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ABSTRACT

In this paper, it is tried to find an approximate single layer equivalent for multi-layer graphene sheets
based on third order non-local elasticity theory. The plates are embedded in two parameter Winkler-
Pasternak elastic foundation, and also the thermal effects are considered. A uniform transverse load is
imposed on the plates. Applying the non-local theory of Eringen based on third order shear
deformation theory and considering the van der Waals interaction between the layers, the governing
equations are derived for a multi-layer graphene sheet. The governing equations for single layer
graphene sheet are obtained by eliminating the van der Waals interaction. In this study, two different
methods are applied to solve the governing equations. First, the results are obtained applying the
differential quadrature method (DQM), which is a numerical method, and then a new semi-analytical
polynomial method (SAPM) is presented. The results from DQM and SAPM are compared and it is
concluded that the SAPM results are satisfactorily accurate in comparison with DQM. Since analyzing
a multi-layer graphene sheet needs a time-consuming computational process, it is investigated to find
an appropriate thickness for a single layer sheet to equalize the maximum deflections of multi-layer
and single layer sheets. It is concluded that by considering a constant value of the van der Waal
interaction between the layers, the maximum deflections of multi and single layer sheets are equal in a
specific thickness of the single layer sheet.

doi: 10.5829/idosi.ije.2015.28.10a.18

1. INTRODUCTION

set on each other by weak van der Waals bond between
the surface atoms [4].

Nowadays, nano structures are applied widely in areas
such as nanotubes, nanobeams and nanoplates. The
graphene sheets are kind of nanomaterials which are
formed in hexagonal shape by covalent bonds between
carbon atoms. Special properties of graphene sheets
such as high strength, low weight to area ratio, unique
and extraordinary electrical properties attracted many
researchers to consider this topic as their major
activities [1-3]. The bending strength of graphene sheet
is low, so using multi-layers of graphene sheets
improves this weakness. In order to make multi-layers
of graphene sheet, several single layers of graphene are
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There are different methods to analyze the
nanostructures [5]. In addition to experimental methods,
there are atomic modelling [6], combination of atomic
modelling and continuum mechanics [7] and continuum
mechanics [8]. Since controlling experimental and
atomic modelling is difficult and computations are
expensive, consequently, the continuum mechanics
method is used by many researchers because of
convenience in formulations and acceptable results in
comparison with two other methods [9]. The continuum
mechanics method is categorized in three different
methods: 1- couple stress theory [10], 2-modified strain
gradient theory [11], and 3-The Eringen non-local
elasticity theory [12]. The Eringen non-local elasticity
theory is widely used to analyze the mechanical

Please cite this article as: S. Dastjerdi, M. Jabbarzadeh, Symmetrical A Non-linear Static Equivalent Model for Multi-layer Annular/Circular
Graphene Sheet Based on Non-local Elasticity Theory Considering Third Order Shear Deformation Theory (TSDT) in Thermal Environment,
International Journal of Engineering (IJE), TRANSACTIONS A: Basics Vol. 28, No. 10, (October 2015) 1533-1542




S. Dastjerdiand M. Jabbarzadeh / IJE TRANSACTIONS A: Basics Vol. 28, No. 10, (October 2015) 1533-1542 1534

behavior of nanostructures. Eringen theory by
considering the small scale effects, explains that the
stress in a reference point is affected by the strains in
whole body domain or the interactive bonds between
the carbon atoms are not neglected and have significant
effects on mechanical behavior in nano scales. So, using
classical elasticity theory generates unacceptable results
[13].

