IJE TRANSACTIONS A: Basics Vol. 28, No. 7, (July 2015) 1059-1067

International Journal of Engineering

Journal Homepage: www.ije.ir

Isotonic Change Point Estimation in the AR(1) Autocorrelated Simple Linear Profiles

F. Vakilian, A. Amiri*, F. Sogandi

Industrial Engineering Department, Shahed University, Tehran, Iran

PAPER INFO

ABSTRACT

Paper history:

Received 12 April 2015

Received in revised form 02 June 2015
Accepted 11 June 2015

Keywords:

Simple Linear Profile
Isotonic Shift

Change Point Estimation
AR(1) Models

Phase II

Hotelling T?Control Chart

Sometimes the relationship between dependent and explanatory variable(s) known as profile is
monitored. Simple linear profiles among the other types of profiles have been more considered due to
their applications especially in calibration. There are some studies on the monitoring them when the
observations within each profile are autocorrelated. On the other hand, estimating the change point
leads to meet great saving time and costs. Hence, in this paper, a maximum likelihood estimator is
derived for simple linear profiles with first order autoregressive autocorrelation structure within each
profile to estimate isotonic change point. The performance of the proposed estimator is appraised and
compared to estimators that derived under step change and drift and a confidence set estimator
presented. The results demonstrate that the proposed estimator has better performance in small and
medium shifts whereas the performance of their corresponding estimators becomes better than the
proposed estimator in large shifts. It is worth mentioning that knowing type of the change is not
important in the proposed estimator and its only assumption is belonging of the change type to a family

of isotonic shifts. Finally, the performance of the estimator is illustrated through a real case.
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1. INTRODUCTION

In some statistical process control applications, the
relationship  between dependent and explanatory
variable (s) is monitored instead of monitoring a
univariate or multivariate quality characteristics. This
relationship which can be linear or nonlinear is known
as a profile. According to the relationship, there are
various types of profiles including simple linear profile,
multiple linear profile, polynomial profile, nonlinear
profile, waveform profile, spline profile and profiles
based on generalized linear models. Profiles have
different applications in manufacturing and service. A
number of researchers such as Kang and Albin [1] have
discussed practical applications of profiles. In the recent
years, monitoring profiles especially simple linear
profiles due to their applications especially in
calibration has been considered by many researchers.
Studies about monitoring profiles are done in two
phases. Many researchers such as Mahmoud et al. [2]
have studied Phase | monitoring of simple linear
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profiles. Also, there are many works on Phase Il
monitoring in which the parameters are assumed to be
known. Researchers such as Gupta et al. [3] have
Studied Phase Il monitoring of simple linear profiles.
Keramatpour et al. [4] proposed a remedial measure to
remove the effect of autocorrelation in monitoring of
autocorrelated polynomial profiles.

Many studies have been done by researchers on
monitoring simple linear profiles when the sampling
time between observations collapses and as a result the
observations are autocorrelated. Recently, Kamranrad
and Amiri [5] proposed a robust holt-winter based
control chart in Phase Il monitoring of a simple linear
profile under within profile autocorrelation and the
presence of outliers.

On the other hand, usually when the control chart
declares warning about the out-of-control status, it is
different with the real-time of the process change. Real-
time of change in process is known as change point. A
process may be in the out-of-control state due to
different change types including single-step change,
drift change, isotonic change, multiple-step changes,
and sporadic changes. Estimating the change point leads
to meet great saving on time and costs. Hence, many
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authors such as Noorossana and Shadman [6] have
studied change point estimation under different
situations. Also, many researchers studied estimation of
the change point in the area of profile monitoring.
Mahmoud et al. [2] derived an MLE for change point
estimation of simple linear profile based on LRT
method in Phase I. In this Phase. Sharafi et al. [7, 8]
proposed an MLE to identify the real time of step and
linear trend changes in monitoring of logistic regression
profiles, respectively. Also, Sharafi et al. [9, 10]
provided a maximum likelihood estimation approach for
estimating the time of drift and step changes in Poisson
profiles, respectively. Also, Kazemzadeh et al. [11]
extended an MLE for linear disturbance in the
parameters of multivariate linear regression profiles.
Shadman et al. [12] suggested a unified framework for
developing Phase | control charts in monitoring and
estimating of change point in generalized linear profiles.
Also, Sogandi and Amiri [13, 14] proposed step and
drift estimators in Gamma regression profiles,
respectively. Ayoubi et al. [15] developed the maximum
likelihood approach to estimate the sporadic changes in
the mean of multivariate linear profiles in Phase II.
Under the sporadic change, shifts can be occurred in any
directions and there is no knowledge about the change
type in prior. In this method, parameters are estimated
through filtering and smoothing approaches in dynamic
linear model. Recently, Khedmati and Niaki [16]
proposed a step change point estimator to find the real
time of the change in the regression parameters of the
AR(1) autocorrelated simple linear profiles in Phase I1.

