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A B S T R A C T  
 

 

In this paper, it is tried to find an approximate single layer equivalent for multi-layer graphene sheets 

based on third order non-local elasticity theory. The plates are embedded in two parameter Winkler-

Pasternak elastic foundation, and also the thermal effects are considered. A uniform transverse load is 
imposed on the plates. Applying the non-local theory of Eringen based on third order shear 

deformation theory and considering the van der Waals interaction between the layers, the governing 

equations are derived for a multi-layer graphene sheet. The governing equations for single layer 
graphene sheet are obtained by eliminating the van der Waals interaction. In this study, two different 

methods are applied to solve the governing equations. First, the results are obtained applying the 

differential quadrature method (DQM), which is a numerical method, and then a new semi-analytical 
polynomial method (SAPM) is presented. The results from DQM and SAPM are compared and it is 

concluded that the SAPM results are satisfactorily accurate in comparison with DQM. Since analyzing 

a multi-layer graphene sheet needs a time-consuming computational process, it is investigated to find 
an appropriate thickness for a single layer sheet to equalize the maximum deflections of multi-layer 

and single layer sheets. It is concluded that by considering a constant value of the van der Waal 

interaction between the layers, the maximum deflections of multi and single layer sheets are equal in a 
specific thickness of the single layer sheet. 

 

doi: 10.5829/idosi.ije.2015.28.10a.18 
 

 
1. INTRODUCTION1 

 

Nowadays, nano structures are applied widely in areas 

such as nanotubes, nanobeams and nanoplates. The 

graphene sheets are kind of nanomaterials which are 

formed in hexagonal shape by covalent bonds between 

carbon atoms. Special properties of graphene sheets 

such as high strength, low weight to area ratio, unique 

and extraordinary electrical properties attracted many 

researchers to consider this topic as their major 

activities [1-3]. The bending strength of graphene sheet 

is low, so using multi-layers of graphene sheets 

improves this weakness. In order to make multi-layers 

of graphene sheet, several single layers of graphene are 
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set on each other by weak van der Waals bond between 

the surface atoms [4]. 

There are different methods to analyze the 

nanostructures [5]. In addition to experimental methods, 

there are atomic modelling [6], combination of atomic 

modelling and continuum mechanics [7] and continuum 

mechanics [8]. Since controlling experimental and 

atomic modelling is difficult and computations are 

expensive, consequently, the continuum mechanics 

method is used by many researchers because of 

convenience in formulations and acceptable results in 

comparison with two other methods [9]. The continuum 

mechanics method is categorized in three different 

methods: 1- couple stress theory [10], 2-modified strain 

gradient theory [11], and 3-The Eringen non-local 

elasticity theory [12]. The Eringen non-local elasticity 

theory is widely used to analyze the mechanical 
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behavior of nanostructures. Eringen theory by 

considering the small scale effects, explains that the 

stress in a reference point is affected by the strains in 

whole body domain or the interactive bonds between 

the carbon atoms are not neglected and have significant 

effects on mechanical behavior in nano scales. So, using 

classical elasticity theory generates unacceptable results 

[13]. 

Pradhan [14] investigated the buckling of 

rectangular graphene sheets, considering the isotropic 

material properties and the third order shear 

deformation theory (TSDT). They showed that using 

TSDT plate theory for moderately thick plates renders 

more accurate results. Shen Shen [15] studied bending, 

vibrations and post buckling of rectangular graphene 

plates resting on elastic foundation, using classical plate 

theory by considering the nonlinear strains field in 

thermal environment. Ansari et al. [16] proposed an 

analytical solution to calculate the critical buckling load 

for a mono layered graphene sheet under uniform 

loading by use of Galerkin method. Hosseini-hashemi et 

al. [17] investigated the buckling of rectangular 

graphene plates using the Mindlin and Eringen non-

local elasticity theories. The results are compared with 

Euler-Bernoulli, CLPT and higher order shear 

deformation theories. Zhou et al. [18] studied the 

bending of bi-layer graphene sheets under transverse 

loading in thermal environment. The nonlinear strains 

field and CLP theory are used by these authors and they 

showed that the small scale effects play an important 

role in nonlinear bending analysis of graphene sheets. 

