
IJE TRANSACTIONS C: Aspects Vol. 28, No. 6, (June 2015) 903-912

Please cite this article as: S. Tasouji Hassanpour, M. R. Amin-Naseri, N. Nahavandi, Solving Re-entrant No-wait Flowshop Scheduling Problem,
International Journal of Engineering (IJE), TRANSACTIONS C: Aspects Vol. 28, No. 6, (June 2015) 903-912

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

Solving Re-entrant No-wait Flowshop Scheduling Problem

S. Tasouji Hassanpour *, M. R. Amin-Naseri, N. Nahavandi

Department of Industrial Engineering, Tarbiat Modares University, Iran

P A P E R I N F O

Paper history:
Received 29 December 2014
Received in revised form 16 February 2015
Accepted 11 June 2015

Keywords:
Re-entrant Flowshop
No-wait Flowshop
Genetic Algorithm
Simulated Annealing
Bottleneck

A B S T R A C T

In this study, we consider the production environment of no-wait reentrant flow shop with the
objective of minimizing makespan of the jobs. In a reentrant flow shop, at least one job should visit at
least one of the machines more than once. In a no-wait flowshop scheduling problem, when the process
of a specific job begins on the first machine, it should constantly be processed without waiting in the
line of any machine until its processing is completed on the last one. Integration of the properties of
both of these environments, which is applied in many industries such as robotic industries, is not
investigated separately. First, we develop a mathematical model for the problem and then we present
three methods to solve it. Therefore, we construct simulated annealing (SA), genetic algorithm (GA)
and a bottleneck based heuristic (BB) algorithms to solve the problem. Finally, the efficiency of the
proposed methods is numerically analyzed.

doi: 10.5829/idosi.ije.2015.28.06c.11

NOMENCLATURE

Indexes
Re jS

if an operation includes reentrant condition after jth operation equals
with the machine index which the next operation should be
processed on it, 0 otherwise

i job index (i=1,...,n) M very big number which can be considered as sum of processing
times of all the operations

j operation index {1,2,..., }ij n=
k machine index (k=1,...,m) Variables Particle Specific density
h Order of jobs on each machine {1,2,..., }kh h= maxC Maximum completion time of jobs

Parameters ijs starting time of the jth operation of ith job

ijp processing time of jth operation of the job i khpb Processing time of the job positioned in hth order of kth machine

jka
1 if jth operation of a job is performed on machine
k, 0 otherwise khsb

Starting time for processing the job positioned in hth order of kth
machine

Re j
1 if an operation includes reentrant condition after
jth operation, 0 otherwise

h
ijkr

1 if jth operation of ith job which needs to be operated on kth
machine type k is positioned in hth order, 0 otherwise

1. INTRODUCTION1

Many manufacturing layouts are in the form of job
shops or flow shops in which jobs are being processed
from one stage to another without ever visiting the same
stage twice. However, in some industries such as
semiconductor manufacturing, product design may be
such that one or some of the jobs should recirculate or

1*Corresponding Author’s Email: saeed.tasouji@modares.ac.ir (S.
TasoujiHassanpour)

revisit a certain stage or machine more than once.
Generally, a reentrant flow shop is a kind of flow shop
in which at least one job should visit at least one of the
machines more than once. There are many instances of
reentrant flow shop in production industries such as
photolithography, printed circuit boards and assembly
and testing of electronic circuits. Photolithography is
one of the most complex steps in the wafer fabrication
process of semiconductor production which is an optical
process used for mapping multiple layers of circuit
patterns on silicon wafers that during this process it can

mailto:saeed.tasouji@modares.ac.ir

S. Tasouji Hassanpour et al. / IJE TRANSACTIONS C: Aspects Vol. 28, No. 6, (June 2015) 903-912 904

visit this stage more than once. Another instance is the
assembly and testing of electronic circuits that are
placed on each other. Whenever a new circuit is added
to the set, it must revisit a series of machines again.
Printed circuit boards (PCB), two-machine cyclic shops,
signal processing, painting shops and production
planning for facilities based on hubs can be mentioned
as other instances in this context.

In a no-wait flow shop scheduling problem, when
the process of a specific job begins on the first machine,
it should constantly go through the production route
without any interruption until its processing is
completed on the last machine. This kind of
manufacturing approach can be used in many
manufacturing systems and firms such as metal
processing where steel should be processed among the
machines continuously without losing its temperature,
food industries where the food must be packed as
conserves immediately after being prepared, plastic
modeling where the plastic must shaped to the desired
form before it loses temperature, and so on. The root
cause of such issues in manufacturing environments can
be mentioned as the nature of processes and lack of
stores between the stages or machines. In order to
achieve the desired result and to avoid undesirable
changes in temperature or other characteristics of the
material (such as adhesion), the operations need to be
taken care of sequentially and without any waiting time
during the process.