Pradhan [14] investigated the buckling of
rectangular graphene sheets, considering the isotropic
material properties and the third order shear
deformation theory (TSDT). They showed that using
TSDT plate theory for moderately thick plates renders
more accurate results. Shen Shen [15] studied bending,
vibrations and post buckling of rectangular graphene
plates resting on elastic foundation, using classical plate
theory by considering the nonlinear strains field in
thermal environment. Ansari et al. [16] proposed an
analytical solution to calculate the critical buckling load
for a mono layered graphene sheet under uniform
loading by use of Galerkin method. Hosseini-hashemi et
al. [17] investigated the buckling of rectangular
graphene plates using the Mindlin and Eringen non-
local elasticity theories. The results are compared with
Euler-Bernoulli, CLPT and higher order shear
deformation theories. Zhou et al. [18] studied the
bending of bi-layer graphene sheets under transverse
loading in thermal environment. The nonlinear strains
field and CLP theory are used by these authors and they
showed that the small scale effects play an important
role in nonlinear bending analysis of graphene sheets.
Zenkour et al. [19] investigated the thermal buckling of
nanoplates embedded in an elastic Winkler-Pasternak
matrix, using the sinusoidal shear deformation plate
theory and compared the results with comparison with
classical plate theory (CLPT ) or first order shear
deformation theory (FSDT ) theories. Jomehzadeh and
Saidi [20] studied the large amplitude vibrations of bi-
layer graphene sheets embedded in a nonlinear polymer
matrix. The nonlinear bending analysis of mono layered
sector graphene sheets embedded in an elastic matrix is
investigated by Dastjerdi et al. [21]. They proved that
the maximum deflection decreases as well as the
increase of non-local parameter. Also, in that paper, the
results for local and non-local elasticity theories are
compared.

In this study, it is investigated to a multi-layer
graphene sheet with an equivalent single layer in
thermal environment has been modelled. To study the
small scale effects on the results, the third order non-
local theory of Eringen is applied. The material
properties are assumed to be orthotropic. The DQM and
a new semi-analytical polynomial method (SAPM) are
applied to solve the governing equations. It is concluded
that it is possible to calculate the specific thickness for a
single layer graphene sheet, that the deflections of the
single and the multi-layer sheets would be equal.

Consequently, to avoid the vast computational process
for analyzing the multi-layers, an appropriate equivalent
single layer graphene sheet can be applied.

2. FORMULATION

A multi-layer annular/circular graphene sheet with
thickness h, inner radius I;, outer radius r,, under

uniform transverse loading g is shown in Figure 1. In
this paper, the third order shear deformation theory
(TSDT) is applied to obtain the governing equations
because the thickness must be varied for single layer
sheet and TSDT gives more accurate results in CLPT or
FSDT. TSDT does not have the weaknesses of the other
theories by considering the shear stress effects through
the thickness of the plate (weakness of the CLPT) and
satisfying the boundary condition for shear stress at the
surfaces of the plate (weakness of FSDT). According to
the third-order shear deformation theory, the
displacement field can be expressed as follow. The
index i represents the layer number, for example i=1
refers to the upper layer under transverse load and i=n
the bottom layer rested on the elastic foundation (i=1, 2,
3...n).

Ui(r,z) =ui(r)+zwi,(r)+z°yi,(r) (1)
Vi(r,z)=0 O]
Wi (r,z )=wi (r) 3)

Figure 1. Geometry of multi-layer annular/circular graphene
sheet
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Figure 2. Bi-layer graphene sheet rested on Winkler-
Pasternak elastic foundation regarding the van der Waals
interaction between the layers

The van der Waals interaction and elastic matrix are
pictured in Figure 2. k, and k, are the Winkler and

Pasternak stiffness coefficients of elastic foundation,
respectively. The term k, (w,-w,) refers to the van
der Waals interaction bonds between the layers in
Figure 2. k, is the van der Waals stiffness.

