
IJE TRANSACTIONS A: Basics  Vol. 28, No. 7, (July 2015)  1059-1067 
 

 

Please cite this article as: F. Vakilian, A. Amiri, F. Sogandi, Isotonic Change Point Estimation in the AR(1) Autocorrelated Simple Linear 
Profiles, International Journal of Engineering (IJE), TRANSACTIONS A: Basics  Vol. 28, No. 7, (July 2015)  1059-1067 

 
 

International Journal of Engineering 
 

J o u r n a l  H o m e p a g e :  w w w . i j e . i r  
 

 

Isotonic Change Point Estimation in the AR(1) Autocorrelated Simple Linear Profiles 
 
F. Vakilian, A. Amiri*, F. Sogandi 
 
Industrial Engineering Department, Shahed University, Tehran, Iran 

 

 

P A P E R  I N F O  

 
 

Paper history: 
Received 12 April 2015 
Received in revised form 02 June 2015 
Accepted 11 June 2015 

 
 

Keywords: 
Simple Linear Profile 
Isotonic Shift 
Change Point Estimation 
AR(1) Models 
Phase II 
Hotelling  T2Control Chart 
 
 
 
 
 

 

A B S T R A C T  
 

 

Sometimes the relationship between dependent and explanatory variable(s) known as profile is 
monitored. Simple linear profiles among the other types of profiles have been more considered due to 

their applications especially in calibration. There are some studies on the monitoring them when the 

observations within each profile are autocorrelated. On the other hand, estimating the change point 
leads to meet great saving time and costs. Hence, in this paper, a maximum likelihood estimator is 

derived for simple linear profiles with first order autoregressive autocorrelation structure within each 

profile to estimate isotonic change point. The performance of the proposed estimator is appraised and 
compared to estimators that derived under step change and drift and a confidence set estimator 

presented. The results demonstrate that the proposed estimator has better performance in small and 

medium shifts whereas the performance of their corresponding estimators becomes better than the 
proposed estimator in large shifts. It is worth mentioning that knowing type of the change is not 

important in the proposed estimator and its only assumption is belonging of the change type to a family 

of isotonic shifts. Finally, the performance of the estimator is illustrated through a real case. 
 

 

doi: 10.5829/idosi.ije.2015.28.07a.12 
 

 
1. INTRODUCTION1 
 

In some statistical process control applications, the 

relationship between dependent and explanatory 

variable (s) is monitored instead of monitoring a 

univariate or multivariate quality characteristics. This 

relationship which can be linear or nonlinear is known 

as a profile. According to the relationship, there are 

various types of profiles including simple linear profile, 

multiple linear profile, polynomial profile, nonlinear 

profile, waveform profile, spline profile and profiles 

based on generalized linear models. Profiles have 

different applications in manufacturing and service. A 

number of researchers such as Kang and Albin [1] have 

discussed practical applications of profiles. In the recent 

years, monitoring profiles especially simple linear 

profiles due to their applications especially in 

calibration has been considered by many researchers. 

Studies about monitoring profiles are done in two 

phases. Many researchers such as Mahmoud et al. [2] 

have studied Phase I monitoring of simple linear 
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profiles. Also, there are many works on Phase II 

monitoring in which the parameters are assumed to be 

known. Researchers such as Gupta et al. [3] have 

Studied Phase II monitoring of simple linear profiles. 

Keramatpour et al. [4] proposed a remedial measure to 

remove the effect of autocorrelation in monitoring of 

autocorrelated polynomial profiles.  

Many studies have been done by researchers on 

monitoring simple linear profiles when the sampling 

time between observations collapses and as a result the 

observations are autocorrelated. Recently, Kamranrad 

and Amiri [5] proposed a robust holt-winter based 

control chart in Phase II monitoring of a simple linear 

profile under within profile autocorrelation and the 

presence of outliers. 

On the other hand, usually when the control chart 

declares warning about the out-of-control status, it is 

different with the real-time of the process change. Real-

time of change in process is known as change point. A 

process may be in the out-of-control state due to 

different change types including single-step change, 

drift change, isotonic change, multiple-step changes, 

and sporadic changes. Estimating the change point leads 

to meet great saving on time and costs. Hence, many 
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authors such as Noorossana and Shadman [6] have 

studied change point estimation under different 

situations. Also, many researchers studied estimation of 

the change point in the area of profile monitoring. 

Mahmoud et al. [2] derived an MLE for change point 

estimation of simple linear profile based on LRT 

method in Phase I. In this Phase. Sharafi et al. [7, 8] 

proposed an MLE to identify the real time of step and 

linear trend changes in monitoring of logistic regression 

profiles, respectively. Also, Sharafi et al. [9, 10] 

provided a maximum likelihood estimation approach for 

estimating the time of drift and step changes in Poisson 

profiles, respectively. Also, Kazemzadeh et al. [11] 

extended an MLE for linear disturbance in the 

parameters of multivariate linear regression profiles. 

Shadman et al. [12] suggested a unified framework for 

developing Phase I control charts in monitoring and 

estimating of change point in generalized linear profiles. 

Also, Sogandi and Amiri [13, 14] proposed step and 

drift estimators in Gamma regression profiles, 

respectively. Ayoubi et al. [15] developed the maximum 

likelihood approach to estimate the sporadic changes in 

the mean of multivariate linear profiles in Phase II. 