The isotonic changes defined as a series of shifts
with the same direction in which the exact kind of shifts
are undetermined. Estimation of these changes has been
studied by many researchers. In this respect, for
example, Sogandi and Amiri [17] derived an MLE in
the Generalized Linear Model-based regression profiles
under the isotonic change in Phase I1.

2. PROBLEM FORMULATION

There are some studies on the monitoring of simple
linear profiles with assumption that the observations
within each profile are uncorrelated. However, this
assumption is sometimes violated in practice when the
sampling time between observations decreases. Hence,
it is assumed that for the i"observation in the j"sample,
when the process is under statistical control, the
relationship between the response variable and
independent variable can be written as:

Yij = bo + bix; + &, 1)

& = pei-1; + lip )

in whiche;’s are the autocorrelated residuals with
autoregressive  (AR(1)) structure and [;’s are
independently and identically distributed normal

random variables. [;;'s mean and variance are zero and

o?, respectively.l;; ~ NID (0,0%),|p| < 1. In Equation

(1), the x-values are assumed constant in each profile. In
this paper, we consider Phase Il analysis. In other
words, the values of parameters by, b; and o2 are
assumed to be known.

It can be shown that the autoregressive structure
between the error terms leads to autocorrelation
between observations in each profile. For monitoring
purpose, to deal with the effects of autocorrelation we
use the transformation method of Soleimani et al. [18].
The observation in each profile can be expressed as:

Yij = bo + bix; + € (3)

Yi-1j = bo+ bixi—1 + £i-1); 4)
by replacing y;; , y-1y; according to Equations (3) and
(4), we have

Yii =AYy = (g +byX + &) — p(og +by X + &4y ;) 5)
=Dby (1= p) +by (% = pXi_1) + (&5 = 5y )

and according to Equation (2), ;; = pe_1y; + 1;;,We have

Yij = PYi-1j = bo(1 = p) + by (x; — px;—1) + 1, (6)

where [, s are independent random variables with mean
zero and variances?. Hence, by using the transformed
variable y;;, a simple linear profile model with
independent residuals is obtained .

Yij = Yij = PYG-1)j » (7
X{ = X; — PXi_1» (8)
by = b,(1—p), ©9)
bi= b, . (10)

Using Equations (7) to (10), the equation y;; = by +
bix; +1;;."is obtained. Therefore, by using the
transformed variables x; and y;;a simple linear profile
model with independent residuals is obtained. Then,

ordinary least squares (OLS) method can be used to
estimate the regression parameters.

3. T> CONTROL CHARTS TO MONITOR SIMPLE
LINEAR PROFILES IN PHASE 11

We use a T2control to monitor the regression parameters
after applying transformation method discussed in
section 2. This transformation decreases the effect of
autocorrelation from the regression parameters and as a
result, we can easily monitor the regression parameters
over time. In this section, the T2 control chart proposed
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by Kang and Albin [1] is used to monitor the regression
coefficients. This chart is proposed based on the least
squares estimators of by and b;that have the bivariate

normal distribution. Estimator vector of z; = (E;),,E;j)T
is used to construct the statistic for j" sample. 5; and
bihave the bivariate normal distribution with mean
vector u and variance covariance matrix £ where u and
T are computed based on the following equation equal

— ! \NT — 0§ 001 H
tou = (b}, b})7and = (Gmaf), respectively.
In £, 6¢, ando? are variance of the estimator by and

by, respectively and oy, is the covariance between by
and by;. Then, T2 statistic is computed as follows:

17 = (5 ~u) 57 (z ~ u) (11)

when the process is in-control, the T? statistic follows a
central chi-square distribution with two degrees of
freedom. Hence, the upper control limit (UCL) for the
T2control chart is UCL=x3, , where xZ, is the 100 (1-
«) percentile of the chi-square distribution with two
degrees of freedom.