Zenkour et al. [19] investigated the thermal buckling of 

nanoplates embedded in an elastic Winkler-Pasternak 

matrix, using the sinusoidal shear deformation plate 

theory and compared the results with comparison with 

classical plate theory (CLPT ) or first order shear 

deformation theory (FSDT ) theories. Jomehzadeh and 

Saidi [20] studied the large amplitude vibrations of bi-

layer graphene sheets embedded in a nonlinear polymer 

matrix. The nonlinear bending analysis of mono layered 

sector graphene sheets embedded in an elastic matrix is 

investigated by Dastjerdi et al. [21]. They proved that 

the maximum deflection decreases as well as the 

increase of non-local parameter. Also, in that paper, the 

results for local and non-local elasticity theories are 

compared. 

In this study, it is investigated to a multi-layer 

graphene sheet with an equivalent single layer in 

thermal environment has been modelled. To study the 

small scale effects on the results, the third order non-

local theory of Eringen is applied. The material 

properties are assumed to be orthotropic. The DQM and 

a new semi-analytical polynomial method (SAPM) are 

applied to solve the governing equations. It is concluded 

that it is possible to calculate the specific thickness for a 

single layer graphene sheet, that the deflections of the 

single and the multi-layer sheets would be equal. 

Consequently, to avoid the vast computational process 

for analyzing the multi-layers, an appropriate equivalent 

single layer graphene sheet can be applied. 

 

 

2. FORMULATION 

 
A multi-layer annular/circular graphene sheet with 

thickness h, inner radius ir , outer radius or , under 

uniform transverse loading q is shown in Figure 1. In 

this paper, the third order shear deformation theory 

(TSDT) is applied to obtain the governing equations 

because the thickness must be varied for single layer 

sheet and TSDT gives more accurate results in CLPT or 

FSDT. TSDT does not have the weaknesses of the other 

theories by considering the shear stress effects through 

the thickness of the plate (weakness of the CLPT) and 

satisfying the boundary condition for shear stress at the 

surfaces of the plate (weakness of FSDT). According to 

the third-order shear deformation theory, the 

displacement field can be expressed as follow. The 

index i represents the layer number, for example i=1 

refers to the upper layer under transverse load and i=n 

the bottom layer rested on the elastic foundation (i=1, 2, 

3… n). 

3

1 2( , ) ( ) ( ) ( )Ui r z ui r z i r z i r     (1) 

 , 0Vi r z   (2) 

   ,Wi r z wi r  (3) 

 
 

 

 
Figure 1. Geometry of multi-layer annular/circular graphene 

sheet 
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Figure 2. Bi-layer graphene sheet rested on Winkler-

Pasternak elastic foundation regarding the van der Waals 

interaction between the layers 

 

 

 

 

The van der Waals interaction and elastic matrix are 

pictured in Figure 2. wk  and pk  are the Winkler and 

Pasternak stiffness coefficients of elastic foundation, 

respectively. The term  2 1ok w w  refers to the van 

der Waals interaction bonds between the layers in 

Figure 2. ok  is the van der Waals stiffness. 

In Equations (1)-(3), ui and wi are the displacement 

components of the mid-plane along the r and z 

directions, respectively. 
1i  explains the rotation 

functions of the transverse normal about circumferential 

and radial directions. Here, 2i is the only 

mathematical parameter. Considering the von-Karman 

assumptions, the strain fields are expressed as follows: 

2

31 2 1

2
r

i iui dwi
i z z T

r r r dr

 
 

   
      
    

 (4) 

31 2i iui
i z z T

r r r


 
       (5) 

2

1 23rz

dwi
i i z i

dr
      (6) 

where T   is thermal strain, in which   is thermal 

diffusivity and T  the temperature difference. The 

effects of atomic forces is significant in nano scales and 

it must be entered into the fundamental relations as 

material parameters [12, 21]. In non-local theory, the 

stress at reference point X is a function of strain field in 

every point on the sheet. Eringen presented a 

differential form of the non-local relations as follows 

[12]: 

   
22

01 : ,NL Li i C e a          
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
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 
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 
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  
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 
 
 

 

In Equation (7), a  is internal characteristic length, 

and 
0
e  is material constant which is determined by 

experiment. The parameter 
0
e a  is the nan-local 

parameter exposing the small-scale effect on the nano-

size structures. The value of the non-local parameter 

depends on boundary conditions, chirality, number of 

walls, and the nature of motions and often is taken 

between 0 to 2 nm [22]. By applying Equation (7), the 

non-local stress components can be expressed in 

cylindrical coordinates system below [12]: 