Under the sporadic change, shifts can be occurred in any 

directions and there is no knowledge about the change 

type in prior. In this method, parameters are estimated 

through filtering and smoothing approaches in dynamic 

linear model. Recently, Khedmati and Niaki [16] 

proposed a step change point estimator to find the real 

time of the change in the regression parameters of the 

AR(1) autocorrelated simple linear profiles in Phase II. 

The isotonic changes defined as a series of shifts 

with the same direction in which the exact kind of shifts 

are undetermined. Estimation of these changes has been 

studied by many researchers. In this respect, for 

example, Sogandi and Amiri [17] derived an MLE in 

the Generalized Linear Model-based regression profiles 

under the isotonic change in Phase II. 

 

 

 

2. PROBLEM FORMULATION 
 
There are some studies on the monitoring of simple 

linear profiles with assumption that the observations 

within each profile are uncorrelated. However, this 

assumption is sometimes violated in practice when the 

sampling time between observations decreases. Hence, 

it is assumed that for the i
th

observation in the jthsample, 

when the process is under statistical control, the 

relationship between the response variable and 

independent variable can be written as: 

𝑦𝑖𝑗 =  𝑏0 +  𝑏1𝑥𝑖 +  𝜀𝑖𝑗 ,  (1) 

𝜀𝑖𝑗 =  𝜌𝜀(𝑖−1)𝑗 +  𝑙𝑖𝑗 ,  (2) 

in which 𝜀𝑖𝑗’s are the autocorrelated residuals with 

autoregressive (AR(1)) structure and 𝑙𝑖𝑗’s are 

independently and identically distributed normal 

random variables. 𝑙𝑖𝑗′s mean and variance are zero and 

𝜎2, respectively.𝑙𝑖𝑗 ~ 𝑁𝐼𝐷 (0 , 𝜎2) , |𝜌| < 1. In Equation 

(1), the x-values are assumed constant in each profile. In 

this paper, we consider Phase II analysis. In other 

words, the values of parameters 𝑏0, 𝑏1 and  𝜎2 are 

assumed to be known. 

It can be shown that the autoregressive structure 

between the error terms leads to autocorrelation 

between observations in each profile. For monitoring 

purpose, to deal with the effects of autocorrelation we 

use the transformation method of Soleimani et al. [18]. 

The observation in each profile can be expressed as: 

𝑦𝑖𝑗 =  𝑏0 +  𝑏1𝑥𝑖 +  𝜀𝑖𝑗  (3) 

𝑦(𝑖−1)𝑗 =  𝑏0 + 𝑏1𝑥𝑖−1 + 𝜀(𝑖−1)𝑗  (4) 

by replacing 𝑦𝑖𝑗 , 𝑦(𝑖−1)𝑗 according to Equations (3) and 

(4), we have 

( 1) 0 1 0 1 1 ( 1)( ) ( )ij i j i ij i i jy y b b x b b x           

0 1 1 ( 1)(1 ) ( ) ( ),i i ij i jb b x x           
(5) 

and according to Equation (2), 𝜀𝑖𝑗 =  𝜌𝜀(𝑖−1)𝑗 + 𝑙𝑖𝑗 ,we have 

𝑦𝑖𝑗 − 𝜌𝑦(𝑖−1)𝑗 = 𝑏𝑜(1 − 𝜌) + 𝑏1(𝑥𝑖 − 𝜌𝑥𝑖−1) + 𝑙𝑖𝑗 ,  (6) 

where 𝑙𝑖𝑗
, 𝑠 are independent random variables with mean 

zero and variance𝜎2. Hence, by using the transformed 

variable 𝑦𝑖𝑗
′ , a simple linear profile model with 

independent residuals is obtained . 

𝑦𝑖𝑗
′ = 𝑦𝑖𝑗 − 𝜌𝑦(𝑖−1)𝑗 , (7) 

𝑥𝑖
′ =  𝑥𝑖 − 𝜌𝑥𝑖−1 , (8) 

𝑏0
′ =  𝑏𝑜(1 − 𝜌) , (9) 

𝑏1
′ =  𝑏1 . (10) 

Using Equations (7) to (10), the equation 𝑦𝑖𝑗
′ = 𝑏0

′ +

𝑏1
′ 𝑥𝑖

′ + 𝑙𝑖𝑗 ."is obtained. Therefore, by using the 

transformed variables 𝑥𝑖
′ and 𝑦𝑖𝑗

′ a simple linear profile 

model with independent residuals is obtained. Then, 

ordinary least squares (OLS) method can be used to 

estimate the regression parameters. 

 

 

3. 𝐓𝟐 CONTROL CHARTS TO MONITOR SIMPLE 
LINEAR PROFILES IN PHASE II 
 

We use a T2control to monitor the regression parameters 

after applying transformation method discussed in 

section 2. This transformation decreases the effect of 

autocorrelation from the regression parameters and as a 

result, we can easily monitor the regression parameters 

over time. In this section, the T2 control chart proposed 
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by Kang and Albin [1] is used to monitor the regression 

coefficients. This chart is proposed based on the least 

squares estimators of 𝑏0
′  and 𝑏1

′ that have the bivariate 

normal distribution. Estimator vector of  𝐳𝑗 =  (𝑏̂0𝑗

′
 , 𝑏̂1𝑗

′
)

𝑇

 

is used to construct the statistic for j
th

 sample. 𝑏̂0
′  and 

𝑏̂1
′have the bivariate normal distribution with mean 

vector u and variance covariance matrix 𝚺 where u and 

𝚺 are computed based on the following equation equal 

to 𝐮 = (𝑏0
′  , 𝑏1

′ )𝑇and 𝚺 =  (
𝜎0

2 𝜎01

𝜎01𝜎1
2), respectively. 