In this paper, we present a simulated annealing (SA)
and a genetic algorithm (GA) based on heuristics for
scheduling problem of jobs in no-wait reentrant flow
shop environment. The remainder of this paper is
structured as follows: In Section 2, literature review of
the related works is provided. In Section 3, we formally
define the problem addressed in this paper and the its
mathematical modeling. In Sections 4 and 5, we discuss
the main elements of the proposed metaheuristic
approaches. Section 6 includes the results obtained from
the implementation of the proposed algorithms and
Section 7 of this paper deals with the validation of the
proposed algorithms. Finally, in Section 8, conclusions
and suggestions for future research are presented.

2. LITERATURE REVIEW

In recent years, a considerable amount of studies has
been devoted to the no-wait flow shop and reentrant
scheduling problem. However, integration of properties
of both of these environments, which is applied in many
industries such as robotic industries, is not investigated
separately. Robotic flow shops are widely used in steel
industry and electronics in which according to the
characteristics of the technology itself after the process
is finished on a machine, the part should be removed

immediately and transferred without interruption to the
next machine in the process route. Initial researches
about no-wait flow shop have been presented by
Artanary in 1971 and 1974 [12]. Hall and
Sriskandarajah [9] surveyed this class of scheduling
problem extensively and published their research
results. Aldowasian and Allahverdi [1] developed
genetic algorithm and simulated annealing based
heuristics considering makespan of jobs as the objective
function for no-wait flow shop problems.
Comprehensive survey on studies performed in the last
50 years about this class of machine scheduling problem
was presented by Gupta and Standford [8]. First model
was about flow shop environment with two machines
and the second was about assembly line. Attar et al. [2]
surveyed flexible flow shop scheduling problem under
the assumptions such as sequence-dependent setup
times, waiting times and ready times for jobs. They
developed a new algorithm named ICA to solve the
problem and compared it to a simulated annealing
algorithm to validate their algorithm. Shafaei et al. [16]
studied no-wait two-stage flexible flow shop problem
with the objective of minimizing the maximum
completion time of the jobs. They developed a method
named ANFIS to predict the solution time of this class
of problems and compared it to 6 heuristic methods in
order to evaluate the effectiveness of the method.

Interest in the reentrant environment scheduling
problem is increasing in the recent published papers.
McCormick and Rao [13] have shown that minimizing
the work in progress (which is equivalent to the sum of
the completion time) in a reentrant flow shop system is
NP-hard. Yang et al. [17] presented a lower bound for
makespan in an environment including two machine
reentrant permutation flow shop characteristic. Chen [3]
presented a branch and bound procedure to solve a
reentrant permutation flow shop problem of makespan
minimization. Pan and Pan [14] provide different mixed
binary integer program to solve the reentrant flow shop
problem. Hsieh et al. [10] used a three phase algorithm
in order to minimize the makespan considering three
performance criteria which are the mean cycle time, the
variation of cycle time, and the smoothness to optimize
the policy allocation. Dugardin et al. [5] focused on the
multi-objective resolution of a reentrant hybrid flow
shop scheduling problem including two objectives:
maximization of the utilization rate of the bottleneck
and minimization of the maximum completion time.
They solved this problem with a new multi-objective
genetic algorithm called L-NSGA which uses the
Lorenz dominance relationship. Emmons and
Vairaktarakis [6] studied reentrant flow shop thoroughly
and established properties that facilitate a branch-and-
bound algorithm, and presented two simple, but very
effective heuristics. For cyclic production of a single
production the general m-machine reentrant shop, they

905 S. Tasouji Hassanpour et al. / IJE TRANSACTIONS C: Aspects Vol. 28, No. 6, (June 2015) 903-912

present an algorithm for finding the efficient frontier
between cycle time and flow time, and a heuristic for
larger instances. They declared that in the hybrid
reentrant system, dispatching rules are recommended
and compared in conditions which all jobs require the
same time for each production step but have different
due dates Qian et al. [15] presented a differential
evolution (DE) algorithm with two strategies for solving
m-machine reentrant permutation flow-shop scheduling
problem with different job reentrant times. Huang et al.
[11] develop a farness particle swarm optimization
algorithm (FPSO) to solve reentrant two-stage
multiprocessor flow shop scheduling problems in order
to minimize earliness and tardiness. Jing et al. [12] used
a k-insertion technique for solving the reentrant flow
shop problem for minimizing the total flow time.

As already mentioned, no-wait scheduling problems
occur in those manufacturing environments in which a
job should be processed without interruptions on a
machine or between the machines. According to the
previous research, it is needed to research on the field of
no-wait reentrant flow shop scheduling.