 2

2 2

4 2
NL

NL NL NL NLr
r r r

i
i i i i

r r





    



 
       

L
ri  

(8) 

 2

2 2

4 2
NL

NL NL NL NLr
r

i
i i i i

r r


  


    



 
       

Li  

(9) 

2

2 2

1 2
NL

NL NL NL Lz
rz rz rz rz

i
i i i i

r r


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

 
       

 (10) 

2  is the Laplacian operator in cylindrical coordinates 

system which is defined below: 

2
2

2

1d d

r drdr
    (11) 

The non-local stress resultant components 

, , ( , )NL NL NL

j j jNi Mi Hi j r   and ,NL NL

r rQ Y  can be 

formulated as follows: 

 2

2

( , ) ,

h
NL

NL
r rh

Mi Mi i i zdz  


 
 

(12) 

 2

2

( , , ) , ,

h
NL

NL
r r r rzh

Ni Ni Qi i i i dz   


   (13) 

22

2

h

NL NL
r rzh

Y i i z dz


   (14) 

  32

2

( , ) ,

h
NL

NL
r rh

Hi Hi i i z dz  


   (15) 

Substituting Equations (8)-(10) into Equations (12)-

(15), the local and non-local force, moment and shear 
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force components can be developed as follows: 

   
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2

1
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r

 
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 (18) 

   , , ( , )L L L

j j jNi Mi Hi j r  and ,L L

r rQi Y i  are the local 

form of stress resultants which are defined for 

orthotropic material below: 

2
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(26) 

In this study, the governing equations and also the 

boundary conditions are derived based on the principle 

of minimum total potential energy, respectively. The 

basic relations are presented as follows: 

0i Ui i        (27) 
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(31) 

U and   are the internal strain energy and potential of 

external applied forces, respectively. 

Using the variation principals, the governing 

equations of multi-layer annular/circular graphene 

sheets are obtained in cylindrical coordinates system in 

terms of local force, moment and the shear force 

resultants by substituting Equations (16)-(18) into the 

non-local form of the governing equations as follow: 
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Since the numbers are extremely small in nano 

scales, due to convenience and to avoid the digits error 

in processing, the non-dimensional terms are introduced 

as follows. After substituting these terms into the 

resultant components and then into the governing 

equations (Equations (32)-(37)), the dimensionless form 

of equations would be obtained in terms of 

displacements and rotations. 
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3. NUMERICAL SOLUTION 
 
In this study, two different methods are applied to solve 

the governing equations. First the DQM [23, 24] which 

is an accurate numerical method is used to obtain the 

results. In addition, a new semi-analytical polynomial 

method (SAPM) is presented [21]. The SAPM is based 

on the definition of polynomials. Consider a general 

ordinary differential equation as follow: 

 
 

 
 2

1 2 2
...

df r d f r
g r g r

dr dr
    

 
 

  0,    

n

n i on

d f r
g r h r r r r

dr
     

(38) 

The domain i or r r   is divided to N grid point. The 

function f(r) is defined for SAPM as follow: 

   1

1

    

N
i

i i o

i

f r a r r r r




  
 

(39) 

By substituting Equation (39) into Equation (38), the 

differential equation will be transformed to the algebraic 

equation as follow: 

       

     

2
1 1

1 2 2
1 1

1

1
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N N
i i
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Nn
i

n i i on
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d d
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dr dr

d
g r a r h r r r r

dr

 

 





   
   

   
   

 
      

 
 

 



 
(40) 

For an n order differential equation, n number of 

boundary conditions in boundary points ir  and  are 

needed. For example, for a second order differential 

equation the value of function or derivative of f(r) in 

boundaries are known (dark points in Figure 3.). 

Consequently, two algebraic equations in boundaries 

would be determined and the remaining equations can 

be derived from Equation (40) for inner grid points 

(bright points in Figure 3.). Now, there are a set of N 

algebraic equations and N unknown constant

, 1,2,..,ia i N . This method is one of the simplest 

methods for solving the differential equations. If a set of 

differential equations system is considered, the 

procedure is similar to the mentioned explanations. 
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Figure 3. The division of one directional domain for ODE 

problems 
 

 

Now, by substituting 1, ,u w   
 and 2 

 as 

polynomial functions into Equations (32)-(37), the 

differential van der Waals interaction between the layers 

is an obstacle for increase of the upper layer’s defection. 