In 𝚺, 𝜎0
2 , and𝜎1

2 are variance of the estimator 𝑏0j and 

b1j, respectively and 𝜎01 is the covariance between 𝑏̂0j 

and 𝑏̂1j. Then, T2 statistic is computed as follows: 

𝑇𝑗
2 = (𝐳𝑗 − 𝐮)

𝑇
𝚺−1(𝐳𝑗 −  𝐮)  (11) 

when the process is in-control, the T2 statistic follows a 

central chi-square distribution with two degrees of 

freedom. Hence, the upper control limit (UCL) for the 

T2control chart is UCL=𝜒2,𝛼
2  , where 𝜒2,𝛼

2  is the 100 (1-

𝛼) percentile of the chi-square distribution with two 

degrees of freedom.  

 

 

4. PROPOSED ISOTONIC CHANGE POINT 
ESTIMATOR 
 
In this section, we concentrate on change point 

estimation in the parameters of the simple linear profile 

when that error terms are autocorrelated. The change 

type considered in this paper is isotonic. We could use 

the transformed observations, write down the likelihood 

function based on the independent observations. 

However, since, the joint likelihood function of the 

AR(1) observations is available in the literature, surely, 

using the distribution of the original variable leads to 

more reliable results than the distribution of the 

transformed observations. This is the reason we used the 

distribution of the original variables. 

The likelihood function of the AR(1) autocorrelated 

processes  is first reported by Perry and Pignatiello [19]. 

Since the observations within each profile are 

autocorrelated based on the AR(1) model, we used this 

likelihood function for the problem discussed. We 

applied the mean of the first response variable ( 0 1 1b b x+

)   and the other responses (
( 1)i i jy   ) and write down 

the likelihood function for observations within each 

profile. Through multiplying the likelihood functions of 

each profile until a signal is given by the T2 control 

chart, the following likelihood function is obtained:  

       
12

2 2 2
0 1 1 2

1 1
, , | , ,..., 2 1

n

j j nj

T T

j j
L b b y f y y y  



 
    

       
22

2
1 0 1 1 12

2

1
1 ,

2
j ij i i j

n

i

exp y b b x y y  
 

 
   
  
    


       

(12) 

where ( 1)i ij i j ij
l  


   is the location parameter and 

T is the number of the first profile which falls out of the 

UCL. After some times and in unknown profile τ, the 

process becomes out-of-control. In fact, for profiles j=1, 

2,…τ, the value of regression parameters are equal to 

0( ) 1( )
( , )

in in
b b  and for profiles j= τ +1, τ +2, …T, these 

values change to 0 ( ) 1 ( )
( , )

j out j out
b b , respectively. So, the 

logarithm of the likelihood function is equal to 

      
1

2 22 2
0 1

1
, , | 2 1

n

j
Log L b b y log


  

 
 
   

  

       
2 2

2

1 0( ) 1( ) 1 ( ) ( 1)2
1 2

1
1

2
j in in ij i in i j

n

j i
y b b x y y


  




 


      
 
  

      
1

2 2 22 2
1 0 ( )2

1
2 1 1

21 1

n

j j out

T T
log

j j
y b  

 

              

  
2

2

1 ( ) 1 ( ) ( 1) .

2
j out ij ij out i j

n
b x y y

i

  


   
 

 

(13) 

By replacing the estimate of vector j
b

0 ( ) 1 ( )( ,  )j out j outb b for 1, 2,...,j T    in Equation (13), 

the change point estimator is computed as follows: 

    

    
2

2
( ) ( 1) 1 0(

2
2

1 0 ( ) 1 (

2

) 12

)

1
1

212

1
arg max 1

21
j j out j out

ij ij out i j j in

Tn
y y y b

j

T
y b b x

j

i

  


 




     



 
     

  




 




  1( ) 1 ( ) ( 1)

2
2

2

.in ij i in i j

n

i

b x y y  

   

   

(14) 

To estimate parameter 𝜏, the matrix

1 2( , , ..., )T T    B b b b should be estimated. Hence, 

initial estimates of each parameters of the vector j
b are 

needed. Hence, we use 

𝒃̃𝑗 = {
𝐛0

𝐛𝑗

  𝑖𝑓 𝐛0  ≥  𝐛𝑗 , 𝑓𝑜𝑟 𝑗 = 𝜏 + 1, … , 𝑇  𝑎𝑛𝑑 

𝑖𝑓 𝐛0 ≤ 𝐛𝑗 , 𝑓𝑜𝑟 𝑗 = 𝜏 + 1, … , 𝑇        
  (15) 

We can estimate 𝐛̂𝑗by solving the following convex 

program: 

    

    
2

2
( ) ( 1) 1

2
2

1 0 ( ) 1 ( ) 12

0( )2

1ˆ 1

1 ˆ ˆˆ argmax 1

22

1

1

2T

ij ij out i j j i

j j out j out

n

Tn
y y y b

ji

T
y b b x

j

  

 











     
 


 
     

  






B

  
2

2

1( ) 1 ( ) ( 1) ,

2
in ij i in i j

n

i

b x y y  

  
 

   

(16) 

subject to 𝐛̃𝑗 ≥ 𝐛̃𝑗−1for 𝑗 = 𝜏 + 1, … , 𝑇. 
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We fit isotonic regression to each parameter of the 

vector 𝐛̃𝑗similar to Perry et al. [20] to find the estimator 

of vectorbj for 𝑗 = 𝜏 + 1, … , 𝑇. 