4. PROPOSED CHANGE POINT

ESTIMATOR

ISOTONIC

In this section, we concentrate on change point
estimation in the parameters of the simple linear profile
when that error terms are autocorrelated. The change
type considered in this paper is isotonic. We could use
the transformed observations, write down the likelihood
function based on the independent observations.
However, since, the joint likelihood function of the
AR(1) observations is available in the literature, surely,
using the distribution of the original variable leads to
more reliable results than the distribution of the
transformed observations. This is the reason we used the
distribution of the original variables.

The likelihood function of the AR(1) autocorrelated
processes is first reported by Perry and Pignatiello [19].
Since the observations within each profile are
autocorrelated based on the AR(1) model, we used this
likelihood function for the problem discussed. We
applied the mean of the first response variable (b, +b,x,

) and the other responses (&, + py,_,); ) and write down

the likelihood function for observations within each
profile. Through multiplying the likelihood functions of
each profile until a signal is given by the T2 control
chart, the following likelihood function is obtained:

-n
2 1

T T 2
L(bmblvrl)/) = Hl f(yliyij ----- yni) = jl;[l{(ZITO'Z) (1—p2>2 X

12)
Exp [2;%2{(1_,02 )( Yij _(bo‘*'bixl))z‘*'_%( V5= =PYn; )2 ” )

where o, = ¢, — pg,,,; — I is the location parameter and

T is the number of the first profile which falls out of the
UCL. After some times and in unknown profile ¢, the
process becomes out-of-control. In fact, for profiles j=1,
2,...7, the value of regression parameters are equal to

(By(iny+ Byiny) @nd for profiles j= ¢ +1, 7 +2, ...T, these
values change to (b, 0y ), respectively. So, the
logarithm of the likelihood function is equal to

z —n 1
Log (L(bo,bl,r|y)) = jEllog[(Zno-z) 2 (1—,32)2] +

2

él{_l {(1‘ pz)(yij - (boum * bl(in)*l)) * -gz(yij ~ Oy ~ PV )Z}:‘

202 1=
T a1 T (13)
i j_ZH].IOQ[(Z”o'Z) 2 (l_pZ)zJ : j:%{][?; {(1—p2)(y1j—(b0j(om)

n 2
+blj(out)xl))2 +_22(yij —3ij(out) —PY(i-1) j ) D .
i=

estimate of vector bj =

(bojcouty, bijoury) fOr j=7+17+2,.., T in Equation (13),
the change point estimator is computed as follows:

By replacing the

_ T r1ra 2
7 = arg max{ > {g{(l—pz)(ylj—(boj(ou[)erlj(out)xl)) +

j=r+1

2 T _
iznlz()’ij*‘sij(oul)’,ay(ifl)j) H 2 [ﬁ {(Pﬂz)(y”*(bo(in) (14)

j=r+l

2
2N o
+b1(m)X1) i§2(y|j7bl(|n)7PY(i—l)j) H][

To estimate parameter T, the matrix
Br, =(,,.b,,, ..by)should be estimated. Hence,

initial estimates of each parameters of the vector b, are
needed. Hence, we use

~ b, if by = bj,forj=17+1,..,T and
b_{ofo ) for j (15)

77 b ifby<bjforj=t+1,.,T
We can estimate b;by solving the following convex
program:

T . R ) 2
a's:?fx%,-_éﬂ[ziW)(vu—<bwom>+bu<omxi>) .

o

i -—%ﬂ[ziz ([ CEO)

g ( 5 )2
Yij ~%ij(out) ~PY(i-1) j
i=2 J= o

n 2
+bi(in)xl)ZEZ(Yij _é‘i(in)_py(ifl)j) H} ,

subjectto b; > b;_,forj=7+1,..,T.
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We fit isotonic regression to each parameter of the
vector b;similar to Perry et al. [20] to find the estimator
of vectorb; forj =7 +1,..,T.