In Equations (1)-(3), ui and wi are the displacement
components of the mid-plane along the r and z
directions, respectively. wi, explains the rotation
functions of the transverse normal about circumferential
and radial directions. Here, wi,is the only
mathematical parameter. Considering the von-Karman
assumptions, the strain fields are expressed as follows:

. . . . \2
gir :ai_’_z %4_23%4_1 dﬂ —oa-AT (4)
or or or 2\ dr
gi9=£+z LAINPEL S RPN § (5)
r r r
. dwi . .
o :d_+‘//|1+3zzl//|2 (6)
r

where @-AT is thermal strain, in which ¢ is thermal

diffusivity and AT the temperature difference. The
effects of atomic forces is significant in nano scales and
it must be entered into the fundamental relations as
material parameters [12, 21]. In non-local theory, the
stress at reference point X is a function of strain field in
every point on the sheet. Eringen presented a
differential form of the non-local relations as follows
[12]:

(1—,uV2)ai N —git =C N (eoa)2 0

E, VroEo 0
I-vigver  1=VipVer
c-=lo vroEo ) 0
I-vigvor  1=VipVor

0 0 G,

In Equation (7), a is internal characteristic length,

and e, is material constant which is determined by

experiment. The parameter e,a is the nan-local

parameter exposing the small-scale effect on the nano-
size structures. The value of the non-local parameter
depends on boundary conditions, chirality, number of
walls, and the nature of motions and often is taken
between 0 to 2 nm [22]. By applying Equation (7), the
non-local stress components can be expressed in
cylindrical coordinates system below [12]:

. . 4 dcily 2 . .
ciMt —y[VZUIrNL _770_ ro ——(UerL —oipt )J

: N L w2000y )
oi bt —y[VZO'Ir’;“‘ —r—zalr’;“‘ .z O(;;Z ]=O'I,|; (10)

V2 is the Laplacian operator in cylindrical coordinates
system which is defined below:

d> 1d
2oy 11
dr® rdr (
The non-local stress resultant components

= NL + NL S NL/; NL NL
Ni =, Mi -, Hi~(j=r,0) and Q)Y ™ can be
formulated as follows:

h

(Mi, Mig) "= [ (oi, 01, ) 2dz (12)
2
E NL
(Nir,Nig,Qir)NL=j2h(air,ai9,ai,z) dz (13)
-2
h
Vit =[5 ol 2 e (14)
-
E NL
(Hi, Hiy,) NL:J.ZE(Jir,Ji,g) 2%z (15)

2

Substituting Equations (8)-(10) into Equations (12)-
(15), the local and non-local force, moment and shear
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force components can be developed as follows:

(Ni,Mi,Hi)'r\”'—y(VZ(Ni,Mi,Hi):'L—riZ
O(Ni,Mi HI)- o
= o _r_z((N|,M|,HI)r (16)

~(Ni i Hi R )= (Ni M H

(Ni,Mi Hi )" —y[vz(Ni Mi, Hi ) Jrri2

a(Ni,Mi,Hi )’

= +%((Ni,Mi,Hi e a7

—(Ni,Mi,Hi)SL))z(Ni,Mi,Hi)g

(QiYi)y —H(Vz Qi) _riz(Qi Yi )EL}(Qi Yiy,  (8)

- L - L Ly L L
Ni,Mi; Hij(j =r,0)and Qi Yi  are the local

form of stress resultants which are defined for
orthotropic material below:

NIt = E.h dU|+ (dm) CaAT |+
1-v,v, | dr dr

(19)
v,,Eoh [ 'ATJ
1-v, v, T
Nit = Yesol oEoh [ dui +1 sz—a-AT +
"o l-v,v, L dr 20 dr
(20)
E,h [m AT]
1-v, v, T
. 1 . dwi .
Qit =Zenwuzh3+enh[¥+wlj 1)
3 d .
Vil =Gy h5+12c5 h? [;’Vr' t//llj @2)
Mi- = h* E dl//i2+v’gEgy/i +
" 80(1-v,, v, )\ " dr ro?
(23)
s .
h (Erdwll+va0 ‘/’h]
12(1-v, vy ) dr r
. h® dyi, E, .
Mi; = E 2+ —2yi
¢ 80(1—1/”,1/0,)(1/'9 “Tdr ' r WZ}L
(24)

h3
12(1- v,y ) (V‘H *"dr

Hi L_ h7 E d(//|2 +Vr9E9 l//|
Toa8(1-v,,v, )" dr ro?
. (25)
N h® £ dy/|1+vrgE9 vi
80(1-v,yv, )\ " dr root
. h’ dyi, E, .
Hibt = E 24 =0y
’ 448(1—vr9v9r)(vr5 Cdr o r WZ]
(26)

