, 1.75, 1.75) 3.17 1.89 3.94 2.41 4.19 2.61 4.48 2.81 

(0.50, 0.50, 0.50) (1.00, 1.00, 1.00) 3.86 1.77 5.10 2.92 5.58 3.25 6.07 3.73 

 (1.25, 1.25, 1.25) 3.20 1.59 4.08 2.31 4.41 2.53 4.83 2.89 

 (1.50, 1.50, 1.50) 2.68 1.39 3.30 1.81 3.53 1.94 3.81 2.14 

 (1.75, 1.75, 1.75) 2.28 1.17 2.74 1.46 2.91 1.58 3.08 1.69 

(0.75, 0.75, 0.75) (1.00, 1.00, 1.00) 2.38 0.90 3.04 1.40 3.28 1.56 3.54 1.73 

 (1.25, 1.25, 1.25) 2.17 0.91 2.69 1.27 2.88 1.40 3.08 1.53 

 (1.50, 1.50, 1.50) 1.96 0.89 2.37 1.15 2.52 1.21 2.68 1.34 

 (1.75, 1.75, 1.75) 1.79 0.84 2.12 1.02 2.22 1.08 2.35 1.17 

(1.00, 1.00, 1.00) (1.00, 1.00, 1.00) 1.75 0.61 2.18 0.88 2.33 0.98 2.48 1.06 

 (1.25, 1.25, 1.25) 1.66 0.64 2.01 0.86 2.15 0.92 2.29 1.02 

 (1.50, 1.50, 1.50) 1.57 0.65 1.87 0.80 1.98 0.89 2.08 0.94 

 (1.75, 1.75, 1.75) 1.46 0.61 1.72 0.77 1.83 0.84 1.91 0.88 

 

 
TABLE 4. ARLs and SDRLs of multivariate  ME- ELR chart under measurement error with linearly increasing variance for 

different values of λ when  p=3, n=5, d=1, c=1, β = I ,α = 0 and IC ARL=200 

 .λ 0 1 .λ 0 2 .λ 0 3 .λ 0 4 

H 246.45 272.35 295.15 316.57 

δ γ ARL SDRL ARL SDRL ARL SDRL ARL SDRL 

(0.00, 0.00, 0.00) (1.00, 1.00, 1.00) 200.98 196.92 200.88 199.48 200.74 200.17 199.36 197.21 

 (1.25, 1.25, 1.25) 34.01 29.92 37.66 33.95 40.87 39.10 43.67 42.00 

 (1.50, 1.50, 1.50) 12.99 9.58 13.29 10.94 14.43 12.70 15.33 14.19 

 (1.75, 1.75, 1.75) 7.40 4.79 7.14 5.36 7.32 5.85 7.61 6.46 

(0.25, 0.25, 0.25) (1.00, 1.00, 1.00) 14.24 9.81 15.68 12.51 18.00 15.66 20.67 18.97 

 (1.25, 1.25, 1.25) 8.76 5.44 9.00 6.57 9.54 7.60 10.37 8.82 

 (1.50, 1.50, 1.50) 6.08 3.54 5.86 3.94 6.00 4.37 6.16 4.83 

 (1.75, 1.75, 1.75) 4.53 2.47 4.19 2.61 4.12 2.80 4.25 3.10 

(0.50, 0.50, 0.50) (1.00, 1.00, 1.00) 5.77 2.88 5.58 3.25 5.81 3.94 6.13 4.43 

 (1.25, 1.25, 1.25) 4.70 2.31 4.41 2.53 4.40 2.78 4.55 3.12 

 (1.50, 1.50, 1.50) 3.84 1.90 3.53 1.94 3.46 2.11 3.47 2.30 

 (1.75, 1.75, 1.75) 3.19 1.52 2.91 1.58 2.85 1.69 2.78 1.79 

(0.75, 0.75, 0.75) (1.00, 1.00, 1.00) 3.54 1.49 3.28 1.56 3.19 1.67 3.25 1.89 

 (1.25, 1.25, 1.25) 3.17 1.37 2.88 1.40 2.76 1.47 2.76 1.62 

 (1.50, 1.50, 1.50) 2.79 1.20 2.52 1.21 2.41 1.28 2.36 1.34 

 (1.75, 1.75, 1.75) 2.48 1.10 2.22 1.08 2.14 1.14 2.06 1.14 

(1.00, 1.00, 1.00) (1.00, 1.00, 1.00) 2.57 0.95 2.33 0.98 2.22 1.02 2.14 1.05 

 (1.25, 1.25, 1.25) 2.40 0.93 2.15 0.92 2.03 0.95 1.98 0.99 

 (1.50, 1.50, 1.50) 2.23 0.90 1.98 0.89 1.86 0.88 1.81 0.90 

 (1.75, 1.75, 1.75) 2.04 0.86 1.83 0.84 1.72 0.82 1.65 0.83 
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Figure 1. The values of log (ARL1) for multiple measurements when K=1, K=2, K=3, n=5, c=1, d=1 and IC ARL=200 

 

 

 
Figure 2. The values of SDRL for multiple measurements when K=1, K=2, K=3, n=5, c=1, d=1 and IC ARL=200 

 

 