Consequently, with increasing ok , decreases the 

maximum deflection of the upper layer. On the 

contrary, the deflection of the middle and bottom layer 

is increased. Totally, the deflection of the upper, middle 

and bottom layers converges along the rise of the van 

der Waals interaction. The final converged deflection 

for triple layer is about 25 percent less than the bi-layer 

sheet. On the other hand, the strength of the mentioned 

bi-layer sheet is increased about 25 percent by adding 

another sheet. 
The van der Waals interaction between the layers is 

an obstacle for increase of the upper layer’s defection. 

Consequently, with rise of ok , the maximum deflection 

of the upper layer decreases. On the contrary, the 

deflection of the middle and bottom layer is increased. 

Totally, the deflection of the upper, middle and bottom 

layers converges along the rise of the van der Waals 

or
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interaction. The final converged deflection for triple 

layer is about 25 percent less than the bi-layer sheet. On 

the other hand, the strength of the mentioned bi-layer 

sheet is increased about 25 percent by adding another 

sheet. Equations will be transformed to nonlinear 

algebraic equations system. In this paper, the Newton-

Raphson method is applied to solve the nonlinear set of 

algebraic equations. 

 

 

4. BOUNDARY CONDITIONS 

The boundary conditions are derived from Equations 

(27)-(31) in the category of the simply supported (S), 

clamped (C) and free edges (F). The definition for the 

boundary conditions is shown in Figure 4. 

S: 0             ,r r i ou w M H r r r      

C: 1 2 0               ,i ou w r r r       

F: 0       ,r r r r i oN Q M H r r r      

 

 

5. NUMERICAL RESULTS AND DISSCUSION 
 
A single layer graphene sheet is considered. Figure 5 

demonstrates the comparison between the maximum 

deflection of the plate due to applying SAPM and 

DQM, and also shows their rate of convergences. The 

material properties of the plate are as follows: 
12 12

7

6 o

1.06 10 Pa; 0.85 10 Pa; = =0.3

1 10 / ; 1.13GPa/nm; 1.13Pa.m

=2.02 10 ; 1000 C ; / 0.2

r r r

w p

i o

E E

q E k k

T r r

   







   

   

   

  

It is observed that the satisfactory convergence of the 

results is acquired only for number of nine grid points. 

Also, there is not any distinctive differences about 

the rate of convergence for different types of boundary 

conditions. The results of two methods are remarkably 

close to each other. Consequently, applying the SAPM 

is suggested because of considerably convenience in 

formulation, accurate results combined with high rate of 

convergence in comparison with DQM. The comparison 

between FSDT and TSDT analyses is shown in Table 1 

for various conditions. The results of TSDT are smaller 

than FSDT. There is shear stress distribution on the 

surfaces of the plate in FSDT analysis and this issue is 

one of the weaknesses of this theory. So, the results of 

TSDT analysis are more accurate in comparison with 

FSDT. According to Table 1, it is concluded that the 

TSDT and FSDT results are closer for SS types of 

boundary conditions in compare to CC. This means that 

the two theories approached for more flexible boundary 

conditions. Also, the FSDT and TSDT analysis distance 

with increase of the non-local parameter, temperature 

differences and thickness of the plate. 

 
Figure 4. Definition of the boundary conditions 

 

 

 
Figure 5. Variation of dimensionless deflection versus the 

number of grid points for DQM and SAPM domain 

 

 

The effect of increasing the non-local parameter on 

decreasing the TFR is more than that of the temperature 

differences. Also, the increase of the thickness has the 

most effects on TFR . In this study, because of 

analyzing a multi-layer graphene sheet needs the vast 

computational process, it is aimed to find an equivalent 

thickness for single layer graphene sheet, so the 

thickness is varied to model a multi-layer sheet. 

Consequently, according to the conclusions presented in 

Table 1, the TSDT analysis is applied for obtaining 

more accurate results. A bi-layer and triple layer annular 

graphene sheet is considered with SS boundary 

conditions. The variation of dimensionless deflection 

versus the van der Waals interaction between the layers 

is indicated in Figure 6 (a) bi-layer and (b) triple layer 

sheet (e0a=0.5nm) percent by adding another sheet. 

The Vander Waals interaction between the layers is 

an obstacle for increase of the upper layer’s defection. 

Consequently, with rise of , the maximum deflection 

of the upper layer decreases. On the contrary, the 

deflection of the middle and bottom layer is increased. 