[b;] =1([b;]forj =7 +1,...T an

Among the isotonic regression algorithms, the pool
adjacent violators (PAV) algorithm described by Best
and Chakravarti [21] is more well-known and so it is
used in this paper. Generally, the algorithm of the
proposed method in detecting and change point
estimation is given as follows step by step:

Step 1: Capturing signal from T? control chart during
monitoring the process.

Step 2: Obtaining the likelihood function of joint
probability distribution of AR(1) autocorrelated
observations.

Step 3: Applying the PAV algorithm to estimate out-of-
control parameters for =1, 2, ...,T-1.

Step 4: Obtaining likelihood function for =1, 2 ..., T-
1.

Step 5: Estimating the change point using maximum of
the log likelihood function achieved over all possible
change points.

5. SIMULATION STUDIES

In this section, Monte Carlo simulation is utilized to
evaluate performance of the proposed estimator in terms
of precision and accuracy criteria in the AR(1)
autocorrelated simple linear profile. Also, the obtained
results from the proposed estimator are compared to
estimators derived under step change and linear drift.
Also, it is assumed that the regression model of the
AR(1) autocorrelated simple linear profile under in-
control state is equal to y;; = 3 + 2x; + ¢;;, in which ¢;’s
are the autocorrelated error terms with first-order
autoregressive structure according to the following
equation:
&j = pEa-n; t lijs

Where 1;’s are independently and identically distributed
normal random variables with mean zero and variance
1. Moreover, four levels equal to 2, 4, 6, 8 are
considered for explanatory variable in all of the profiles.
To monitor the profiles, we use the T2control chart with
probability of Type | error equal to 0.005. Thus, the
UCL is equal to x,0s= 10.59. On the other hand, the
explanatory variable and the obtained values for the
response variables are transformed according to
Soleimani et al. [18]. Hence, the T? statistics are
computed for all samples according to the transformed
variables. Without loss of generality, it is assumed that
the type of changes is isotonic. We investigate
performance of the proposed estimator under the two
step changes. It is assumed that the real change point
value is equal to = = 50. Hence, the first 50 profiles are

simulated from AR(1) autocorrelated simple linear
profile with known vector of parameters equal to (3, 2)
for in-control state. If statistics fall out of the UCL
during the generating of the 50 profiles, it is considered
as a false alarm, so the observations are regenerated
instead of them. Because, it is assumed that
observations are generated under the in-control state.
After 50" profile, the increasing changes are occurred in
the parameters of the regression model according
to(3+6;,2+6,). In addition, after 60" profile,
observations are generated from the out-of-control
process with (3 + &1, 2 + §3)vector such that 8'>8 until
the TZcontrol chart alarms due to occurrence of an
assignable cause. At this time, the corresponding
estimators are used to estimate the real time of the first
change. The mentioned procedure is repeated 5000 times
under different shifts in the 50" and 60™ profiles to
appraise performances of the proposed estimator and
estimators derived under step change and linear drift.
The results are summarized under the weak and strong
autocorrelation coefficient equal to 0.1and 0.9 in Tables
1 and 2, respectively to compare performance of the
step, drift and the proposed estimators.

TABLE 1. Accuracy and precision performances of the step,
linear drift, and monotonic MLEs under a multiple step
change in the parameters of simple linear profiles with 5000
simulation runs and 7 =50 and p = 0.1.

Shifts
(01, 02)
(01, 02)

(0.1,0.001) (0.2,0.005) (0.4,0.01) (0.6,0.05)  (0.8,0.08)
(0.2,0.005) (0.4.01) (0.6,.05) (0.8,0.08) (1,0.1)

E(T) 13454 130.4 128.11 114.13 107.25

>
g 5312 5275 5216 5185 50.65
g s (051) (047) (0.26) (0.11)  (0.09)
< . 50.74 5154 5285 5321  53.33
T (008 (019 (025 (037)  (0.4)
. 5511 5422 5435 5398 5385
Ut (055) (048 (037)  (03)  (0.24)
s 016 017 018 0.19 0.2
P M 0.21 02 017 0.15 0.16
L 011 011 012 0.12 0.13
S 019 021 022 0.26 0.27
P, M 026 024 023 0.21 0.2
L 014 016 017 0.17 0.18
s 022 024 025 0.28 0.31
P, M 0.33 03 0.28 0.28 0.26
L 018 019 019 0.2 0.21
s 0.27 03 031 0.33 0.34
Po M 0.4 038 036 0.36 0.35
L 021 022 023 0.25 0.26
s 03 032  0.38 0.41 0.43
P M 046 044 042 0.4 0.38
L 028 029 03 03 0.32
s 031 033 039 0.42 0.44
Po M 05 048 043 0.41 0.4
L 029 031 032 0.33 0.34




