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A B S T R A C T  
 

 

To reduce the damages of aeolian vibration of conductors to the power transmission networks, the most 

common method is installation of Stock-bridge dampers. Estimation of the damper’s dissipated energy 

is an important factor in determining the number and location of installation of these types of vibration 
absorbers. This estimation is strongly dependent upon the assumed mode shape of the conductor 

vibration. The results of current study show that the available methods do not provide an accurate 

answer for energy dissipation of a conductor with more than one damper. This paper provides a 
comprehensive method for calculating the mode shapes and dissipated energy in which the effects of 

travelling wave, amplitude and phase variations, boundary conditions as well as the influence of the 

number, position, and impedance of the dampers on the mode shape are taken into account. Moreover, 
the frequency bands of high-amplitude vibration potential can be identified without the need to extract 

the vibration amplitude. 

doi: 10.5829/idosi.ije.2015.28.10a.16  
 

 
1. INTRODUCTION1 
 

Overhead transmission line vibrations cause severe 

damage to electrical transmission lines. Aeolian 

vibrations are the most common type of conductor 

vibrations which occur in high frequency and small 

amplitude that give rise to the fatigue failure of the 

conductor strands. These vibrations occur at laminar 

flow (or low turbulence) winds with low velocities (1 to 

7 m/s) and their peak to peak amplitude reaches to the 

conductor diameter [1-4]. Wind velocity component 

perpendicular to the conductor leads to the formation of 

Von-Karman vortex, giving rise to an alternative 

vertical force and excitation of the conductor in the 

vertical plane [5]. Due to the conductor small internal 

damping, particularly at low frequencies, the use of 

external dampers is necessary to reduce the conductor 

vibration amplitude, for extending the conductor’s 

service life [6]. Accordingly different types of dampers 

are used for energy absorption in the distribution and 

transmission lines [7]. The application of Stock-bridge 

damper (Figure 1) is the most common way to achieve 

this goal [1]. This type of damper not only dissipates 
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energy due to its messenger cable’s strand slippage, but 

also acts as a dynamic-vibration absorber. 

Predicting the vibration behavior of a conductor with 

different number of dampers is essential for estimating 

the damper performance and conductor service life. The 

dynamic analysis of conductor and study of its vibration 

modes and its effects starts with electric power 

transmission network developments. The empirical 

study of the factors affecting the aeolian vibration and 

failure of electrical line conductors due to fatigue, 

started about a century ago [8]. However, the theoretical 

modeling of this phenomenon began in nearly half a 

century ago [9]. Theoretical research to simulate 

conductor vibration along with the experimental test to 

evaluate vibration state and predict transmission lines 

fatigue life has been continued up until now [10-12]. 

 

 

 
Figure 1. Stock-bridge damper [13] 
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In the practical arena, the energy balance method 

(EBM) is employed to determine the maximum 

amplitude of the conductor vibration [4, 12, 14-19]. 

Steady-state vibration amplitude obtained by this 

method depends heavily upon the amount of estimated 

energy dissipation which itself is calculated based on 

assumptions made about mode shapes of vibration. In 

the classical procedure of EBM, the dissipated energy 

estimation is done by the assumption of a standing 

harmonic wave in the entire span [20]. This method is 

very simple, but it does not reflect the effects of damper 

impedance and the travelling wave. To overcome these 

shortcomings, the response of the conductor vibration is 

considered as a superposition of two harmonic traveling 

waves which propagate in opposite directions on the 

semi-infinite conductor (Hagedorn Method) [15]. For a 

conductor with single damper, this method leads to 

satisfactory results and is accepted as a practical method 

and has been used up until now [17, 18]. The method is 

also extended to conductors with several dampers [19]. 