[𝐛̂𝑗] = 𝐈([𝐛̃𝑗])for 𝑗 = 𝜏 + 1, … , 𝑇 (17) 

Among the isotonic regression algorithms, the pool 

adjacent violators (PAV) algorithm described by Best 

and Chakravarti [21] is more well-known and so it is 

used in this paper. Generally, the algorithm of the 

proposed method in detecting and change point 

estimation is given as follows step by step: 

Step 1: Capturing signal from T2 control chart during 

monitoring the process. 

Step 2: Obtaining the likelihood function of joint 

probability distribution of AR(1) autocorrelated 

observations. 

Step 3: Applying the PAV algorithm to estimate out-of-

control parameters for τ=1, 2, …,T-1. 

Step 4: Obtaining likelihood function for τ=1, 2 …, T-

1. 

Step 5: Estimating the change point using maximum of 

the log likelihood function achieved over all possible 

change points. 

 

 

5. SIMULATION STUDIES 
 

In this section, Monte Carlo simulation is utilized to 

evaluate performance of the proposed estimator in terms 

of precision and accuracy criteria in the AR(1) 

autocorrelated simple linear profile. Also, the obtained 

results from the proposed estimator are compared to 

estimators derived under step change and linear drift. 

Also, it is assumed that the regression model of the 

AR(1) autocorrelated simple linear profile under in-

control state is equal to 𝑦𝑖𝑗 = 3 + 2𝑥𝑖 + 𝜀𝑖𝑗 ,  in which  𝜀𝑖𝑗’s 

are the autocorrelated error terms with first-order 

autoregressive structure according to the following 

equation: 
𝜀𝑖𝑗 =  𝜌𝜀(𝑖−1)𝑗 +  𝑙𝑖𝑗 ,  

Where 𝑙𝑖𝑗’s are independently and identically distributed 

normal random variables with mean zero and variance 

1. Moreover, four levels equal to 2, 4, 6, 8 are 

considered for explanatory variable in all of the profiles. 

To monitor the profiles, we use the T2control chart with 

probability of Type I error equal to 0.005. Thus, the 

UCL is equal to 𝜒2,0.005
2 = 10.59. On the other hand, the 

explanatory variable and the obtained values for the 

response variables are transformed according to 

Soleimani et al. [18]. Hence, the Tj
2 statistics are 

computed for all samples according to the transformed 

variables. Without loss of generality, it is assumed that 

the type of changes is isotonic. We investigate 

performance of the proposed estimator under the two 

step changes. It is assumed that the real change point 

value is equal to 𝜏 = 50. Hence, the first 50 profiles are 

simulated from AR(1) autocorrelated simple linear 

profile with known vector of parameters equal to (3, 2) 

for in-control state. If statistics fall out of the UCL 

during the generating of the 50 profiles, it is considered 

as a false alarm, so the observations are regenerated 

instead of them. Because, it is assumed that 

observations are generated under the in-control state. 

After 50
th 

profile, the increasing changes are occurred in 

the parameters of the regression model according 

to(3 + 𝛿1, 2 + 𝛿2). In addition, after 60
th 

profile, 

observations are generated from the out-of-control 

process with (3 + 𝛿1
′ , 2 + 𝛿2

′ )vector such that 𝛅′>𝛅 until 

the T2control chart alarms due to occurrence of an 

assignable cause. At this time, the corresponding 

estimators are used to estimate the real time of the first 

change. The mentioned procedure is repeated 5000 times 

under different shifts in the 50
th

 and 60
th

 profiles to 

appraise performances of the proposed estimator and 

estimators derived under step change and linear drift. 

The results are summarized under the weak and strong 

autocorrelation coefficient equal to 0.1and 0.9 in Tables 

1 and 2, respectively to compare performance of the 

step, drift and the proposed estimators.  

 

 
TABLE 1. Accuracy and precision performances of the step, 

linear drift, and monotonic MLEs under a multiple step 

change in the parameters of simple linear profiles with 5000 

simulation runs and =50  and 𝜌 = 0.1. 

Shifts 

(δ1, δ2) 

(δ1, δ2) 

(0.1,0.001) 

(0.2,0.005) 

(0.2,0.005) 

(0.4,.01) 

(0.4,0.01) 

(0.6,.05) 

(0.6,0.05) 

(0.8,0.08) 

(0.8,0.08) 

(1,0.1) 

A
c
c
u

ra
cy

 E(T) 134.54 130.4 128.11 114.13 107.25 

ˆ
scτ  

53.12 

(0.51) 

52.75 

(0.47) 

52.16 

(0.26) 

51.85 

(0.11) 

50.65 

(0.09) 

τ̂  
50.74 

(0.08) 

51.54 

(0.19) 

52.85 

(0.25) 

53.21 

(0.37) 

53.33 

(0.4) 

 
ˆ
ltτ  

55.11 

(0.55) 

54.22 

(0.48) 

54.35 

(0.37) 

