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A B S T R A C T  
 

 

Material selection is one of the major challenges in manufacturing systems. The improper selection 
may lead to failure in the production processes and result in customer dissatisfaction and cost 
inefficiency. Every material has different properties which should be considered as major criteria 
during the material selection. Selection criteria could be quantitative or qualitative. Quantifying the 
performance of qualitative criteria is an inevitable issue in the multi criteria decision making (MCDM) 
problems. In this paper, a common weight data envelopment analysis (CWDEA) model is applied for 
the material selection problem which accounts for both quantitative and qualitative criteria in an 
effective manner. Through a numerical example borrowed from the literature, it is shown that CWDEA 
is not able to produce a full ranking vector in this case. Accordingly, the problem is solved under 
different normalization methods and the resulting ranking vectors are then aggregated by the linear 
assignment method to generate a final full ranking vector. 
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1. INTRODUCTION1 
 
Choosing the appropriate set of material required for 
production processes from a large group of alternatives 
is a challenging issue in the presence of different 
qualitative and/or quantitative properties of material. 
Selecting the most suitable material is of vital 
importance in the initial stage of process 
design/redesign in the product life cycle [1, 2]. Material 
properties could include physical, magnetic, 
mechanical, chemical and manufacturing properties 
along with cost, availability, cultural aspects, etc. [3]. 
Low-quality products, failure in manufacturing 
processes, extra costs and so on are examples of 
unwanted outcomes originating from improper material 
selection. The importance of selecting the best set of 
materials is to achieve the best production conditions 
according to conflicting criteria and requirements. Most 
of the multi-criteria decision making (MCDM) methods 
like TOPSIS and data envelopment analysis (DEA) 
could be preferred for use in this context because of 
                                                        
1*Corresponding Author’s Email: satorabi@ut.ac.ir (S. A. Torabi) 

their simplicity and ease of applicability. Almost, 
majority of MCDM techniques consist of generating 
alternatives, considering attributes (i.e. criteria) and 
assessment of alternatives according to the weights of 
criteria. MCDM techniques assist decision makers in 
selecting the best alternative in the presence of several 
qualitative and/or quantitative criteria. Selecting the 
most suitable material among a set of alternatives is a 
multi-attribute decision making (MADM) problem. 
Several methods have been proposed to solve the 
material selection problem so far and each of them has 
its own advantages and deficiencies. Usually, there are 
various alternatives with several criteria which should 
be considered in the material selection process. Criteria 
may be of quantitative or qualitative type, and in 
conflict with one another. Also, criteria could be 
grouped into beneficial and non-beneficial classes. 
Those criteria for which a higher performance value is 
more desirable are called beneficial, such as fatigue 
limit as a physical characteristic of some material. On 
the other hand, those for which a lower performance 
value is more favorable are called non-beneficial criteria 
such as cost, risk, etc. Majority of decision making 
problems involve a mixture of beneficial and non-
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beneficial criteria. Accordingly, criteria should be 
consistent with each other and may have positive and/or 
negative effects on the decision process when deciding 
to solve these problems. It is suggested to transform the 
non-beneficial criteria into beneficial form with 
inversing the values of non-beneficial criteria  [4]. 
Besides, some normalization methods can be applied to 
avoid any scaling problem while making all criteria as 
beneficial ones. 