However, as shown in the present study, the use of this 

method for conductors with more than one damper do 

not yield accurate outcome and giving rise to the 

damper dissipated power do not considerably change 

with the increase in the number of dampers. The 

shortcomings of the given approach originate from the 

adoption of unrealistic assumptions, as the Hagedorn 

method is based upon the assumption of semi-infinite 

conductor which considers the propagation of wave in 

the two sides of the span independently. Furthermore, 

the fixed boundary conditions of the clamped ends are 

not taken into account in the extraction of the vibration 

mode shapes. In the Hagedorn method, the amplitude 

and phase of the travelling waves are assumed to be 

constant along the conductor. Moreover, due to the 

assumption of infinite conductor length, eigenvalue 

problem is not solved, so that each frequency is 

considered as a natural frequency with a simple 

sinusoidal wave as the mode shape of the sub-span 

vibrations. 

The review of the related literature shows that there 

is no comprehensive approach for calculating the 

dissipated energy of the conductors with more than one 

damper. To overcome this deficiency, the present study 

provides a new method that not only considers the 

effects of the number, location and impedance of the 

damper on the vibration mode shapes and energy 

dissipation, but also considers the effects of boundary 

conditions (finite length of the conductor), the travelling 

wave and phase-amplitude changes along the span. 

Comparison between the results of the conventional and 

proposed methods reveals that considering the 

aforementioned aspects have significant impact on the 

accuracy of the response. 

In this study, the effects of the travelling wave, 

damper location, damper impedance and damping rate 

on deformation of mode shape, energy dissipation and 

phase-amplitude changes are investigated, and the limits 

associated with the low and high damping rates are also 

identified. By determining the low damping areas in 

frequency domain, the identification of frequency bands 

with high potential of vibrations is facilitated without 

the need to calculate the vibration amplitude. 

 

 

2. THE CONDUCTOR VIBRATION 
 
In this section, a model of the steady-state vibration of a 

single conductor with Stock-bridge damper is described. 
 

 

2. 1. Equation of Vibration               Due to the high 

tension-to-weight ratio in transmission lines, the 

conductor in-plane vibration equation can be well 

approximated as [15-22]: 

( , ) ( , , )IV

w cEI u T u u F x t F u u t     (1) 

in which EI  is the bending stiffness (or flexural 

rigidity), T  is the tensile force,   is the mass per unit 

length, ( , )u x t  is the vertical displacement, 
w

F  is the 

wind force (resulting from Karman vortex) and 
c

F  is the 

conductor internal damping force. The dot sign 

represents the derivative with respect to time ( t ) and the 

prime symbol indicates the derivative with respect to the 

spatial coordinate ( x ). 

The actual value of conductor bending stiffness is a 

function of the conductor curvature at any point, and 

therefore, depends on time and space [20]. The effect of 

variable bending stiffness has been investigated by 

some authors [23, 24]. Since the transmission lines are 

designed for the worst case scenario, the value of the 

bending stiffness is considered to be constant and is 

equal to its minimum limit [1, 20, 25]. 

However, due to dense frequency spectrum and 

occurrence of the lock-in phenomenon in the electric 

power transmission lines, steady wind at any speed will 

cause steady vibration of the conductor in resonance, 

i.e. the frequency and mode shape of the steady forced 

vibration of the conductor will always correspond to one 

of its natural frequencies and the related mode shape. 

Also, the bending stiffness and internal damping of the 

conductor has a little influence on determining the 

natural frequency and mode shape of the conductor [15-

21, 25-27]. Therefore, the mode shapes of the conductor 

may be obtained from the following equation which is 

the taut string free vibration equation [15-21], and 
cV  

refers to the wave propagation velocity along the string 

[28]: 

2 2,c c
Tu V u V


   (2) 
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2. 2. The Dissipated Power              Energy 

dissipation in the conductor has a number of different 

sources. The combination of all types of conductor 

damping is known as conductor self-damping [20, 21]. 

The dissipated power of the conductor is measured 

through the "power", "standing wave" and "decay” 

methods [29] and its mathematical relations are 

presented in different references [4, 15, 17, 26, 27, 29, 

30]. In general, the dissipated power of the conductor is 

negligible compared with the one of damper [15-18]. 
Average power dissipation of the Stock-bridge 

damper (
dP ) following the experimental measurement 

of damper impedance is calculated through Equation (3) 

in which   refers to the time period of vibration. 