1063 F. Vakilian et al./ IJE TRANSACTIONS A: Basics Vol. 28, No. 7, (July 2015) 1059-1067

TABLE 2. Accuracy and precision performances of the step, S 02 0.22 0.23 0.27 0.29
linear drift, and monotonic MLEs under a multiple step
change in the parameters of simple linear profiles with 5000 P2 M 0.27 0.25 0.24 0.22 0.21
simulation runs and 7 =50 and p = 0.9. L 0.14 0.16 0.17 0.19 0.19
ih“;ts 10.1,0.001) (0.2,0.005) (0.40.01) (0.6,0.01) (0.8,0.05) S 0.23 0.25 0.27 0.2 03
E(;‘ JZ; (0.2,0.005) (0.4,.01) (0.6,.05)  (0.8,0.05)  (1,0.08) P, M 0.33 0.3 0.29 0.28 0.26
1, 02,
E(T) 11411 10342 10012 9831 97.25 L 0.19 02 021 021 0.23
> 53.2 52.95 52.15 51.95 50.7 S 0.28 031 0.32 034 034
g Tse (0.52) (0.49) (0.37) (0.25) (0.08) Pe M 0.4 0.38 0.36 0.35 0.35
§ R 5074 5154 5285 5321 5333 L 0.2 0.21 0.22 0.23 0.26
T
(0.2) 0.2) (0.25)  (0.38)  (0.41) S 0.31 0.33 0.38 0.41 0.43
N 55.11 54.22 54.35 53.98 53.45 Ps M 0.47 0.45 0.43 0.42 0.38
Tit
(0.56)  (0.49) (0.38) (0.31) (0.25) L 0.28 029 03 031 0.32
S 01 0.11 0.12 0.14 0.14 S 0.33 0.35 0.39 0.43 0.44
Po M 0.15 0.13 0.12 0.12 0.1
Po M 0.48 0.46 0.44 0.4 0.4
L 0.06 0.07 0.08 0.08 0.09
L 0.3 0.31 0.32 0.33 0.34
S 0.11 0.12 0.13 0.14 0.16
P, M 0.16 0.15 0.14 0.12 0.1
L 0.08 0.09 0.09 0.1 0.13 TABLE 4. Accuracy and precision performances of the step,
S 0.18 0.19 0.21 0.22 0.23 linear drift, ?nq islot(?_nic MLEfs_IundgrhaS&t)%p phar;gt_a in the
arameters of simple linear profiles witl simulation runs
P,y M 0.3 0.27 0.2 0.2 0.19 P _ P P
and7=50and p = 0.9.
L 0.15 0.16 0.15 0.17 0.18 hifts
s 02 021 0.23 024 0.29 015 (0.1,0001) (0.2,0.005) (0.40.01) (0.60.05)  (0.8,0.08)
Ps M 0.36 0.34 0.21 0.22 0.19 EM 12464 13034 11772 1154  107.34
L 016 015 013 0.1 0.1 3 5521 5455 5426 5298 5185
S 025 026 031 0.3 033 = ¥ (05 (046) (036) (0.23)  (0.21)
(&)
P M 037 036 029 028 026 £ ¢ 5094 5164 5299 5343  53.75
L 0.2 0.21 0.23 0.25 0.27 (01) (0.15) (0.24)  (0.36)  (0.37)
S 0.27 0.29 033 0.35 04 : 5641 5435 5485 5398  53.88
P1o M 0.41 0.42 0.38 0.36 0.34 It (51 (04) (036) (032)  (0.37)
L 0.21 0.23 0.25 0.29 0.32 Po S 0.17 0.18 0.19 0.2 0.23
M 0.24 0.23 0.19 0.17 0.16
. L 0.11 0.12 0.13 0.14 0.14
TABLE 3. Accuracy and precision performances of the step,
linear drift, and isotonic MLEs under a step change in the P2 S 021 023 024 028 03
parameters of simple linear profiles with 5000 simulation runs M 0.28 0.26 0.25 0.23 0.22
andr=50andp = 0.1. L 016 018 019 021 0.23
Shifts P, S 024 026 028 03 0.33
01, 0 0.1,0.001) (0.2,0.005) (0.4,0.01) (0.6,0.05) (0.8,0.08
(01, 02) ( ) ( ) ( ) ( ) ( ) M 035 0.32 03 03 0.28
(01, 02)
E(T) 13564 13124 1277 14531  117.22 L 02 021 022 022 023
§ A 54.12 53.75 53.16 5285 51.65 Pe S 0.32 0.32 0.33 0.35 0.36
5 I'ss  (0.5) (0.46) (0.35) (0.24) (0.2) M 0.4 0.4 0.38 0.37 0.35
< | 5074 5154 5285 5321  53.33 L 0.24 0.24 0.25 0.27 0.28
T
(0.09)  (0.15)  (0.25) (037)  (0.37) Ps S 0.32 0.34 0.39 0.43 0.45
. 56.21 54.15 54.55 53.78 53.25 M 0.48 0.46 0.44 0.42 0.39
Tt
05 (042  (03) (032 (039 L 03 029 03 032 034
S 0.18 0.19 02 0.22 0.24 P S 0.33 0.35 0.4 0.42 0.45
Py M 0.23 0.25 0.19 0.17 0.15
M 05 0.48 0.44 0.4 0.38
L 0.11 0.12 0.12 0.13 0.13
L 0.31 0.33 0.35 0.36 0.37
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TABLE 5. Accuracy and precision performances of the step,