53.98 

(0.3) 

53.85 

(0.24) 

P0 

S 0.16 0.17 0.18 0.19 0.2 

M 0.21 0.2 0.17 0.15 0.16 

L 0.11 0.11 0.12 0.12 0.13 

P2 

S 0.19 0.21 0.22 0.26 0.27 

M 0.26 0.24 0.23 0.21 0.2 

L 0.14 0.16 0.17 0.17 0.18 

P4 

S 0.22 0.24 0.25 0.28 0.31 

M 0.33 0.3 0.28 0.28 0.26 

L 0.18 0.19 0.19 0.2 0.21 

P6 

S 0.27 0.3 0.31 0.33 0.34 

M 0.4 0.38 0.36 0.36 0.35 

L 0.21 0.22 0.23 0.25 0.26 

P8 

S 0.3 0.32 0.38 0.41 0.43 

M 0.46 0.44 0.42 0.4 0.38 

L 0.28 0.29 0.3 0.3 0.32 

P10 

S 0.31 0.33 0.39 0.42 0.44 

M 0.5 0.48 0.43 0.41 0.4 

L 0.29 0.31 0.32 0.33 0.34 
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TABLE 2. Accuracy and precision performances of the step, 

linear drift, and monotonic MLEs under a multiple step 

change in the parameters of simple linear profiles with 5000 

simulation runs and =50  and 𝜌 =  0.9. 

Shifts 

(δ1, δ2) 

(δ1, δ2) 

(0.1,0.001) 

(0.2,0.005) 

(0.2,0.005) 

(0.4,.01) 

(0.4,0.01) 

(0.6,.05) 

(0.6,0.01) 
(0.8,0.05) 

(0.8,0.05) 
(1,0.08) 

A
c
c
u

ra
cy

 

E(T) 114.11 103.42 100.12 98.31 97.25 

ˆ
scτ  

53.2 

(0.52) 

52.95 

(0.49) 

52.15 

(0.37) 

51.95 

(0.25) 

50.7 

(0.08) 

τ̂  
50.74 

(0.1) 

51.54 

(0.2) 

52.85 

(0.25) 

53.21 

(0.38) 

53.33 

(0.41) 

 
ˆ
ltτ  

55.11 

(0.56) 

54.22 

(0.49) 

54.35 

(0.38) 

53.98 

(0.31) 

53.45 

(0.25) 

P0 

S 0.1 0.11 0.12 0.14 0.14 

M 0.15 0.13 0.12 0.12 0.1 

L 0.06 0.07 0.08 0.08 0.09 

P2 

S 0.11 0.12 0.13 0.14 0.16 

M 0.16 0.15 0.14 0.12 0.1 

L 0.08 0.09 0.09 0.1 0.13 

P4 

S 0.18 0.19 0.21 0.22 0.23 

M 0.3 0.27 0.2 0.2 0.19 

L 0.15 0.16 0.15 0.17 0.18 

P6 

S 0.2 0.21 0.23 0.24 0.29 

M 0.36 0.34 0.21 0.22 0.19 

L 0.16 0.15 0.13 0.1 0.1 

P8 

S 0.25 0.26 0.31 0.3 0.33 

M 0.37 0.36 0.29 0.28 0.26 

L 0.2 0.21 0.23 0.25 0.27 

P10 

S 0.27 0.29 0.33 0.35 0.4 

M 0.41 0.42 0.38 0.36 0.34 

L 0.21 0.23 0.25 0.29 0.32 

 

 
TABLE 3. Accuracy and precision performances of the step, 

linear drift, and isotonic MLEs under a step change in the 

parameters of simple linear profiles with 5000 simulation runs 

and =50 and 𝜌 =  0.1. 

Shifts 

(δ1, δ2) 

(δ1, δ2) 

(0.1,0.001) (0.2,0.005) (0.4,0.01) (0.6,0.05) (0.8,0.08) 

A
c
c
u

ra
cy

 

E(T) 135.64 131.24 127.7 145.31 117.22 

ˆ
scτ  

54.12 

(0.5) 

53.75 

(0.46) 

53.16 

(0.35) 

52.85 

(0.24) 

51.65 

(0.2) 

τ̂  
50.74 

(0.09) 

51.54 

(0.15) 

52.85 

(0.25) 

53.21 

(0.37) 

53.33 

(0.37) 

 
ˆ
ltτ  

56.21 

(0.5) 

54.15 

(0.42) 

54.55 

(0.35) 

53.78 

(0.32) 

53.25 

(0.39) 

P0 

S 0.18 0.19 0.2 0.22 0.24 

M 0.23 0.25 0.19 0.17 0.15 

L 0.11 0.12 0.12 0.13 0.13 

P2 

S 0.2 0.22 0.23 0.27 0.29 

M 0.27 0.25 0.24 0.22 0.21 

L 0.14 0.16 0.17 0.19 0.19 

P4 

S 0.23 0.25 0.27 0.29 0.3 

M 0.33 0.3 0.29 0.28 0.26 

L 0.19 0.2 0.21 0.21 0.23 

P6 

S 0.28 0.31 0.32 0.34 0.34 

M 0.4 0.38 0.36 0.35 0.35 

L 0.2 0.21 0.22 0.23 0.26 

P8 

S 0.31 0.33 0.38 0.41 0.43 

M 0.47 0.45 0.43 0.42 0.38 

L 0.28 0.29 0.3 0.31 0.32 

P10 

S 0.33 0.35 0.39 0.43 0.44 

M 0.48 0.46 0.44 0.4 0.4 

L 0.3 0.31 0.32 0.33 0.34 

 

 

TABLE 4. Accuracy and precision performances of the step, 

linear drift, and isotonic MLEs under a step change in the 

parameters of simple linear profiles with 5000 simulation runs 

and =50 and 𝜌 =  0.9. 