 

0

2

0

1
real( )

1
real( )

d d d

d d

P F V dt

Z V dt









 

 





 
(3) 

(The subscript d  is used for the quantities associated with the damper). 

Since considering the rotational displacement of the 

damper clamp has not a discernible effect on energy 

dissipation [16, 26], the damper impedance is measured 

only in the translational displacement. Mechanical 

impedance of the damper is calculated according to IEC 

61897 [31] following the experimental measurement of 

the exerted force on damper clamp and clamp vibration 

velocity: 

( )

( )

( )

, 2

,

F

V

z

i t

d d
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d d d d
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d d
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 

 
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 









 

 
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(4) 

In the above Equation, 
dF  is the amplitude of measured 

exerted force on damper at frequency  , 
dV  is the 

damper velocity amplitude, 
Z F V     is the phase 

measured between the force and the velocity signal s 

and dZ  is the calculated damper impedance (at that 

specific frequency and velocity). Figures 2 and 3 show 

the setup of the Stock-bridge damper impedance test 

and output of the test, respectively, which is performed 

in the Vibration Research Laboratory, University of 

Tabriz. After determining the impedance, by Equation 

(4) and replacing it in Equation (3), the dissipated power 

of the damper is calculated by following equation (in 

terms of damper displacement amplitude): 

21
( ) cos( )

2
d d d zP Z A   (5) 

Since the vibration amplitude of the damper ( dA ) in 

Equation (5) is calculated by the conductor vibration 

mode shape, the assumed mode shape for conductor can 

have a major effect on the accuracy of the obtained 

results for the damper dissipated power and conductor 

vibration amplitude. To put it differently, various 

assumptions about the form of the conductor vibration 

lead to different results in the estimation of the 

dissipated power of damper. 

 
2. 3. Various Assumed Mode Shapes           The 

simplest solution of Equation (2) is the sinusoidal 

standing wave. In this case, mode shape of the vibration 

is regarded as harmonic standing waves in entire span. 

Therefore, damper displacement amplitude is simply 

calculated as [1]: 

sin( ) ,d d

c

A A k x k
V


   (6) 

In this Equation, 
dx  is the distance of the damper 

installation point from the support and k  is the wave 

number. The effect of travelling wave and damper 

impedance on mode shapes and phase-amplitude 

changes along the conductor are ignored. To overcome 

these shortcomings, the steady-state response of the 

conductor including a Stock-bridge damper is 

considered as the superposition of two travelling waves 

with the identical frequency that propagate in the 

opposite directions on the semi-infinite conductor [15-

19]: 

1 2

1 2

2 2 2 2

1 2 1 2

( , ) sin( ( )) cos( ( ))

sin( ( )) cos( ( ))

,

c c

c c

f b

u x t G k x V t G k x V t

H k x V t H k x V t

A G G A H H

    

  

   

 
(7) 

 
 

 
Figure 2. Connecting the Stock-bridge damper to vibrator 

with force sensors 

 
 

 
Figure 3. Experimental results for the impedance of Stock-

bridge damper 

https://translate.googleusercontent.com/translate_f#footnote7
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The incoming wave amplitude towards the damper          

(
fA ) and the reflected one (

bA ), in general have 

different values, which are obtained by applying 

boundary conditions. Then the “absorption coefficient” 

(the ratio of damper absorbed energy to the emitted 

energy) is calculated as [4, 15-19]: 

2 2

2

2

( ) ( )
1 ( )

( )

f b b

in ff

A A AP

P AA



     

(8) 

Also, dissipated power of the damper in terms of 

absorption coefficient and amplitude of the vibration     

( A ) is obtained as [15-19]: 

2 21
( )

4 2
d

c

T
P A

V









 
(9) 

Absorption coefficient ( ) has always a value in the 

range 0 1  . Limit values of zero and one, 

respectively, represent the complete and zero absorption 

of the energy. 