3. PROBLEM DECRIPTION

In flow shop scheduling we assume that there exists a
set of jobs {1,....., }J n= that should be processed on a set
of {1,....., }M m= machines. In this problem there are m
machines in series that each of the tasks is to be
processed in a specific route on the machines. All jobs
have the same processing route, meaning that each job
is processed first on machine 1, then machine 2, and so
on, until the last machine finishes its work on the job.
Permutation flow shop is considered for this problem
which means that jobs are being processed in a similar
sequence on the machines. Another assumption
intended for the problem is waiting time limitation that
can occur in multi machine environments like flow shop
and job shop. This assumption leads the processing of
jobs to be performed on machines without interruption
and waiting time. In addition to the assumptions
mentioned above, there is an assumption that the
jobscan go a few steps back and continue their
processing operation after being processed on some
machines. The problem including these assumptions is
called no-wait reentrant permutation flow shop
scheduling problem.
This problem can be described as:

max| , , |FSS pmu rcrc no wait C− due to the notation
introduced by Graham et al. [7]. Minimizing makespan
of the jobs is considered as the objective function of the
problem. In addition to the previously mentioned
assumptions, the following assumptions are considered
for the study:

Each job has a pre-determined processing route and
should get through machines according to the scheduled
program. Each operation of a job has a specified
processing time on the related machines which is
independent of the job's processing route and processing
order. No preemption and no cancellation is allowed in
the model. All jobs are available at zero time. We are
not allowed to move the machines. The machine setup
time is independent of job sequence and is considered as
a part of processing time. The transportation time can be
disregarded. Breakdown and maintenance times and
costs are not considered in the model. Machines may be
idle for some time. Each machine cannot process more
than one task simultaneously. Technical limitations are
known and they are unchangeable. There are no random
modes meaning that processing times, setup times,
arrival time of parts and number of jobs are definite.
Machines are available continuously during the
planning horizon.

4. PROBLEM MODELING

The parameters and variables used in this model are
presented as follows:

(1) Minimize
maxC

(2) ; , ,
k

ijk jk i j k
h

r a ∀=∑

(3) 1; ,h
ijk

i j
r k h≤ ∀∑∑

(4) , 1, 1 ; , 1, 1, Re(1) 1h h
i j k ijkr r i j k h j− − = ∀ > > − ≠

(5) '

' '

, 1, 1
; , , 1, , Re(1) 1, Re()h h

i j k ijk
r r i j k k h j S j k

− −
= ∀ > − = =

(6) , ; , , ,h
ij ijk k hp r pb i j k h× ≤ ∀

(7) , 1 , ;, 1,, 1,
, 1h

i j i j
k h

i j ki j k
s s i jp r− −−

+ × = ∀ >∑∑

(8) , 1 , 1 , ; , 1k h k h k hsb pb sb k h− −+ ≤ ∀ >

(9) (1) ; , , ,h
ij ijk khs r M sb i j k h≤ − × + ∀

(10) (1) ; , , ,h
kh ijk ijsb r M s i j k h≤ − × + ∀

(11) max ; ,h
ij ij ijk

k h
C s p r i j≥ + × ∀∑∑

S. Tasouji Hassanpour et al. / IJE TRANSACTIONS C: Aspects Vol. 28, No. 6, (June 2015) 903-912 906

(12) ,{0,1}, 0, 0, , , ,h
ijk i j khr s sb i j k h= ≥ ≥ ∀

Objective function consists of minimizing maximum
completion time of the jobs. Equation (2) denotes that
when operation of one job is assigned to any particular
machine, this operation can be positioned in any order
of the machine. Constraints (4) and (5) are added to the
problem in order to comply with the assumption of the
permutation flow shop problem. Constraint set (6) is
added to the model to determine starting time for
processing the job which is positioned in the order of
related machine. Constraint set (7) adjusts the starting
time of operations which are positioned in the
processing route. In other words, it makes sure that
successive operations of any machine are performed
after the preceding ones. Constraints (9) and (10) have
been added to the model to adjust the starting time of
each operation of each job and starting time of jobs on
machines. Constraint (11) calculates the maximum
completion time of the jobs. Constraint set (10) shows
the earliness and tardiness of each job according to the
completion time and due date of that job. Finally,
constraint set (12) determines the nature of the model
variables.

5. PROPOSED ALGORITHMS

The flow shop scheduling problem is a branch of
production scheduling which is among the hardest
combinatorial optimization problems. It is well known
that this problem with current algorithms, even
moderately sized problems, cannot be solved to
guaranteed optimality. Pen and Chen [14] showed that
reentrant flow shop scheduling problem with the
objective function of minimizing the maximum
completion time of jobs is considered Np-hard even for
problems with two machines. Therefore, the problem
addressed in this paper is Np-hard too. So, to solve the
problem, genetic and simulated annealing algorithms
are presented to solve the problem in both small and
large scales. In the next sections we will discuss
different elements of the proposed algorithms.