Shifts 

(δ1, δ2) 

(0.1,0.001) (0.2,0.005) (0.4,0.01) (0.6,0.05) (0.8,0.08) 

A
cc

u
ra

cy
 

E(T) 124.64 130.34 117.72 115.4 107.34 

ˆ
scτ  

55.21 

(0.5) 

54.55 

(0.46) 

54.26 

(0.36) 

52.98 

(0.23) 

51.85 

(0.21) 

τ̂  50.94 

(0.1) 

51.64 

(0.15) 

52.99 

(0.24) 

53.43 

(0.36) 

53.75 

(0.37) 

 ˆ
ltτ  

56.41 

(0.51) 

54.35 

(0.4) 

54.85 

(0.36) 

53.98 

(0.32) 

53.88 

(0.37) 

P0 S 0.17 0.18 0.19 0.2 0.23 

M 0.24 0.23 0.19 0.17 0.16 

L 0.11 0.12 0.13 0.14 0.14 

P2 S 0.21 0.23 0.24 0.28 0.3 

M 0.28 0.26 0.25 0.23 0.22 

L 0.16 0.18 0.19 0.21 0.23 

P4 S 0.24 0.26 0.28 0.3 0.33 

M 0.35 0.32 0.3 0.3 0.28 

L 0.2 0.21 0.22 0.22 0.23 

P6 S 0.32 0.32 0.33 0.35 0.36 

M 0.4 0.4 0.38 0.37 0.35 

L 0.24 0.24 0.25 0.27 0.28 

P8 S 0.32 0.34 0.39 0.43 0.45 

M 0.48 0.46 0.44 0.42 0.39 

L 0.3 0.29 0.31 0.32 0.34 

P10 S 0.33 0.35 0.4 0.42 0.45 

M 0.5 0.48 0.44 0.4 0.38 

L 0.31 0.33 0.35 0.36 0.37 
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TABLE 5. Accuracy and precision performances of the step, 

linear drift, and isotonic MLEs under a disturbance linear 

trend in the parameters of simple linear profiles with 5000 

simulation runs and =50 and 𝜌 =  0.1. 

Shift 0.001 0.002 0.006 0.009 0.01 

A
c
c
u

ra
cy

 

E(T) 157.61 154.4 150.34 144.25 132.3 

 

62.81 

(0.23) 

56.75 

(0.25) 

54.17 

(0.3) 

53.41 

(0.24) 

54.98 

(0.2) 

51.25 

(0.1) 

51.38 

(0.19) 
52.2 

(0.27) 

53.26 

(0.3) 
53.89 

(0.32) 

 ˆ
ltτ  

61.06 

(0.36) 

54.45 

(0.29) 

52.34 

(0.25) 

51.25 

(0.14) 

50.89 

(0.08) 

P0 

S 0.02 0.02 0.03 0.04 0.05 

M 0.06 0.05 0.05 0.03 0.02 

L 0.03 0.03 0.04 0.06 0.07 

P2 

S 0.04 0.06 0.07 0.06 0.09 

M 0.1 0.09 0.08 0.07 0.06 

L 0.05 0.07 0.11 0.12 0.13 

P4 

S 0.05 0.08 0.09 0.09 0.1 

M 0.14 0.1 0.09 0.1 0.12 

L 0.07 0.09 0.14 0.18 0.27 

P6 

S 0.07 0.1 0.11 0.12 0.13 

M 0.19 0.18 0.17 0.15 0.14 

L 0.09 0.1 0.16 0.17 0.21 

P8 

S 0.1 0.1 0.12 0.13 0.12 

M 0.2 0.19 0.18 0.16 0.15 

L 0.11 0.12 0.18 0.19 0.2 

P10 

S 0.12 0.13 0.15 0.16 0.17 

M 0.29 0.26 0.24 0.23 0.21 

L 0.15 0.17 0.24 0.25 0.26 

 

 

 

TABLE 6. Accuracy and precision performances of the step, 

linear drift, and isotonic MLEs under a single step change in 

the parameters of simple linear profiles with 5000 simulation 

runs and =50  and  𝜌 =  0.9. 

Shift 0.001 0.002 0.006 0.009 0.01 

A
c
c
u

ra
cy

 

E(T) 157.61 154.44 150.34 144.25 132.3 

 

63.66 

(0.23) 

56.9 

(0.25) 

54.19 

(0.3) 

53.77 

(0.24) 

55.05 

(0.2) 

51.6 

(0.08) 

51.44 

(0.11) 

52.31 

(0.15) 

53.36 

(0.28) 

53.45 

(0.33) 

 ˆ
ltτ  

61.95 

(0.33) 

56.08 

(0.27) 

51.18 

(0.19) 

50.73 

(0.15) 

50.24 

(0.09) 