To calculate the energy dissipation in a conductor 

with more than one damper which is installed on both 

sides of the span, a generalized version of the above 

method is used [19]. Since the span length of power 

transmission lines reaches to hundreds of meters, and 

wind energy is transmitted from the middle of the span 

to the two sides, finite conductor is considered as two 

semi-infinite conductors in the above method [15-19]. 

Although the assumption of travelling wave with 

constant amplitude on the semi-infinite conductor leads 

to satisfactory results for a single damper conductor, 

this study shows that using this method is not valid for 

calculating the dissipated power of conductors with 

more than one damper. As the number of dampers 

increase, no significant change is seen in the energy 

dissipation obtained by this method. This result clearly 

contradicts with the reality and damper performance in 

energy dissipation. The cause of this apparent 

contradiction is revealed by a closer look at the effects 

of increased number of dampers on the energy 

dissipation. In the Hagedorn method, by using the 

amplitudes of backward and forward waves in the last 

sub-span, the absorption coefficient is calculated at the 

first step, and then energy dissipation is obtained by 

Equation (9) in terms of absorption coefficient. Based 

on this equation, increase in the number of dampers can 

only lead to more energy dissipation by increase in the 

absorption coefficient. On the other hand, the absorption 

coefficient for one or any number of dampers installed 

in the "appropriate place” is at most one. Therefore, an 

increase in the number of dampers cannot significantly 

affect the increase in the absorption coefficient. Based 

on obtained results, the absorption coefficients related to 

the installation of more than two dampers on a semi-

infinite conductor, are identical, consequently energy 

dissipation does not change by installing three, four or 

five dampers on the conductor (Figure 4). 

Such contradiction in the results using Hagedorn 

method originates from the adoption of unreal 

assumptions regarding the extraction of the absorption 

coefficient and the dissipated energy relations. On one 

hand, despite the sources of energy dissipation in the 

system, the phase-amplitude is considered to be constant 

in the entire span. On the other hand, to consider the 

travelling wave, the conductor is assumed to be infinite. 

By taking the infinite conductor for granted, the 

eigenvalue problem of the conductor vibration is not 

solved and each frequency is considered natural and the 

simple sinusoidal wave is regarded as the mode shape of 

the sub-span vibrations. The energy emitted from the 

middle of the span to the two ends of the conductor is 

assumed to be completely independent of each other as 

well [15]. 

 
 

3. THE PROPOSED METHOD 
 
In the proposed method, an appropriate model is 

presented for vibration of the conductors with several 

dampers that can yield more accurate results for the 

conductor vibration response and damper dissipated 

energy. The following factors are considered in our new 

approach: travelling wave effect, finite length of the 

conductor (including boundary conditions), the effect of 

the number, location and impedance of the dampers as 

well as the influence of variation of the phase-amplitude 

with respect to time and spatial coordinates. In the 

proposed method, by taking into account the complex 

form of the general response of the conductor vibration 

equation, the eigenvalue problem of the conductor 

vibration is formed, following the solution which leads 

to the natural frequencies, the damping rates and 

complex mode shapes. Then the dissipated power of 

each damper is calculated individually. In the proposed 

method, no unreal constraint is imposed upon the 

problem. 

 

 

 
Figure 4. Change of relative dissipation power for a conductor 

with different number of dampers using the conventional 

assumption 
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To extract the general response for the finite length 

conductor vibration equation, the d'Alembert solution 

for the general solution of Equation (2) is considered as 

follows [32]: 

1 1 2( , ) ( ) ( )
c c

x x
u x t g t g t

V V
     (10) 

In this Equation, 
1g  and 

2g  are arbitrary functions that 

indicate the travelling waveform. Based on 

experimental observations, the arbitrary functions are 

assumed harmonic. Therefore, the following response 

will be given, which is the same as Equation (7): 

2 0 1

0 2

( , ) sin( ( ) )

sin( ( ) )

c

c

x
u x t A t

V

x
B t

V

 