5
+ h vagdwll-kE—y/l
80(1-v, V4 ) dr

In this study, the governing equations and also the
boundary conditions are derived based on the principle
of minimum total potential energy, respectively. The
basic relations are presented as follows:

ATi =i +&i =0 @7)

i =ﬂ (i M S5, +0i M- Sei ) + i N i, YAV (28)
\

fy (27
&l= J.r, IO (q+kq (Wy—w,))dwrdrd @ Upper layer (29)

w[ [

(Wi —w; y)+ky (Wi —W; ))owrdrd 0

(i=2.n —1),Second layer down to the layer before the (30)
bottom layer

Ty 2/1'
éQn—J- I Wo-w,)— kwwn+kpv2wn) -

swrdrd@  Bottom layer

Uand Q are the internal strain energy and potential of
external applied forces, respectively.

Using the wvariation principals, the governing
equations of multi-layer annular/circular graphene
sheets are obtained in cylindrical coordinates system in
terms of local force, moment and the shear force
resultants by substituting Equations (16)-(18) into the
non-local form of the governing equations as follow:

sui :Ni,&,+%(Ni:—Ni;):o (32)

1
S, Q1L +7Q1rL +(l—,uV2)(q +Ko (Wy—wy)
33
Lldw, N1L dw, (33)
r dr dr

+(l—,uV2)(—ko (Wi -w;_)

+Ko (Wi, —W; )+NiF = 1 dw —LNif, aw;
r dr Todr (34)

dz‘";i]=0, i=2.n-1
dr

+N 1,

+N1- ddZWIJ =0 Upper layer
r

. 1.
W, :Ql,Lyqu?erL

+NiF
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1
S, :Qnr, +FQn,L +(l—,uv2)(ka2Wn kW,

1dw dw

—k, (W, -w, ,)+NnF =—" 4 NnF, —1

o W Wn1)+ NN 2= " dr (35)
+NandZWZn =0 Bottom layer

dr

Swi. *Mit 100 L SLo_

I//II.MI”+?(MIr ~Mij; )-Qi;f =0 (36)
5-.-L1-L_-L_-L_

I//IZ.HI”+r(HIr ng) i =0 (37)

Since the numbers are extremely small in nano
scales, due to convenience and to avoid the digits error
in processing, the non-dimensional terms are introduced
as follows. After substituting these terms into the
resultant components and then into the governing
equations (Equations (32)-(37)), the dimensionless form
of equations would be obtained in terms of
displacements and rotations.

e i =it W i iy =2
01 h! roy h! 1 1:¥2 h2
h * ,U ® q ® k I * kp

=— 4 =50 =—— 1k, =22k, =

"roﬂ rOZq E,”" E, P Eh
E G

pl=—0;p2=— 0 =1V vy

3. NUMERICAL SOLUTION

In this study, two different methods are applied to solve
the governing equations. First the DQM [23, 24] which
is an accurate numerical method is used to obtain the
results. In addition, a new semi-analytical polynomial
method (SAPM) is presented [21]. The SAPM is based
on the definition of polynomials. Consider a general
ordinary differential equation as follow:

df (r)

()™ g, ()LL)

dr?

+...+
(38)
On (r)%n(r)Jrh(r):O, r<r<r,
r
The domain r; <r <r, is divided to N grid point. The
function f(r) is defined for SAPM as follow:

f (r):NZair(i’l) n<r<r, (39)
i=1
By substituting Equation (39) into Equation (38), the

differential equation will be transformed to the algebraic
equation as follow:

gn (o . (40)
- [Zair("l) ]+h(r):0, n<r<r,
=1

+ot 0 (r)dr

For an n order differential equation, n number of
boundary conditions in boundary points r; and r, are

needed. For example, for a second order differential
equation the value of function or derivative of f(r) in
boundaries are known (dark points in Figure 3.).
Consequently, two algebraic equations in boundaries
would be determined and the remaining equations can
be derived from Equation (40) for inner grid points
(bright points in Figure 3.). Now, there are a set of N
algebraic equations and N unknown constant
g ,i =1,2,.,N . This method is one of the simplest
methods for solving the differential equations. If a set of

differential equations system is considered, the
procedure is similar to the mentioned explanations.