P0 

S 0.01 0.01 0.03 0.03 0.04 

M 0.05 0.04 0.04 0.02 0.01 

L 0.01 0.02 0.03 0.05 0.06 

P2 

S 0.03 0.05 0.06 0.05 0.06 

M 0.09 0.08 0.07 0.06 0.05 

L 0.04 0.07 0.1 0.11 0.12 

P4 

S 0.04 0.07 0.07 0.08 0.09 

M 0.12 0.1 0.08 0.09 0.1 

L 0.06 0.08 0.11 0.16 0.15 

P6 

S 0.06 0.08 0.1 0.12 0.13 

M 0.16 0.13 0.15 0.13 0.1 

L 0.09 0.1 0.15 0.17 0.21 

P8 

S 0.08 0.09 0.1 0.12 0.11 

M 0.19 0.18 0.17 0.16 0.14 

L 0.1 0.11 0.16 0.18 0.19 

P10 

S 0.11 0.13 0.14 0.15 0.17 

M 0.28 0.25 0.23 0.22 0.19 

L 0.14 0.15 0.23 0.24 0.25 

 

 

 

Also, a step change is imposed at 50
th 

sample in 

Tables 3 and 4 under autocorrelation coefficients of 0.1 

and 0.9, respectively. Afterward, a linear disturbance is 

considered in parameters of the simple linear profile at 

50
th

 observation. These simulation runs are provided in 

Tables 5 and 6 under the same autocorrelation 

coefficients. 

In these tables, 𝜏̂,𝜏̂𝑠𝑐 , and 𝜏̂𝑙𝑡denote the mean of the 

proposed estimator, step estimator, and linear drift 

estimator, respectively and the corresponding standard 

errors of the estimators are shown in parentheses. 

Also, in each simulation run, E(T) is the expected value 

of the number of samples taken until the first alarm 

happens, so E(T) = ARL+50 for given shifts. Also, 

results contain precision (Pi) under the given shifts. 

They are the percent of results which distance of the 

estimated change point from the exact change point is 

ior less than iand here i is equal to 0, 2,…, 10. As seen 

in results, the obtained precision and accuracy by 

using three estimators approve satisfactory 

performance of the proposed estimator. In Tables 1 

and 2 which are under multiple changes, the estimators 

can estimate only the first change point. Results of 

Tables 1 to 4 show that the proposed isotonic estimator 

has superior performance in small to moderate shift 

sizes compared to the other estimators, when single or 

two step shift is exposed to parameters of simple linear 

profiles. However, in moderate to large shifts, step 

estimator has better performance because it is 

designed under the assumption of step change. Note 

that, drift estimator has worse performance than the 

other estimators under different shifts. Similarly, 

results of Tables 5 and 6 demonstrate that proposed 

change point estimator has better performance in the 

small to moderate shifts and drift estimator works 
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better than the other estimator under moderate to large 

shifts. Meanwhile, step change point estimator has 

worse performance than the other estimators under 

these shifts. It is proved that although ˆ
scτ and ˆ

ltτ are 

more accurate than the proposed estimator under the 

large shifts with assumptions of a step and drift change 

points respectively, isotonic change point estimator 

does not need any known assumption about the type of 

change. In addition, as shown in all of the tables, 

decreasing autocorrelation coefficient causes that the 

proposed estimator performs better than the other two 

estimators in terms of both accuracy and precision 

criteria. 

 

 

6. CARDINALITY AND COVERAGE PERCENTAGE 
OF CONFIDENCE SET ESTMATOR 
 

In this section, a confidence set for assumed D and δ 

values is a window including possible change points 

whose log likelihoods fall within the log-likelihood of 

the estimated change point (τ) minus determined 

reference value i.e. D. The number of points in the 

confidence set is referred to cardinality, and the 

probability of the coverage is estimated as a fraction of 

the cardinality of the confidence set to the number of 

samples taken until an alarm given by control chart 

(T). In this regard, Box and Cox [22] proposed 

constructing confidence region using the likelihood 

function by a confidence set according to following 

form: 

ˆ{ : log ( ) log ( ) },e eCS t L t L D    (18) 

in which ˆlog ( )e L  is the maximum of the log likelihood 

function achieved over all possible change points t. As 

seen in Equation (18), if the value of the log likelihood 

function at time t i.e. log ( )e L t  exceeds the maximum 

of the log likelihood function minus D, the t is 

included in the confidence set. We use critical values 

of D between 1 and 6 and different δ and δ' vectors to 

compute the cardinality and coverage percentage of 

confidence set estimator. Figure 1 provides a surface 

plot demonstrating the relationship among cardinality, 

coverage,δand D for the confidence set estimator. For 

instance, if the δ, δ', and D equal to (0.1,0.001), (0.2, 

0.005), and 6 respectively, the obtained confidence set 

will produce an expected cardinality close to 20, 21, 

and 22 for the proposed, step, and drift estimators, 

respectively. Also, percent of possible change points 

involve the estimated change point for the proposed, 

step and drift estimators are %95, %89, and %83, 

respectively. This figure demonstrates that the surface 

achieved from the confidence set of the proposed 

estimator superimposed on the surface obtained from 

confidence set of step and drift estimators shown with 

dashed surface under increasing two step changes. In 

other words, for any determined values of D, the 

confidence set estimator for drift and step changes will 

yield less coverage percentage and cardinality than the 

ones by the proposed estimator. 

 
 

7. A REAL CASE 
 
In this section, a case study is provided to show the 

performance of the proposed change point estimator in 

practice. In this regard, we apply a real data set in 

Soleimani et al.[18] taken from 10 apple trees which 

25 apples are fortuitously gathered on each tree.  