 
TABLE 5. Monitoring data for process making springs 
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1 
28.14 28.31 28.27 28.20 28.26 

14555.81 7 
28.24 28.32 28.31 28.36 28.41 

14549.53 
46.32 45.79 45.88 45.88 45.80 45.90 45.83 45.69 45.78 45.72 

2 
28.50 28.35 28.30 28.32 28.20 

14558.44 8 
28.23 28.36 28.34 28.31 28.33 

14545.25 
45.85 45.91 45.80 45.91 45.93 45.75 45.89 45.66 45.84 45.74 

3 
28.29 28.30 28.29 28.38 28.29 

14543.01 9 
28.25 28.39 28.31 28.35 28.32 

14542.17 
45.83 45.75 45.75 45.52 45.58 45.59 46.10 45.87 45.57 45.87 

4 
28.22 28.26 28.27 28.27 28.28 

14547.52 10 
28.31 28.28 28.31 28.36 28.32 

14542.75 
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5 
28.30 28.36 28.27 28.32 28.30 
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14536.71 
45.77 45.94 46.04 45.77 45.65 45.82 45.35 45.76 45.81 45.88 

6 
28.34 28.29 28.32 28.27 28.19 

14552.96 12 
28.17 28.22 28.28 28.12 28.35 

14507.85 
45.77 45.93 45.77 45.92 46.04 45.30 45.25 45.73 45.81 45.88 
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5. REAL DATA EXAMPLE 
 

In this section, we illustrate the application of 

multivariate ME-ELR control chart and the multiple 

measurements on each sample point using a real data 

set. Table 5 contains a bivariate data set in which 1X

and 2X are the spring inner diameter and elasticity, 

respectively.  

 

 
 

  

  
Figure 3. Comparison among multivariate ELR, ME-ELR (K=1) and ME-ELR with (K=2 and K=4) multiple measurements 

 

 

The samples in Table 5 are collected every half an hour 

from a process of making springs in a manufacture 

company [30]. According to the historical data in Phase 

I analysis, we know that: 

28.29 0.0035 0.0046
 ,  

45.85 0.0046 0.0226

   
    

   
0 0μ Σ  

The control statistics of Table 5 under four scenarios 

are depicted in Figure 3. These scenarios are: (1) ELR 

control chart (no measurement error), (2) multivariate 

ME-ELR control chart (K=1), (3) multiple 

measurements scenario when K=2, and (4) multiple 

measurement scenario when K=4. Figure 3 represents 

that the process mean vector and covariance matrix is 

simultaneously in-control under ELR control chart. 

However, measurement error with linearly increasing 

variance leads to have false alarms on 8
th

, 9
th

 and 10
th
 

samples. We can also conclude that by measuring each 

item more than one time, the false alarms are 

diminished. 

6. CONCLUSIONS AND A FUTURE RESEARCH 
 

In this paper we studied the effect of measurement error 

with linearly increasing variance on simultaneous 

monitoring of multivariate process mean vector and 

covariance matrix. Then, we proposed multiple 

measurements on each sample point in order to reduce 

the effect of measurement error. Through a simulation 

study, we showed that measurement error can adversely 

affect the detecting performance of ELR control chart in 

detecting shifts in process mean vector, covariance 

matrix individually and simultaneously. The results of 

simulation studies also showed that multiple 

measurement approach can effectively cover the 

measurement error effects. We also provided a 

sensitivity analysis on the parameters of the proposed 

control chart. Finally, we illustrated the application of 

the proposed multivariate ME-ELR control chart and 

multiple measurement approach through a real data 

from a manufacturing process. The results of real data 

example showed that measurement error can increase 
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the false alarms. Future research can investigate the 

effect of measurement error on multivariate control 

chart in multi-stage process [31, 32]. Analyzing the 

effect of measurement error on pattern recognition 

approaches [33] is also recommended for future 

researches. 
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 چكيده
 

 

َای اخیر تحقیقاتی ريی پایص َمسمان بردار میاوگیه ي ماتریس کًياریاوس در فرایىدَای ورمال چىد متغیرٌ اوجام  در سال

ضدٌ است. لیکه اثر خطای اودازٌ گیری کٍ در بسیاری از کاربردَای عملی يجًد دارد ريی عملکرد ایه وًع ومًدارَای 

گیری با ياریاوس خطی افسایطی ريی عملکرد ومًدار  ٍ اثر خطای اودازٌکىترل بٍ خًبی بررسی وطدٌ است. در ایه مقال

َای ورمال چىد متغیرٌ وطان دادٌ ضدٌ است.  برای پایص َمسمان بردار میاوگیه ي ماتریس کًياریاوس فرایىد ELRکىترل 

ابی عملکرد ريش گیری برای کاَص اثر خطا تًسعٍ دادٌ ضدٌ است. َمچىیه برای ارزی َمچىیه ريش چىد بار اودازٌ

َای  گیری از دي معیار متًسط ي اوحراف استاودارد طًل دوبالٍ استفادٌ ضدٌ است. در وُایت با استفادٌ از دادٌ چىدبار اودازٌ

 ياقعی در صىعت ساخت کاربرد ريش پیطىُادی وطان دادٌ ضدٌ است.

doi: 10.5829/idosi.ije.2016.29.04a.10 

 