N
uit=>art? (41)
i=1
N -
wi= Za(i N )r(' Y (42)
i=1
N i-1
wif = a7 (43)
i=1
N i
l//i;:Za(iJrBN)r(l ) (44)
i1
—r .
r=r; r=i,
-0—0—0------—-0—0—0

Figure 3. The division of one directional domain for ODE
problems

Now, by substituting u*w*,y; and v, as
polynomial functions into Equations (32)-(37), the
differential van der Waals interaction between the layers
is an obstacle for increase of the upper layer’s defection.
Consequently, with increasingk,, decreases the

maximum deflection of the upper layer. On the
contrary, the deflection of the middle and bottom layer
is increased. Totally, the deflection of the upper, middle
and bottom layers converges along the rise of the van
der Waals interaction. The final converged deflection
for triple layer is about 25 percent less than the bi-layer
sheet. On the other hand, the strength of the mentioned
bi-layer sheet is increased about 25 percent by adding
another sheet.

The van der Waals interaction between the layers is
an obstacle for increase of the upper layer’s defection.
Consequently, with rise of k, , the maximum deflection

of the upper layer decreases. On the contrary, the
deflection of the middle and bottom layer is increased.
Totally, the deflection of the upper, middle and bottom
layers converges along the rise of the van der Waals
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interaction. The final converged deflection for triple
layer is about 25 percent less than the bi-layer sheet. On
the other hand, the strength of the mentioned bi-layer
sheet is increased about 25 percent by adding another
sheet. Equations will be transformed to nonlinear
algebraic equations system. In this paper, the Newton-
Raphson method is applied to solve the nonlinear set of
algebraic equations.

4. BOUNDARY CONDITIONS

The boundary conditions are derived from Equations
(27)-(31) in the category of the simply supported (S),
clamped (C) and free edges (F). The definition for the
boundary conditions is shown in Figure 4.

Slu:W:Mr:Hr:O r=r,r,
Clu=w=y;=y,=0 r=r.h
FIN, =Q =M, =H, =0 r=r.h

5. NUMERICAL RESULTS AND DISSCUSION

A single layer graphene sheet is considered. Figure 5
demonstrates the comparison between the maximum
deflection of the plate due to applying SAPM and
DQM, and also shows their rate of convergences. The
material properties of the plate are as follows:

E, =1.06x10"Pa;E , = 0.85x10"Pa; v, ,=v,, =0.3
q” =1x10’ 1E; K, =1.13GPa/nm;kp =1.13Pa.m

@=2.02x10"%; AT =1000 C°;r, /1, =0.2
It is observed that the satisfactory convergence of the
results is acquired only for number of nine grid points.
Also, there is not any distinctive differences about
the rate of convergence for different types of boundary
conditions. The results of two methods are remarkably
close to each other. Consequently, applying the SAPM
is suggested because of considerably convenience in
formulation, accurate results combined with high rate of
convergence in comparison with DQM. The comparison
between FSDT and TSDT analyses is shown in Table 1
for various conditions. The results of TSDT are smaller
than FSDT. There is shear stress distribution on the
surfaces of the plate in FSDT analysis and this issue is
one of the weaknesses of this theory. So, the results of
TSDT analysis are more accurate in comparison with
FSDT. According to Table 1, it is concluded that the
TSDT and FSDT results are closer for SS types of
boundary conditions in compare to CC. This means that
the two theories approached for more flexible boundary
conditions. Also, the FSDT and TSDT analysis distance
with increase of the non-local parameter, temperature
differences and thickness of the plate.