As mentioned before, MCDM approaches are 
commonly used in material selection problems. Jee and 
kang [5] utilized TOPSIS method to find the best 
material in flywheel. Shanian and Savadago [6] used 
TOPSIS to rank candidate materials in the problem of 
metallic bipolar plates for polymer electrolyte fuel cell. 
They used Ordinary and Block TOPSIS to improve 
efficiency of their proposed procedure. Rao and Davim 
[3] presented a procedure which is a combination of 
TOPSIS and AHP method and is able to consider 
infinite number of quantitative and qualitative attributes. 
Analytic Network Process (ANP) enables the decision 
maker to have feedbacks and investigate interactions 
between criteria and alternatives. Also, fuzzy AHP 
(FAHP) could be helpful when available data are 
imprcise as Kaboli et al. implemented FAHP for 
location problems [7]. Also, Mousavi et al. [8] proposed 
a MCDM approach with interval numbers which could 
be helpful when facing uncertainties. Their approach is 
based on decision tree (DT) and TOPISIS techniques. 
Jahan et al. [9] proposed a new normalization method 
and extended TOPSIS method. The presented 
normalization method is able to address both beneficial 
and non-beneficial criteria, and target values of criteria 
along with capability of overcoming difficulties in some 
cases where the current version of TOPSIS is deficient 
in selecting the best alternative. Jahan et al. [10] 
provided a new version of VIKOR for solving the 
problem by developing a novel normalization method 
and considering the target value of criteria. This new 
version of VIKOR method promotes the exactness of 
material selection especially in biomedical problems 
related to human subjects. Tavakkoli-Moghadam et al. 
[11] states that combination of AHP and VIKOR gives 
more power to decision makers which helps to more 
exploit implicit and explicit information. Chatterjee et 
al. [12] utilized ELECTRE and VIKOR as outranking 
and compromising methods, respectively, where the 
flywheel and the sailing-boat mast are investigated in 
the form of a hollow cylinder [13] problem. ELECTRE 
III is employed to solve the gear material selection 
problem by Milani and Shanian [14] by considering 
uncertainty and incomplete data, designer’s preference 
and criteria trade-off. Also, Shanian and Savadogo [15] 
used ELECTRE IV as a non-compensatory solution in 
the bi-polar plates for polymer electrolyte membrane 
fuel cell. A new approach of material selection is 

proposed based on PROMETHEE method by Jiao et al. 
[16] and they claim that PROMETHEE performs better 
than ELECTRE in material selection and uses more 
candidate information. The major advantage of the 
proposed method is that it is not necessary for using 
normalization procedures. Different normalization 
procedures can produce different results. Chan and 
Tong [17] applied Grey Rational Analysis for material 
selection problem. They provided a new methodology 
and considered environmental factors besides technical 
and economic factors. Milani et al. [18] investigated the 
material selection problem based on ANP concept. They 
assigned different weighting factors to clusters and 
studied their impacts on final results. Final ranking may 
vary due to considering inner and outer dependencies 
between criteria and alternatives. So, a case study is 
provided to show the different results obtained by ANP 
and AHP methods. Milani et al. [19] evaluated different 
normalization techniques and their effects on final 
rankings in material selection problems. Entropy and 
TOPSIS are employed to rank candidate materials for 
producing gear for power transmission. Chatterjee and 
Chakraborty [20] employed four preference MCDM 
methods for solving the gear problem: PROMTHEE II, 
complex proportional assessment of alternatives with 
gray relations, operational competitiveness rating 
analysis and ORESTE.  

Chatterjee et al. [21] developed two new MCDM 
methods for material selection involving: complex 
proportional assessment (COPRAS) and evaluation of 
mixed data (EVAMIX) and compared the results of 
these two methods with those of previous methods. 
Preference Selection Index (PSI) is employed as a new 
method in decision making by Maniya and Bhatt [22] to 
solve the material selection problem. Mayyas et al. [23] 
applied Quality Function Deployment (QFD) as a tool 
for gathering customer needs in a vehicular structure 
problem. Then, the AHP approach is used to select the 
best material in order to meet customer needs. Also, 
Cavallini et al. [24] tried to use QFD to identify 
customer needs, integrate them into products or 
services, and implemented VIKOR to find the most 
suitable material according to the QFD results. Yang 
and Ju[25] presented a novel fuzzy MADM method 
with uncertain linguistic information. Liu et al. [26] 
presented a hybrid MCDM model including the 
DEMATEL, ANP and VIKOR for solving the material 
selection problem. Liu et al. [27] proposed an interval 2-
tuple linguistiv VIKOR for the situation where data are 
uncertain or incomplete. Peng and Xiao [28] proposed a 
mixed MADM method including the PROMETHEE and 
ANP for selecting the proper material. They utilized 
ANP to find weights of criteria, and then PROMETHEE 
to obtain alternative rankings. Anojkumar et al. [29] 
applied four MCDM methods (i.e. fuzzy AHP-TOPSIS, 
fuzzy AHP-VIFKOR, fuzzy AHP-ELECTRE, and fuzzy 
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AHP-PROMTHEE) on the material selection problem 
and compared their performance and applicability. 

Jahan et al. [30] proposed the linear assignment 
method by considering different criteria for materials. 
The proposed method is also applicable when both 
quantitative and qualitative properties and attributes are 
considered. Implementing this linear program results in 
better performance in comparison with other MCDM 
methods such as VIKOR, ELECTRE, etc. Another 
advantage of the proposed model is that it does not need 
to normalize criteria performances. Athawale et al. [31] 
used Utility Additive Method (UTA) to solve material 
selection problem in flywheel and sail-boat problems. 
They used UTA in order to make an approximation of 
non-linear additive function by linear programming . 