 

   

 

 
(11) 

It can be noted that the above equation can be rewritten 

as follows: 

2 0 0

0 0 0 0

( , ) real ( ( ))

,

,

A B

st x x

i i

c

u x t e A e B e

A A e B B e

x
s i

V

 

 

 

 

 

 

 

(12) 

To reflect the effect of damping, the eigenvalue s  

instead of being a purely imaginary number, should be a 

complex number whose imaginary part is the vibration 

frequency and its real part is the damping rate. As a 

result, the response of conductor vibration equation 

takes the following form: 

2 2
,

( )
s i


  

 
   



 
(13) 
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 
  
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(14) 

In the above Equation,  and   are the damping rate 

and the dimensionless damping factor, respectively. 

Also, for the aeolian vibration with small amplitude 

and slope, vertical component of conductor tension ( q ) 

is written as follows: 

sin( ) tan( )u u

du
q T T T

dx
       (15) 

Therefore: 

( , ) real( ( , )) , ( , )
du

q x t q x t q x t T
dx

   (16) 

In general, a span with dn  dampers (Figure 5), has (

1dn  ) sub-spans and thus will have 2 ( 1)dn   

complex unknowns -in addition to the s  value- which 

are the complex amplitudes of sub-spans travelling 

waves. To extract these unknowns, we need the same 

number of complex equations that can be provided by 

the application of boundary condition at both ends of 

the span as well as the geometric and force conditions at 

each damper location: 

1 1 1( 0 , ) ( , ) 0
d dn nu x t u x l t      (17) 

1

1

1 0

0

0

( ( , )) ( ( , ))
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p p p

p p p

p

x l x

x x l d

d d x d
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q q F
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F Z p n
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



 

 






 

  

 
(18) 

By applying the above constraints and solving the 

obtained eigenvalue problem, the sub-spans amplitudes 

(
0A ,

0B ) and the eigenvalues ( s ) i.e. the natural 

frequencies, damping rates and the eigenvectors (natural 

complex mode shapes) are obtained. 

For a conductor without a damper, the above method 

leads to standing wave and completely imaginary 

eigenvalues. Namely, for damper-free conductor the 

new approach is adapted to the classic standing wave 

method. Therefore, there is no need for formation and 

solution of another eigenvalue problem, and the 

associated frequencies and mode shapes are obtained 

by: 

, , 0, 1, 2, ...

( , ) sin( ) sin( ) ,

c

c

V
s i n n

L

u x t A kx t k
V


 


 

   

   

 
(19) 

 

 

4. RESULTS AND DISCUSSION 
 
In the present study a new method for calculating the 

conductor mode shapes and damper dissipated energy is 

proposed which takes into account the phase-amplitude 

changes with respect to the time along the span by 

assuming the eigenvalue in a complex form. This is in 

addition to considering the effect of traveling wave and 

damper impedance on the mode shapes. 

 

 

 
Figure 5. A conductor with more than one damper 
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Comparison of the results of the present approach and 

the conventional methods is performed by first solving 

Equations (6) and (7) (conventional methods) as well as 

Equation (14) (proposed method) numerically for a 

given transmission line with geometrical and physical 

properties listed in Table 1, and then investigating the 

effects of these parameters on the response of the 

conductor. 

 
4. 1. Standing or Travelling Wave             The 

vibration amplitude of the transmission line with above 

mentioned properties in 25th mode is shown in Figure 6 

(without damper) and Figure 7 (with one damper). In 

the damper-free case, there exist 24 nodes with zero 

amplitude along the span, but in the presence of the 

damper, the node with zero amplitude cannot be seen on 

the span. This means that the presence of damper 

converts the standing wave to travelling wave. The 

shape of vibration at near the damper and near the rigid 

support is similar to travelling wave and standing wave, 

respectively. Depiction of the vibrating conductor in 

successive times in Figure 8 shows these results more 

clearly. It is also observed that there is a kink (sudden 

change in conductor slope) in the conductor at the 

damper clamp which is associated with the concentrated 

damping and inertial forces exerted by the damper on 

the conductor. Experimental observations confirm the 

occurrence of this phenomenon [21, 29]. 
These Figures are obtained regardless of the effects 

of bending stiffness. In the real conductor (with bending 

stiffness), the slope change is not sudden in the damper 

point, but the rate of these changes, and as a result, the 

conductor curvature is very high. Since the increase in 

curvature, results in the increase of the bending stress 

which accelerates the fatigue failure, the probability of 

fatigue failure is very high in the location of clamps. 