linear drift, and isotonic MLEs under a disturbance linear
trend in the parameters of simple linear profiles with 5000

simulation runs and 7 =50 and p = 0.1.

Shift 0.001 0.002 0.006 0.009 0.01

E(T) 157.61 154.4 150.34 144.25 132.3
62.81 56.75 54.17 53.41 54.98

g 023 (025  (0.3) 0.24)  (0.2)
2
2 5125 5138 522 5326  53.89
01) (019  (0.27) 03)  (0.32)
R 61.06 5445 5234 5125  50.89
it (36 (029) (0.25)  (0.14)  (0.08)
S 0.02 0.02 0.03 0.04 0.05
P M 0.06 0.05 0.05 0.03 0.02
L 0.03 0.03 0.04 0.06 0.07
S 0.04 0.06 0.07 0.06 0.09
P, M 0.1 0.09 0.08 0.07 0.06
L 0.05 0.07 011 0.12 013
S 0.05 0.08 0.09 0.09 0.1
PR M 0.14 0.1 0.09 0.1 0.12
L 0.07 0.09 0.14 0.18 0.27
S 0.07 0.1 011 0.12 0.13
Pe M 0.19 0.18 017 0.5 0.14
L 0.09 0.1 0.16 0.17 021
S 0.1 0.1 012 0.13 0.12
P M 02 0.19 0.8 0.16 0.5
L 0.1 0.12 0.8 0.19 0.2
S 0.12 0.13 0.15 0.16 0.17
Po M 0.29 0.26 0.24 0.23 021
L 0.5 017 0.24 0.25 0.26

S 0.03 0.05 0.06 0.05 0.06
P, M 0.09 0.08 0.07 0.06 0.05
L 0.04 0.07 0.1 0.11 0.12
S 0.04 0.07 0.07 0.08 0.09
P M 0.12 0.1 0.08 0.09 0.1
L 0.06 0.08 0.11 0.16 0.15
S 0.06 0.08 0.1 0.12 0.13
Ps M 0.16 0.13 0.15 0.13 0.1
L 0.09 0.1 0.15 0.17 0.21
S 0.08 0.09 0.1 0.12 0.11
Ps M 0.19 0.18 0.17 0.16 0.14
L 0.1 0.11 0.16 0.18 0.19
S 0.11 0.13 0.14 0.15 0.17
P M 0.28 0.25 0.23 0.22 0.19
L 0.14 0.15 0.23 0.24 0.25

TABLE 6. Accuracy and precision performances of the step,
linear drift, and isotonic MLEs under a single step change in
the parameters of simple linear profiles with 5000 simulation
runsand7 =50 and p = 0.9.