Totally, the deflection of the upper, middle and bottom 

layers converges along the rise of the van der Waals 

interaction. The final converged deflection for triple 

layer is about 25 percent less than the bi-layer sheet. On 

the other hand, the strength of the mentioned bi-layer 

sheet is increased about 25 percent. 
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TABLE 1. Comparison of the dimensionless deflection 

between the FSDT and TSDT analysis for various conditions 

W*×1000 

CC 

e0a 

TSDT FSDT TFR =TSDT/FSDT 

h = 0.34 nm, α = 2.02e-6, ΔT = 1000
oC  

0 0.3332001 0.3397170 0.981 

1 0.2876501 0.2983927 0.964 

1.5 0.2477621 0.2592102 0.956 

2 0.2084938 0.2191122 0.951 

SS 

0 0.8937144 0.8961018 0.997 

1 0.6880056 0.7039360 0.977 

1.5 0.5376839 0.5548085 0.969 

2 0.4100916 0.4275798 0.959 

CC 

ΔT
oC h = 0.34 nm, α = 2.02e-6, e0a = 1 nm  

0 0.228284 0.235063 0.971 

100 0.233106 0.240153 0.970 

500 0.254582 0.262944 0.968 

1000 0.287650 0.298392 0.964 

SS 

0 0.550740 0.552993 0.996 

100 0.561810 0.565112 0.994 

500 0.611230 0.619406 0.987 

1000 0.688001 0.703936 0.977 

CC 

h*= 

h/(0.34nm) 
ΔT = 1000

oC , α = 2.02e-6, e0a = 1 nm 

1 0.287650 0.298392 0.964 

5 0.010866 0.012916 0.841 

10 0.004138 0.005302 0.781 

100 0.000340 0.000490 0.693 

SS 

1 0.688005 0.703936 0.977 

5 0.021715 0.023766 0.914 

10 0.005991 0.007030 0.852 

100 0.000348 0.000493 0.704 

 
 

 

 
(a)  

 
(b) 

Figure 6. Variation of dimensionless deflection versus the 

van der Waals interaction between the layers (a) bi-layer (b) 

triple layer sheet 

 

 

Now, it is investigated to find an equivalent 

thickness for a single layer graphene sheet in order to 

have equal maximum deflection with the bi-layer sheet. 

The van der Waals interaction between the layers is a 

constant value 45 GPa/nmok   [22]. Figures 7 (a-e) 

approximate the value for the equivalent thickness in 

various conditions such as non-local parameter, 

boundary conditions, loading, temperature differences 

(ΔT) and the value of the Winkler and Pasternak elastic 

foundation. 

According to Figure 7 (a), it is observed that the 

equivalent thickness for SS boundary conditions is 

about 1.1h  . However, 1.16h   is for CC. It is 

concluded that the more flexible boundary condition is  

smaller than the equivalent thickness ( 0 0.5nme a  ). 

The effect of small scales is studied in Figure 7 (b). It is 

seen that with increase of the non-local parameter, the 

equivalent thickness is decreased. It means that the 

equal deflections for single and bi-layer sheets will 

achieve smaller value of equivalent thickness.  

The increase of the value of elastic foundation and 

the temperature differences (ΔT), have the reduction 

effects on the equivalent thickness (Figure 7 (c, d)). 

However, according to Figure 7(e), it is observed that 

the loading does not have any effects on the equivalent 

thickness. On the other hand, the equivalent thickness 

remains unchanged with the increase of loading. 

The investigation for modelling of a triple layer 

graphene sheet with a single layer is shown in Figure 8. 

By comparing Figure 7 (b) and Figure 8, it is concluded 

that addition of a layer to the bi-layer sheet, the 

equivalent thickness increases about 11 percent for the 

value of non-local parameter . It was observed 

that the equivalent thickness is about 22 percent more 

than that of the single layer in Figure 7 (b) for bi-layer 

sheet. Consequently, it can be possible to predict the 
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behavior of a multi-layer graphene sheet according to 

this procedure for every condition. On the other hand, a 

single layer sheet can be studied instead of the multi-

layer sheet by predicting the equivalent thickness. 