Since the first studies on material selection 
problems, various MCDM approaches have been 
developed to find the most appropriate material. 
However, they are not accurate enough especially in 
dealing with qualitative criteria. Past methods often use 
linguistic approaches like Likert scale on qualitative 
criteria to transform them into quantitative values. In the 
Likert scale, a number from one (1) to nine (9) is 
allocated to qualitative performances in a way that the 
nine (9) is assigned to the best performance and one (1) 
to the worst. In this paper, a well-used test problem in 
the literature (i.e. the flywheel problem [5]) is solved 
with more attention to qualitative criteria. The common 
weight DEA (CWDEA) model proposed by Hatefi et al. 
[32] that is originated from DEA model [33], is adopted 
here which is able to calculate weights of criteria in an 
objective and precise way especially in the presence of 
both quantitative and qualitative criteria. Requiring less 
information to be asked from expert is another 
advantage of this method. The model is implemented to 
provide a reliable ranking for the material selection 
problem. The results are compared with those of 
previous works and effects of different normalization 
methods on the final results are also investigated. 

 
 

2. PROPOSED MADM TECHNIQUE 
 
Data Envelopment Analysis (DEA) is a linear 
programming method which evaluates the relative 
efficiency of some homogeneous Decision Making 
Units (DMU). DEA is easy to understand and quite 
simple in computations. Moreover, less information is 
required in order to calculate the DMUs efficiencies. 

Ramahatan [4] proposed a weighted linear 
optimization model to obtain the efficiency for each 
DMU. The Ramahatan’s model [4] measures the 
efficiency of each DMU in the range of [0, 1]. A higher 
value for objective function represents a better 
performance. So, the efficiency value 1 is assigned to 

the best DMU according to the considered criteria. The 
model is presented below: 

1

1

 
M

ij ij
j

Max v y
=

∑  
(1) 

1

1

1         1, ,
M

ij nj
j

v y n N
=

≤ = …∑  
(2) 

0           1, 2, , 1ijv j M≥ = …  (3) 

It is assumed that there are M1 quantitative criteria. yij is 
the performance of ith DMU, when jth criterion is under 
consideration and vij denotes the weight of jth criterion 
with respect to DMU i. This model should be solved for 
each DMU separately. The values obtained for objective 
function indicate the DMUs efficiencies. Hatefi et al. 
[32] modified the previous model by assuming that 
there are also M2 qualitative criteria and solved the 
ABC classification problem to validate their proposed 
model. The modified linear optimization DEA model 
proposed by Hatefi et al. [32] is as follows: 
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It is assumed that qualitative criteria can be 
categorized into L levels. For example, suppose that 
cost, the first qualitative criterion, is categorized into the 
three levels: low, medium and high. Then, L is equal to 
3. In addition, suppose that the cost performance with 
respect to item 5 is medium, then y11(5)=0, y12(5)=1 
and y13(5)=0. Also, denotes the weight of r-th criterion 
at l-th level when i-th item is under evaluation.  
Equations (3) and (4) represent the allowable set of 
weights for qualitative criterion. Parameter ε is 
introduced as discrimination parameter which is 
considered as a lower bound for weights of all criteria .
Finding the appropriate value for ε by considering the 
most powerful discrimination and maintaining 
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feasibility of the model is important. Hatefi et al. [32] 
suggested using  εmax  instead of ε so that the model 
finds the most powerful discrimination in ranking 
DMUs. They proposed the following formulas: 

1 , 1, 2, ,max
n

min n mε
ψ

  = = … 
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 (9) 
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M M

n nj nr
j r

y L Iψ
= =

= + − +∑ ∑  (10) 

where Ψn should be calculated for each DMU. Inr 
denotes the place of r-th qualitative criterion 
performance for item n. Thus, yrl(n)=1according to the 
above definition. It is noteworthy that CWDEA method 
[32] is able to calculate the weights of criteria in parallel 
to finding the ranking vector of alternatives by solving 
the linear programming model (4)-(8) in an objective 
manner where there is no need to judgmental opinions 
of experts. Notably, CWDEA finds the most suitable 
weights for all criteria fully objectively by solving the 
linear model (4)-(8). This is one of the main advantages 
of CWDEA as it is a simple in use and also 
computationally efficient approach in deriving the 
weights of criteria and the ranking vector of alternatives 
concurrently by solving N linear programming models. 