Shift 0.001 0.002 0.006 0.009 0.01

E(T) 157.61 154.44  150.34 144.25 132.3
63.66 56.9 54.19 53.77 55.05

>
Q
g (0.23)  (025)  (0.3) 0.24)  (0.2)
g 51.6 5144 5231 5336  53.45
008  (011)  (0.15) (0.28)  (0.33)
R 61.95  56.08 5118 5073 50.24
Bt (033  (027)  (0.19) (0.15)  (0.09)
s 0.01 0.01 0.03 003 004
P M 0.05 0.04 0.04 0.02 0.01
L 0.01 0.02 0.03 005 006

Also, a step change is imposed at 50" sample in
Tables 3 and 4 under autocorrelation coefficients of 0.1
and 0.9, respectively. Afterward, a linear disturbance is
considered in parameters of the simple linear profile at
50" observation. These simulation runs are provided in
Tables 5 and 6 under the same autocorrelation
coefficients.

In these tables, £,%., and £;.denote the mean of the
proposed estimator, step estimator, and linear drift
estimator, respectively and the corresponding standard
errors of the estimators are shown in parentheses.
Also, in each simulation run, E(T) is the expected value
of the number of samples taken until the first alarm
happens, so E(T) = ARL+50 for given shifts. Also,
results contain precision (P;) under the given shifts.
They are the percent of results which distance of the
estimated change point from the exact change point is
ior less than iand here i is equal to 0, 2,..., 10. As seen
in results, the obtained precision and accuracy by
using three estimators approve  satisfactory
performance of the proposed estimator. In Tables 1
and 2 which are under multiple changes, the estimators
can estimate only the first change point. Results of
Tables 1 to 4 show that the proposed isotonic estimator
has superior performance in small to moderate shift
sizes compared to the other estimators, when single or
two step shift is exposed to parameters of simple linear
profiles. However, in moderate to large shifts, step
estimator has better performance because it is
designed under the assumption of step change. Note
that, drift estimator has worse performance than the
other estimators under different shifts. Similarly,
results of Tables 5 and 6 demonstrate that proposed
change point estimator has better performance in the
small to moderate shifts and drift estimator works
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better than the other estimator under moderate to large
shifts. Meanwhile, step change point estimator has
worse performance than the other estimators under

these shifts. It is proved that although 7. and 7, are

more accurate than the proposed estimator under the
large shifts with assumptions of a step and drift change
points respectively, isotonic change point estimator
does not need any known assumption about the type of
change. In addition, as shown in all of the tables,
decreasing autocorrelation coefficient causes that the
proposed estimator performs better than the other two
estimators in terms of both accuracy and precision
criteria.

6. CARDINALITY AND COVERAGE PERCENTAGE

OF CONFIDENCE SET ESTMATOR

In this section, a confidence set for assumed D and &
values is a window including possible change points
whose log likelihoods fall within the log-likelihood of
the estimated change point (z) minus determined
reference value i.e. D. The number of points in the
confidence set is referred to cardinality, and the
probability of the coverage is estimated as a fraction of
the cardinality of the confidence set to the number of
samples taken until an alarm given by control chart
(T). In this regard, Box and Cox [22] proposed
constructing confidence region using the likelihood
function by a confidence set according to following
form:

CS ={t:log, L(t) > log, L(7) - D}, (18)

in which log, L(7)is the maximum of the log likelihood

function achieved over all possible change points t. As
seen in Equation (18), if the value of the log likelihood

function at time t i.e.log, L(t) exceeds the maximum

of the log likelihood function minus D, the t is
included in the confidence set. We use critical values
of D between 1 and 6 and different  and &' vectors to
compute the cardinality and coverage percentage of
confidence set estimator. Figure 1 provides a surface
plot demonstrating the relationship among cardinality,
coverage,dand D for the confidence set estimator. For
instance, if the &, &', and D equal to (0.1,0.001), (0.2,
0.005), and 6 respectively, the obtained confidence set
will produce an expected cardinality close to 20, 21,
and 22 for the proposed, step, and drift estimators,
respectively. Also, percent of possible change points
involve the estimated change point for the proposed,
step and drift estimators are %95, %89, and %83,
respectively. This figure demonstrates that the surface
achieved from the confidence set of the proposed
estimator superimposed on the surface obtained from

confidence set of step and drift estimators shown with
dashed surface under increasing two step changes. In
other words, for any determined values of D, the
confidence set estimator for drift and step changes will
yield less coverage percentage and cardinality than the
ones by the proposed estimator.