 
 

 

 
 

(a)  

 

 
(b) 

 

 
(c)  

 
(d) 

 

 
(e) 

 

Figure 7. Variation of dimensionless deflection versus the 

equivalent thickness for bi-layer graphene sheet (a) different 

types of boundary conditions (b) different non-local 

parameter (c) different value of elastic foundation (d) 

different temperature difference (e) different value of 

transverse loading 

 

 

 

 
Figure 8. Variation of dimensionless deflection versus the 

equivalent thickness for triple graphene sheet (CC boundary 

conditions) 
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6. CONCLUSION 

 
In this paper, it was tried to find an equivalent single 

layer graphene sheet to model the multi-layer sheet 

considering the constant value of the van der Waals 

interaction between the layers. The plates were 

embedded in two parameter Winkler and Pasternak 

elastic matrix in thermal environment. The non-local 

theory of Eringen were applied based on the third order 

shear deformation theory of the plates (TSDT) and 

applying the nonlinear Von-Karman strain field. The 

equilibrium equations were derived for multi-layer 

graphene sheet and solved by two methods DQM and 

SAPM. The most significant conclusions can be 

categorized as follows: 

 The introduced method (SAPM) is extremely 

accurate, significantly simpler in formulations and 

coding by computer programs, and its rate of 

processing time is more than DQM. 

 The TSDT results are considerably smaller than 

that of the FSDT for high value of thicknesses of 

single layer sheet. 

 The deflection of the layers converges for multi-

layer graphene sheet with increase of the van der 

Waals interaction between the layers. 

 The equivalent thickness decreases with rise of 

small scale effects, the value of elastic foundation 

and temperature differences (ΔT). 

 The equivalent thickness remains constant with 

growing of the transverse load. 

 The deflection of a multi-layer sheet is not equal to 

a single layer with the same thicknesses. 

 It is possible to predict an equivalent thickness for 

a single layer sheet and studying the multi-layer 

sheet with the equivalent thickness instead of 

investigation of the multi-layer sheet which needs 

the time-consuming computational process. 

Some of the possible directions for future study can 

be mentioned below: 

1.  Providing the general diagrams of equivalent 

thickness for various conditions. 

2. Studying a rectangular or sector graphene sheet 

instead of the annular/circular sheet. 

3.  Modeling a multi-layer graphene sheet with a single 

layer, in vibration and buckling analysis. 
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چكيده
 

 

ه با ب یرموضعیغ تهیسیالاست یبر اساس تئور هیورق تک لا کیگرافن با  هیتلاش شده است ورق چند لا پژوهش نیدر ا

-نکلریو کیالاست هیپا یبر رو یشود. ورق مورد بررس سازی¬معادل یشکل برش رییمرتبه سوم تغ یتئور یریکار گ

گرافن بر  هیورق چند لا یعادل براتقرار گرفته است. روابط  کنواختی یتحت بار عرض یحرارت طیپسترناک و در مح

دست آمده ه ب ها¬هیلا نیواندروالس ب یرویو با در نظر گرفتن ن یمرتبه سوم برش یرموضعیغ تهیسیالاست یاساس تئور

در این تحقیق از دو روش . شوند¬یحاصل م هیورق تک لاحاکم برای واندروالس، روابط  یرویگرفتن ن دهیاست. با ناد

ه ب( DQM)یلیفرانسیمربعات د یروش عددنتایج با استفاده از  مختلف برای حل معادلات حاکم استفاده شده است. ابتدا

 سهیمقا گریکدیدو روش با دست آمده از ه ب جیشده است. نتا ارائه( SAPM) یلیتحل مهیروش ن کی سپس ودست آمده 

. باشدبرخوردار می و همگرایی مناسبی از دقت DQMتر نسبت به ¬ساده روابطبا  SAPMروش  جینتا گردیدو ملاحظه 

را صرف  یطولان اریزمان بس جهیاز حجم محاسبات گسترده برخوردار بوده و در نت ه،یچندلا های¬ورق لیتحل که از آنجا

 نهیشیب زیخ که یبطور ،است دهیضخامت معادل محاسبه گرد کی ه،یضخامت ورق تک لا رییبا تغ قیتحق نیدر ا کند،¬یم

 ها،¬هیلا نیواندروالس ب یروین نگاشتنبا ثابت اکه  دهد¬یحاصل نشان م جیبرابر هم شوند. نتا هیدو ورق چند و تک لا

 .دباشن¬یبرابر م گریکدیبا  هیورق تک لا یضخامت مشخص برا کیدر  هیچند و تک لا های¬ورق نهیشیب زیخ
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