e \.070 ‘b—q (0 e o
o _p e 4 s
4 5d s

=3

Figure 4. Definition of the boundary conditions

1. s ¢ SSDQM === < CCDQM
09 - e CC SAPM s SS SAPM
08 -
0.7
0.6
05 1
0.4
03 -
0.2 1
0.1 1

0

w*x1000

0 1 2 3 45 6 7 8 9 1011 12 13 14 15
Number of Grid Points (N)

Figure 5. Variation of dimensionless deflection versus the
number of grid points for DQM and SAPM domain

The effect of increasing the non-local parameter on
decreasing the R+p is more than that of the temperature

differences. Also, the increase of the thickness has the
most effects on Rqg. In this study, because of

analyzing a multi-layer graphene sheet needs the vast
computational process, it is aimed to find an equivalent
thickness for single layer graphene sheet, so the
thickness is varied to model a multi-layer sheet.
Consequently, according to the conclusions presented in
Table 1, the TSDT analysis is applied for obtaining
more accurate results. A bi-layer and triple layer annular
graphene sheet is considered with SS boundary
conditions. The variation of dimensionless deflection
versus the van der Waals interaction between the layers
is indicated in Figure 6 (a) bi-layer and (b) triple layer
sheet (e0a=0.5nm) percent by adding another sheet.

The Vander Waals interaction between the layers is
an obstacle for increase of the upper layer’s defection.
Consequently, with rise of k, , the maximum deflection

of the upper layer decreases. On the contrary, the
deflection of the middle and bottom layer is increased.
Totally, the deflection of the upper, middle and bottom
layers converges along the rise of the van der Waals
interaction. The final converged deflection for triple
layer is about 25 percent less than the bi-layer sheet. On
the other hand, the strength of the mentioned bi-layer
sheet is increased about 25 percent.
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TABLE 1. Comparison of the dimensionless deflection
between the FSDT and TSDT analysis for various conditions

W+x1000
TSDT FSDT Ryp=TSDT/FSDT
ela
h = 0.34 nm, o = 2.02e-6, AT = 1000 C°
cc 0 0.3332001  0.3397170 0.981
1 0.2876501  0.2983927 0.964
15 0.2477621  0.2592102 0.956
2 0.2084938  0.2191122 0.951
0 0.8937144  0.8961018 0.997
1 0.6880056  0.7039360 0.977
58 15 0.5376839  0.5548085 0.969
2 0.4100916  0.4275798 0.959
AT C° h =0.34 nm, 0. = 2.02¢-6, e0a =1 nm
0 0.228284  0.235063 0.971
cc 100 0.233106  0.240153 0.970
500 0.254582  0.262944 0.968
1000 0.287650  0.298392 0.964
0 0550740  0.552993 0.996
100 0561810  0.565112 0.994
58 500 0.611230  0.619406 0.987
1000 0.688001  0.703936 0.977
hx*=
h/(0.34nm) AT =1000C°, @ =2.02¢-6, €0a = 1 nm
1 0.287650  0.298392 0.964
cc 5 0.010866  0.012916 0.841
10 0.004138  0.005302 0.781
100 0.000340  0.000490 0.693
1 0.688005  0.703936 0.977
5 0.021715  0.023766 0.914
59 10 0.005991  0.007030 0.852
100 0.000348  0.000493 0.704
5 g Jpper Layer
45
4 eh e+ Bottom Layer
35
3
g 25
g 2 —
2 15 p— W — - —
1 Ve
05 {¢
0 b—r——ma—m——--v—-r-r-—-m—v—v
0 5 10 15 20 25 30 35 40 45
Ko (GPa/nm)
(@

g Upper Layer

«= A = Middle Layer

35 = «fl= Bottom Layer
3
S 25
o
< 2
X v
= 15 —
. o e g Em e @ o @ o e
11 A *__..I------"""'
05 {6 g
0 5 10 15 20 25 30 35 40 45
Ko (GPa/nm)
(b)

Figure 6. Variation of dimensionless deflection versus the
van der Waals interaction between the layers (a) bi-layer (b)
triple layer sheet

Now, it is investigated to find an equivalent
thickness for a single layer graphene sheet in order to
have equal maximum deflection with the bi-layer sheet.
The van der Waals interaction between the layers is a
constant value k, =45 GPa/nm [22]. Figures 7 (a-e)

approximate the value for the equivalent thickness in
various conditions such as non-local parameter,
boundary conditions, loading, temperature differences
(AT) and the value of the Winkler and Pasternak elastic
foundation.