Since in the presented equations for the conductor 

response (Equation (14)), the effects of travelling wave, 

damper impedance, and the complex eigenvalue is 

considered in the vibration mode shape, the vibration 

response is different than a standing sinusoidal wave. 

For conductor with two dampers, the displacement 

amplitude of the dampers is calculated by two different 

methods (i.e. standing wave method and the new 

method) which are shown in Figure 9. 

 

 
TABLE 1. Conductor properties 

Cable 

type (mm)

D  
(kg/m)


 

(kN)

T
 

2(Nm )

EI  

(m)

L  

ACSR2 30 2 31 15 300 

 

                                                           
2
 Aluminum Conductor Steel Reinforced 

Based on this Figure, the effect of the proposed 

parameters (wave travelling, damper impedance and 

complex eigenvalue) on the mode shape and vibration 

amplitude is not negligible. Therefore, given the 

significant effect of the damper amplitude on the 

dissipated energy and conductor amplitude, the 

calculation of the damper dissipated power based on 

simple sinusoidal mode shape is not an accurate method 

and will not yield valid results. 

 

 

 
Figure 6. Distribution of the relative amplitude for the 

damper-free conductor along the span 

 

 

 
Figure 7. Distribution of the relative amplitude for the 

conductor with one damper at 1.5mx    

 

 

 
Figure 8. Standing wave in outer sub-span and travelling 

wave in inner sub-span for a conductor with one damper at 

1.5mx   
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Figure 9. Effect of the damper impedance on the damper 

amplitude 

 

 

4. 2. Phase-amplitude Variations           The relative 

amplitude distribution over the span for a conductor 

with two dampers at certain frequency is shown in 

Figure 10. According to this Figure, the amplitude of 

the adjacent points is significantly different. The 

depiction of the phase along the span also leads to a 

similar result. Figure 11 shows the conductor vibration 

at the same frequency in two different times and 

indicates the changes of the phase-amplitude of the 

conductor points with respect to time along the span. 

Variations of the amplitude and phase have a major 

effect on the calculation of curvature and bending stress 

of the conductor. Therefore, the results of conventional 

methods will not be adequately precise. 
 
4. 3. Dissipated Power Variations             The 

investigation of the similarity of the complex 

eigenvalues (Figure 12) with the damper amplitude 

(Figure 9) and damper dissipated power (Figure 13) 

shows that, the size of the real part of eigenvalue 

(damping rate) strongly influences the dissipated power 

of the dampers. The dissipated power in an eigenvalue 

which has a smaller damping rate is low whereas it is 

high in an eigenvalue with large damping rate. Thus, it 

is possible without the calculation of vibration 

amplitude and only through solving the eigenvalue 

problem, to determine the high-damping frequency 

bands (with high dissipation rate) and low-damping 

frequency bands (with low dissipation rate). Frequency 

bands with low dissipation rate, have high vibration 

potential. Based on Figure 12, frequency bands as 20-25 

and 35-40 Hz are considered low damping areas and 15-

20 and 25-30 Hz are high damping areas. 
The obtained results by the new method for a 

condition in which two dampers are installed on the two 

sides of the span with the same distance from the 

support (symmetric locations) show that the dissipated 

power (Figure 13) and the damper amplitude, fully 

correspond with each other, and the sub-spans 

amplitudes are perfectly symmetrical.  