To avoid any scaling problem, it is also suggested to 
normalize the quantitative performance measures before 
solving the model. In this regard, Janan and Edwards 
[34] reviewed the different normalization methods and 
investigated their applicability on material selection 
problems. It is worth mentioning that different 
normalization method may lead to different results in 
multi criteria decision making procedures. In this paper, 
different normalization methods and their effects on the 
final results are investigated while applying the DEA 
model proposed by Hatefi et al. [32]. Here, the 
following normalization methods are considered (see 
Table 1). 

 
 

3. THE APPLIED AGGREGATION METHOD 
 
The linear assignment method proposed by Jahan et al. 
[30] has been applied in this paper to aggregate the 
results produced by different normalization methods for 
obtaining the final ranking vector. Jahan et al. [30] used 
this method to aggregate the different results obtained 
by MADM methods. The linear assignment method 
consists of the following steps: Step 1- Determine the 
importance weight of each method that is favorable to 
be aggregated. In this paper, all normalization methods 
are assumed to have equal weights of 0.25. 

Step 2- Calculate the weighted number of times a 
rank k is allocated to each alternative by considering the 

n attributes. It results in the matrix f where element fij 
indicates the contribution of ith alternative assigned the 
jth overall rank. It should be mentioned that tied ranking 
is not acceptable. In the tied situations, the solution is 
using the weights of attributes as follows (see Table 2) 
[30]. As can be seen from Table 2, the first and second 
alternatives are allocated to the first rank. So, as Table 3 
shows, the attribute Xj with the weight wj is divided into 

two attributes each of which has the weight 
2

jw (see 

Table 3).  
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TABLE 2. Tie ranking 
Rank Xj(wj) 

1 A1,A2 
2 

 
3 A3 

 
 

TABLE 3. Resolving tie ranking 

Rank 1( )
2

j
j

w
X  

2( )
2

j
j

w
X  

1 A1 A2 
2 A2 A1 
3 A3 A3 

 
 

Step 3- Solve the following linear programming to 
assign the appropriate rank to each material: 

1 1

max
m m

ij ij
i k

f N
= =
∑∑  (11) 
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Nij is the decision variable. The Nij=1 signifies that the 
jth rank is assigned to the ith alternative. 

Equation (11) ensures that the maximum value of 
assigning DMUs to ranks is achieved. Equations (12) 
and (13) assure that each DMU must be allocated to 
only one rank and vice versa. Equations (14) define Nij 
variables as binary variables.  

It is also noted that Jahan. et al. [35] have presented 
another aggregation method which is so similar to the 
linear assignment method [30] applied in this paper and 
one can utilize it as well. 

Figure 1 depicts the steps of the proposed 
methodology in a flowchart. 
 
 
4. NUMERICAL EXAMPLE 
 
To show the application of common weight DEA model 
[32] in material selection problem by considering both 
quantitative and qualitative criteria, a flywheel material 
selection problem borrowed from the literature has been 
studied. This example is one of the well-applied test 
problems in the material selection literature as the 
results of previous competing methods are available on 
this example. This is why we are using it for our 
comparative studies. Jee and Kang [5] performed a 
material selection problem including ten alternatives 
and four criteria (Table 4): fatigue limit (σlimit/ρ), 
fracture toughness (KIC/ρ), price per mass and the 
fragment ability. Flywheel is a device for storing the 
kinetic energy in automobiles, urban subway trains, 
wind power generators, etc. Athawale et al. [31] 
illustrated criteria. Higher values for the fatigue limit 
criterion mean better performance of material and 
increase the opportunity of the candidate material to be 
selected as the best choice. Hence, the fatigue limit 
criterion is a beneficial one. Fracture toughness (KIC/ρ) 
is the performance measure for failure prior to brittle 
fracture, and consequently is a beneficial criterion, as 
well. Price per unit mass is a non-beneficial criterion for 
which the decision maker prefers lower values. The 
fourth criterion (fragmentability) signifies that if a 
flywheel breaks into small pieces, the hazard should be 
much reduced.According to the previous section, 
quantitative criteria presented Table 4 should be 
normalized. In all normalization methods except Norm 
No.2, Non-beneficial criteria like price/mass should be 
transformed into beneficial ones and then normalized 