According to Figure 7 (a), it is observed that the
equivalent thickness for SS boundary conditions is
about nh*=1.1. However, h*=1.16 is for CC. It is
concluded that the more flexible boundary condition is
smaller than the equivalent thickness (eja =0.5nm).

The effect of small scales is studied in Figure 7 (b). It is
seen that with increase of the non-local parameter, the
equivalent thickness is decreased. It means that the
equal deflections for single and bi-layer sheets will
achieve smaller value of equivalent thickness.

The increase of the value of elastic foundation and
the temperature differences (AT), have the reduction
effects on the equivalent thickness (Figure 7 (c, d)).
However, according to Figure 7(e), it is observed that
the loading does not have any effects on the equivalent
thickness. On the other hand, the equivalent thickness
remains unchanged with the increase of loading.

The investigation for modelling of a triple layer
graphene sheet with a single layer is shown in Figure 8.
By comparing Figure 7 (b) and Figure 8, it is concluded
that addition of a layer to the bi-layer sheet, the
equivalent thickness increases about 11 percent for the
value of non-local parameter eja =0. It was observed
that the equivalent thickness is about 22 percent more

than that of the single layer in Figure 7 (b) for bi-layer
sheet. Consequently, it can be possible to predict the
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behavior of a multi-layer graphene sheet according to
this procedure for every condition. On the other hand, a
single layer sheet can be studied instead of the multi-
layer sheet by predicting the equivalent thickness.

= =g = Bilayer SS

0.77 g Single Layer SS
0'72 = === = Bjlayer CC
0'67 e Single Layer CC
0.57
0.52
Q 047
7 0w
5 032
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Figure 7. Variation of dimensionless deflection versus the
equivalent thickness for bi-layer graphene sheet (a) different
types of boundary conditions (b) different non-local
parameter (c) different value of elastic foundation (d)
different temperature difference (e) different value of
transverse loading
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6. CONCLUSION

In this paper, it was tried to find an equivalent single
layer graphene sheet to model the multi-layer sheet
considering the constant value of the van der Waals
interaction between the layers. The plates were
embedded in two parameter Winkler and Pasternak
elastic matrix in thermal environment. The non-local
theory of Eringen were applied based on the third order
shear deformation theory of the plates (TSDT) and
applying the nonlinear Von-Karman strain field. The
equilibrium equations were derived for multi-layer
graphene sheet and solved by two methods DQM and
SAPM. The most significant conclusions can be
categorized as follows:

e The introduced method (SAPM) is extremely
accurate, significantly simpler in formulations and
coding by computer programs, and its rate of
processing time is more than DQM.

e The TSDT results are considerably smaller than
that of the FSDT for high value of thicknesses of
single layer sheet.

e The deflection of the layers converges for multi-
layer graphene sheet with increase of the van der
Waals interaction between the layers.

e The equivalent thickness decreases with rise of
small scale effects, the value of elastic foundation
and temperature differences (AT).

e The equivalent thickness remains constant with
growing of the transverse load.

e The deflection of a multi-layer sheet is not equal to
a single layer with the same thicknesses.

e Itis possible to predict an equivalent thickness for
a single layer sheet and studying the multi-layer
sheet with the equivalent thickness instead of
investigation of the multi-layer sheet which needs
the time-consuming computational process.

Some of the possible directions for future study can
be mentioned below:

1. Providing the general diagrams of equivalent

thickness for various conditions.

2. Studying a rectangular or sector graphene sheet

instead of the annular/circular sheet.

3. Modeling a multi-layer graphene sheet with a single

layer, in vibration and buckling analysis.
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