7. A REAL CASE

In this section, a case study is provided to show the
performance of the proposed change point estimator in
practice. In this regard, we apply a real data set in
Soleimani et al.[18] taken from 10 apple trees which
25 apples are fortuitously gathered on each tree.

81(101), 8,(10%)

(1,0.1), (2,0.5
(5.2,(6,5)

(6,507
(7.7).8.8)
(8.8).(1,10)

08

0.6

Coverage

04 Step estimator

Drift estimator

Proposed estimator

5 ll() 1‘5 2‘0 2I5 3‘0 3‘5 4‘ 0 4I5
Cardinality

Figure 1. Estimated cardinality of confidence set and the

corresponding coverage probability for drift, step, and

proposed change point estimators under increasing two step

changes.

Estimated change point
using drift estimator

Estimated change
point using monotonic

6 b estimator Estimated change point

using step estimaftor

T" Hoteling Statistic

2

P First true change point

0 10 20 30 40 50 60
Sample Number
Figure 2. Comparison of the change point estimators for data

of the apple trees under given isotonic shift in the slope
parameter using the estimators.
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Afterwards, these data are broken down to contain
only the apples with the largest sizes to meet desirable
values. Hence, the 80 apples with the largest size are
remained in the data set from the existing 250 apples.
Every 2 weeks for 12 weeks the diameter of each apple
is evaluated. Consequently, there are 6 samples on
each apple that constitutes a simple linear profile
according to Schabenberger and Pierce [23].

On another side, Durbin—Watson test results ratify
which there are the AR (1) structure between
observations in each profile. In this case, response and
explanatory variables are apple diameter and time,
respectively and the relationship between them is a
critical quality characteristic as a profile that should be
monitored over time. So, the AR (1) autocorrelated
simple linear profile is simulated for each apple and is
monitored by using Hotelling T2 control chart. The
data analysis provides 0.7 and 0.0004 as the correlation
coefficient and variance of the data, respectively. Also,
the regression parameters are as follows from
Soleimani et al. [18]:

yi; = 0.87 +0.02x" + &5,

in which p is considered as 0.7. After applying the
transformation method on the observations and
monitoring the profiles, a step change with magnitude
of the 0.005 is imposed in slope parameter of the
regression model from 25" profile. Then, the second
shift is given in 30" profile with slope of the linear trend
disturbance 0.002. After that, the observations are
simulated until the T? control chart alarms. At the same
time, the change point is estimated by the proposed
method as well as the drift and step change point
estimators. As shown, the proposed estimator
outperforms an MLE designed for step and drift
changes.

8. CONCLUSION AND FUTURE RESEARCHES

In this paper, an MLE was derived for simple linear
profiles with AR(1) autocorrelation structure within
each profile to estimate isotonic change point. The
performance of the proposed estimator was appraised in
terms of accuracy and precision. Also, the performance
of the proposed estimator was compared to change
point estimators derived for step change and linear drift
under different shifts and autocorrelation coefficients.
Furthermore, the performance of the proposed change
point estimator was compared under increasing shifts in
regression parameters in simple linear profiles. Based
on the results, if regression parameters placed under a
single step change, linear disturbance, and multiple
changes, performance of the corresponding estimators
are better than the others under large shifts. However,
the proposed estimator indicated better results than the
others for small and medium shifts. It is worth

mentioning that knowing the type of change is a main
assumption in deriving an MLE of step and linear trend
shifts whereas knowing the change type is not essential
in the proposed change point estimator. In addition,
cardinality and coverage percent of a confidence set
estimator was analyzed under a type of isotonic shift.
The results showed that the performance of the
proposed confidence set estimator was better than the
confidence set estimator derived for step and drift
changes. At last, the application of the proposed
estimator was shown through a real case. Investigating
the other methods such as clustering for isotonic change
point estimation can be considered as future researches.
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