using the normalization methods introduced previously. 
For instance, the normalized data for the flywheel 
problem using Norm No.1 formulation is as Table 5.The 
model for each alternative is provided and solved by the 
Hatefi et al. model [32]. The efficiencies of each DMU 
using different normalization methods are indicated in 
Table 6.It can be concluded that the DEA model 
proposed by Hatefi et al. [32] is not capable of obtaining 
a full ranking when using the normalization methods 
No. 1 and No. 4. However, it is crucial to obtain a full 
ranking vector. For this purpose, the first example is 
solved by other normalization methods introduced in 
section 2. Then, the linear assignment method [30] is 
applied to aggregate the ranking vectors to obtain the 
final and full ranking vector. To apply linear assignment 
method, the weights of results obtained by different 
normalization methods are assumed to be equal. Thus, 
the weight of each result produced by each 
normalization method is equal to 0.25. Eventually, the 
final ranking vector is compared with final ranking 
vectors provided in the literature as Table 7.In addition, 
the graphical objective value for each material using 
different normalization methods is shown in Figure 2.  
 
 

 

Figure 1. Flowchart of the proposed methodology 
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TABLE 4. Flywheel material selection problem 

Alternatives Name σlimit/ρ KIC/ρ Price/Mass Fragmentability 
M1 300 M 100 8.61 4200 Poor 
M2 2024-T3 49.65 13.47 2100 Poor 
M3 7050-T73651 78.01 12.55 2100 Poor 
M4 Ti-6Al-4V 108.8826 10 500 Poor 
M5 E glass-epoxy FRP 70 10 2735 Excellent 
M6 S glass-epoxy FRP 165 25 4095 Excellent 
M7 Carbon-epoxy FRP 440.25 22.01 35470 Fairly good 
M8 Kevlar 29-epoxy FRP 242.86 28.57 11000 Fairly good 
M9 Kevlar 49-epoxy FRP 616.44 34.25 25000 Fairly good 

M10 Boron-epoxy FRP 500 23 315000 Good 
 
 

TABLE 5. Normalized data under first normalization method 

σlimit/ρ (Normalized) KIC/ρ (Normalized) 
1

price
 ( )1

price
Normalized  Fragmentability 

0.08883361 0.00000000 0.00023810 0.11764706 Poor 
0.00000000 0.18954758 0.00047619 0.23688394 Poor 
0.05003617 0.15366615 0.00047619 0.23688394 Poor 
0.10450537 0.05421217 0.00200000 1.00000000 Poor 
0.03590395 0.05421217 0.00036563 0.18151618 Excellent 
0.20351453 0.63923557 0.00024420 0.12070441 Excellent 
0.68914413 0.52262090 0.00002819 0.01252901 Fairly good 
0.34088463 0.77847114 0.00009091 0.04393699 Fairly good 
1.00000000 1.00000000 0.00004000 0.01844197 Fairly good 
0.79456236 0.56123245 0.00000317 0.00000000 Good 

 
 

TABLE 6. Efficiencies when different normalization method are applied 
Alternatives The CWDEA linear programming method 

 Method No.1 Method No.2 Method No.3 Method No.4 
M1 0.2402699 0.2993656 0.2881920 0.1211235 
M2 0.2604782 0.3343817 0.3165893 0.2398931 
M3 0.2870555 0.3381212 0.3198128 0.2398927 
M4 0.4301561 0.4821860 0.4686355 1 
M5 0.8624233 0.8962148 0.9416813 1 
M6 1 1 1 0.9394364 
M7 0.8401554 0.8537456 0.8151971 0.8293348 
M8 0.8295986 0.8347357 0.7S994671 0.8606222 
M9 1 0.9805305 0.8954803 0.8352317 
M10 0.6686926 0.6805568 0.6148430 0.8145044 

 
 

TABLE 7.Comparative results with previous methods 

 
 

 
Comparison of rankings 

 CWDEA model Jee and Kang [5] Chatterjee et l. [12] khabbaz et al. [7] 

 
Linear Assignment method[30] 

 
 

 
Rank 1 M6 M9 M9 M9 
Rank 2 M9 M8 M7 M8 
Rank 3 M5 M6 M6 M6 
Rank 4 M7 M7 M8 M7 
Rank 5 M8 M1 M10 M1 
Rank 6 M10 M4 M4 M4 
Rank 7 M4 M3 M5 M3 
Rank 8 M3 M5 M3 M5 
Rank 9 M2 M2 M2 M2 
Rank 10 M1 M10 M1 M10 
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 Figure 2. Comparison of objective values under different 
normalization methods  

 
 

5. DISCUSSION 
 
The flywheel example contains both qualitative and 
quantitative criteria. For measuring the DMU 
performances, qualitative criteria should be quantified 
first. One of the common methods to quantify the 
qualitative criteria is the Likert spectrum which scores 
linguistic expressions in the numeric scale of 1 to 9. 
While the applied CWDEA in this paper does not need 
any quantification of qualitative criteria as it computes 
their scores by the mathematical model. Thus, the main 
superiority of CWDEA method is treating the 
qualitative criteria in a more precise manner than the 
Likert scale. 