 
Figure 10. Distribution of the relative amplitude of the 

conductor with two dampers 

 

 

 
Figure 11. Vibration response at two different times for a 

conductor with two dampers 

 

 
 

When two dampers were installed at different 

distance from supports (asymmetric locations), the 

observed correspondence and symmetry disappears. 

Namely, the levels of dissipated energy in the dampers 

installed in different locations are significantly different 

from each other (Figure 14). This result violates the 

assumption of equality of dissipated energy of dampers 

that was taken for granted in the previous methods. The 

correspondence of the results in Figure 13 for the two 

dampers that are installed symmetrically is an indicator 

of the accuracy of the new presented method. 

The results obtained by the proposed method for 

relative power dissipation of a conductor with different 

number of dampers are illustrated in Figure 15. This 

diagram shows dependency of dissipated power on 

number of dampers. The conventional method does not 

show this dependency. The relative dissipated power 

that obtained from Hagedorn method (Figure 4) does 

not change by installing three, four or five dampers on 

the conductor. Moreover, changes of power dissipation 

in Figure 4 is neither quantitatively nor qualitatively in 

accordance with Figure 15, whereas Figure 15 is in 

agreement with Figures 12 and 13. 
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Figure 12. Complex eigenvalue of a conductor with two 

dampers at symmetric points 
 

 

 
Figure 13. Relative power dissipation for a conductor with 

two dampers at symmetric points 
 

 

 
Figure 14. Relative power dissipation of a conductor with two 

dampers at asymmetric points 
 

 

 
Figure 15. Change of relative dissipation power of a 

conductor with different number of dampers 

5. CONCLUSION 
 
This article presented a comprehensive model for 

conductor with arbitrary number of dampers. With this 

model, one can calculate the vibration response of a 

conductor with several dampers as well as the dissipated 

power of each damper with more precision. The current 

method considers the effect of wave travelling, damper 

location and damper impedance, as well as the effect of 

finite length of conductor and the phase-amplitude 

variations on conductor mode shapes and damper 

dissipated power. Such factors have significant impact 

on the accuracy of the responses but were overlooked in 

conventional methods. In addition to confirming the 

formation of standing wave in damper-free state, the 

obtained results of the present paper also indicate that in 

the presence of a damper in the inner sub-spans the 

wave travels and propagates towards the dampers. 

Results of this study show that, complex 

eigenvalues, in addition to dynamic characteristics of 

the damper, are a function of dampers installation point 

and the real part of eigenvalues (which is ignored in 

other methods) is an important parameter in determining 

the energy dissipation of the dampers. Using this 

parameter, the frequency bands of high vibration 

potential can be identified without the need to extract 

the vibration amplitude. 
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هچكيد
 

 

ترین روش های انتقال توان الکتریکی، رایجخطوط انتقال برق به شبکه هایرسانا« آولین»برای کاهش خسارات ارتعاشات 

است. برآورد انرژی اتلافی میراگر که فاکتور مهمی در تعیین تعداد و محل نصب میراگرهاست، « بریجاستاک»استفاده از میراگر 

-های موجود نمیدهد، روشن میبه شدت به شکل مود فرض شده برای ارتعاش رسانا وابسته است. نتایج تحقیق حاضر نشا

توانند جواب دقیقی برای انرژی اتلافی رسانای دارای بیش از یک میراگر ارایه دهند. در این تحقیق روش جامعی برای 

شود که اثرات روندگی موج، تغییرات ی شکل مود و انرژی اتلافی میراگرهای متعدد نصب شده روی رسانا ارایه میمحاسبه

کند. رایط مرزی دو انتها و همچنین تاثیر تعداد، محل نصب و امپدانس میراگر را در شکل مود ارتعاشی لحاظ میدامنه و فاز، ش

توان نواحی فرکانسی با پتانسیل ارتعاش بالا را بدون نیاز به محاسبه دامنه ارتعاش، شناسایی همچنین با استفاده از این روش، می

 کرد.
doi:10.5829/idosi.ije.2015.28.10a.16

 

 

 

 