 

 

 

 

Figure 1. Estimated cardinality of confidence set and the 

corresponding coverage probability for drift, step, and 

proposed change point estimators under increasing two step 

changes. 
 

 

 

Figure 2. Comparison of the change point estimators for data 

of the apple trees under given isotonic shift in the slope 

parameter using the estimators. 
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Afterwards, these data are broken down to contain 

only the apples with the largest sizes to meet desirable 

values. Hence, the 80 apples with the largest size are 

remained in the data set from the existing 250 apples. 

Every 2 weeks for 12 weeks the diameter of each apple 

is evaluated. Consequently, there are 6 samples on 

each apple that constitutes a simple linear profile 

according to Schabenberger and Pierce [23].  

On another side, Durbin–Watson test results ratify 

which there are the AR (1) structure between 

observations in each profile. In this case, response and 

explanatory variables are apple diameter and time, 

respectively and the relationship between them is a 

critical quality characteristic as a profile that should be 

monitored over time. So, the AR (1) autocorrelated 

simple linear profile is simulated for each apple and is 

monitored by using Hotelling  T2  control chart. The 

data analysis provides 0.7 and 0.0004 as the correlation 

coefficient and variance of the data, respectively. Also, 

the regression parameters are as follows from 

Soleimani et al. [18]: 

𝑦𝑖𝑗
′ = 0.87 + 0.02𝑥′ + 𝜀𝑖𝑗 ,   

in which ρ is considered as 0.7. After applying the 

transformation method on the observations and 

monitoring the profiles, a step change with magnitude 

of the 0.005 is imposed in slope parameter of the 

regression model from 25
th

 profile. Then, the second 

shift is given in 30
th

 profile with slope of the linear trend 

disturbance 0.002. After that, the observations are 

simulated until the T
2 

control chart alarms. At the same 

time, the change point is estimated by the proposed 

method as well as the drift and step change point 

estimators. As shown, the proposed estimator 

outperforms an MLE designed for step and drift 

changes.  

 

 

8. CONCLUSION AND FUTURE RESEARCHES 
 

In this paper, an MLE was derived for simple linear 

profiles with AR(1) autocorrelation structure within 

each profile to estimate isotonic change point. The 

performance of the proposed estimator was appraised in 

terms of accuracy and precision. Also, the performance 

of the proposed estimator was compared to change 

point estimators derived for step change and linear drift 

under different shifts and autocorrelation coefficients. 

Furthermore, the performance of the proposed change 

point estimator was compared under increasing shifts in 

regression parameters in simple linear profiles. Based 

on the results, if regression parameters placed under a 

single step change, linear disturbance, and multiple 

changes, performance of the corresponding estimators 

are better than the others under large shifts. However, 

the proposed estimator indicated better results than the 

others for small and medium shifts. It is worth 

mentioning that knowing the type of change is a main 

assumption in deriving an MLE of step and linear trend 

shifts whereas knowing the change type is not essential 

in the proposed change point estimator. In addition, 

cardinality and coverage percent of a confidence set 

estimator was analyzed under a type of isotonic shift. 

The results showed that the performance of the 

proposed confidence set estimator was better than the 

confidence set estimator derived for step and drift 

changes. At last, the application of the proposed 

estimator was shown through a real case. Investigating 

the other methods such as clustering for isotonic change 

point estimation can be considered as future researches. 
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 هچكيد
 

 

های خطی ساده در بین شود. پروفایلگاهی اوقات رابطه بین متغیرهای مستقل و وابسته تحت عنوان پروفایل پایش می

اند. تحقیقاتی نیز در زمینه ها به دلیل کاربردهای آنها خصوصاً در کالیبراسیون بیشتر مورد توجه قرارگرفتهانواع پروفایل

ها زمانی که مشاهدات درون هرپروفایل خودهمبسته هستند وجود دارند. از طرف دیگر تخمین نقطه تغییر پایش پروفایل

-نمایی برای پروفایلشود. بنابراین در این مقاله یک برآوردکننده ماکزیمم درستمنجر به صرفه جویی در زمان و هزینه می

مرتبه اول در مشاهدات داخل هر پروفایل به منظور تخمین نقطه تغییر یکنوای  نهای خطی ساده خود همبسته اتورگرسیو

های تغییرات پله ای و تدریجی افزایشی پیشنهاد شده است. عملکرد برآوردکننده پیشنهادی ارزیابی شده و با برآوردکننده

ها نشان می شود. نتایج شبیه سازیه میشود. همچنین در ادامه یک مجموعه اطمینان برای برآورد کننده ارائنیز مقایسه می

دهد که برآوردکننده پیشنهادی در تغییرات کوچک و متوسط عملکرد بهتری دارد درحالیکه در تغییرات بزرگ عملکرد 

برآوردکننده های پله ای و تدریجی بهتر است. اما این نکته حائز اهمیت است که در برآوردکننده پیشنهادی دانستن نوع 

 برآورد عملکرد قبل لزومی ندارد و تنها کافی است که نوع تغییر از خانواده تغییرات یکنوای افزایشی باشد. نهایتاًتغییر از 

 .است شده داده نشان واقعی مثال یک با کننده

doi: 10.5829/idosi.ije.2015.28.07a.12 

 

 

 

 

 