Also, the previous methods included in Table 7use 
the Likert scale which is not as precise as the CWDEA 
method when quantifying the qualitative criteria. 
Therefore, it is expected to obtain different rankings 
with other MADM methods. For instance, M9 is ranked 
first when using the first normalization technique, which 
shows the applied CWDEA method is compatible with 
past techniques' results. However, when the problem is 
solved with other normalization techniques, different 
rankings are obtained in which M9 does not always 
occupy the first rank. So, we aggregated the results 
produced by different normalization methods to obtain 
the final ranking vector by which M6 is known as the 
first rank. 
 
 
6. CONCLUSION 
 
Material selection is a challenging issue in 
manufacturing organizations especially in the product 
design process. Choosing the appropriate material from 
a large group of alternatives in the presence of different 
properties, advantages and disadvantages for each 
alternative makes the decision making process a 
difficult task especially when considering qualitative 
criteria. Majority of the previous researchers have dealt 
with the material selection problems by using the Likert 

scale to transform qualitative criteria performances into 
the quantitative equivalents. Nevertheless, the 
importance of quantifying the qualitative performance 
measures is well recognized in the decision-making 
processes. In this paper, the common weight DEA 
(CWDEA) model proposed by Hatefi et al. [32] is 
applied to the material selection problem while 
accounting for both quantitative and qualitative criteria. 
The DEA model applied in this paper performs more 
accurately than the previous MADM methods in 
evaluating the efficiency of each DMU, especially in the 
presence of qualitative criteria [32]. For constructing the 
DEA model, performance measures should be 
normalized for each criterion to avoid scaling problem. 
A numerical example selected from the literature, (i.e. 
the flywheel material selection [5])is used to test  the 
efficiency and effectiveness of the proposed model. 
Rankings are obtained by solving the DEA models, but 
some normalization methods are not able to produce full 
ranking vectors. Hence, CWDEA models are solved 
again by other normalization methods introduced in 
section (2) and the results of different normalization 
methods are aggregated using the Linear Assignment 
method [30] to obtain a full ranking vector for each 
example. Comparative results with previous models 
demonstrate the applicability and usefulness of the 
proposed approach in the context of material selection. 
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  هچکید

  

باعث  تواند یم یهانتخاب نامناسب مواد اول. است یديتول هاي یستمدر س یزاز مسائل چالش برانگ یکیمناسب  یهانتخاب مواد اول
. باشد مصرف کنندگان را به همراه داشته یتیو نارضا یدبر بودن تول ینههمچون هز یشده و تبعات یديتول یندهايشکست در فرآ

 یناز ا یبرخ. یرندمد نظر قرار گ یهماده اول یندر هنگام انتخاب بهتر یددارند که با ختلفیم یاتخصوص یهاز مواد اول یکهر 
ه در ب یاصل يها همواره از چالش یفیک یارهايمع يمناسب برا یمعادل کم یینتع. هستند یکمبرخی دیگرو  یفیک یارهامع

با در نظر  یکسانها با اوزان  داده یپوشش تحلیلروش  یکمقاله از  یندر ا. بوده است یارهچند مع گیري یمتصم فنون یريکارگ
مثال  یک یقاز طر ینهمچن. مناسب استفاده شده است یهدر مسئله انتخاب مواد اول یو کم یفیک یارهايزمان معگرفتن هم

مشکل،  ینغلبه بر ا يلذا برا. یستن ها ینهاز گز یکامل يبند روش همواره قادر به ارائه رتبه یننشان داده شده است که ا يعدد
 يساز روش ادغام یکمختلف توسط روش مذکور حل شده و در انتها با استفاده از  يساز نرمال يها مسئله با استفاده از روش

 ..دست آمده استه کامل ب يبند رتبه ی،یکخط یزير بر برنامه ینمبت
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