5. 1. Proposed GA Approach For the problem
studied in this paper, according to permutational
property of the problem, a chromosome used to
represent the solution has a length equal to the number
of jobs and is independent of the number of
workstations. In other words, a chromosome including a
sequence of jobs is displayed as =([1],[2],....,[n])σ in
which the number of job repeats only once in each
chromosome. Priority for processing tasks on each
machine is in the order of their appearance on the
chromosome from left to right. In other word, priority

for processing operations of jobs on each machine is
based on the earliest event in the sequence vector σ. In
Figure 1, a chromosome for a problem with 6 jobs has
been shown. In this chromosome, processing scheme of
jobs on the machines is as follows: job 1 is processed
first on all machines. Then, job 6 is processed according
to the completion of job 1 on each machine and the no-
wait property complying with the predetermined
processing route. The procedure continues until the
completion of the last job.

1 6 4 5 2 3
Figure 1. Representation of chromosome

This encoding method leads any permutation of
genes of chromosome to become an acceptable schedule
for each machine.The initial population for the proposed
GA algorithm is randomly generated.Fitness function
chromosome i is calculated by Equation (16) where iFF

, wOF and iOF represent fitness function for ith
chromosome, the worst objective function available and
objective function of current chromosome, respectively.
In order to make it possible for the worst chromosome
to be selected for the next population the equation is
added by 1.

1i w iFF OF OF= − + (13)

There are different types of crossover operators used in
GA, such as one-point, two-point, uniform and
arithmetic. In this paper, a hybrid of uniform and two-
point crossover has been utilized. Two-point crossover
calls for two points to be selected on the parent
organism strings. Everything between the two points is
swapped between the parent organisms, rendering two
child organisms. The uniform crossover uses a fixed
mixing ratio between two parents. Unlike one- and two-
point crossovers, the uniform crossover enables the
parent chromosomes to contribute the gene level rather
than the segment level. A number between 0 and 1 is
randomly generated. When its value is more than 0.5,
the uniform crossover will be applied and when it is less
than 0.5, the two-point crossover will be considered.In
this paper, in order to perform a mutation operator, two
genes are selected randomly and then their positions are
replaced by each other. For selecting the survivals, three
approaches are implemented: crossover operator,
mutation operator and elites (chromosomes transferred
to next generation without any change). In order to
generate better solutions a local search approach is
performed on 50 percent of the new generation.
Different end conditions can be applied to a GA

907 S. Tasouji Hassanpour et al. / IJE TRANSACTIONS C: Aspects Vol. 28, No. 6, (June 2015) 903-912

algorithm. For the proposed GA algorithm, one of the
following conditions causes the algorithm to terminate:

1. Generating a specified number of generations.
2. No improvement is observed during a specified

period of generations.
In this paper, the sample problems are divided into

two groups, large and small, and tested by the proposed
algorithms. Small scale includes problems with 4, 6, 8
and jobs. Large scale problems consist of 20, 30, and 40
jobs. Taguchi method was used for parameter tuning.
The results of parameter tuning can be seen in Tables 1
and 2.

5. 2. Proposed SA Approach The search in SA
starts with a randomized state. In a polling loop, the
moves decreasing the energy will always be accepted
while bad moves will only be accepted in accordance
with a probability distribution dependent on the
temperature of the system. Therefore, SA will also

accept bad solution with probability of k

df
KTe

−

where kT ,
K and df represent temperature, Boltzmann constant and
the amount of degradation (the difference in the
objective value between the current solution and the
generated neighboring solution), respectively. When
this probability is more than a uniform random number
between 0 and 1, then the bad solution will be accepted.
Determination of the initial temperature is very
important in accepting or rejecting the solutions. The
higher the temperature, the more significant the
probability of accepting a worst move will be. On the
other hand, low temperature reduces the acceptance
probability of bad solutions and increases the chance of
remaining in a local optima. The representation of
solutions is the same as the one used in the GA
algorithm. To create a new neighborhood, two genes are
selected and interchanged with each other.Different
methods are available to decrease the temperature.
These include arithmetical, linear, geometric,
logarithmic, very slow decrease and non-monotonic. In
this paper, we will use arithmetical method with the
constant value of C=0.8.

1k kT T C+= − (14)

We have employed the following constraint to speculate
equilibrium condition:

'

'

e e

e

f f

f
ε

−−

−

−
≤

(15)

where ef
−

, '
ef
−

 and ε stand for objective function
average in the last epoch for all of the accepted

replacements, average of all amounts of ef
−

, and error,
respectively. We have considered two termination
conditions. The first one is to reach final temperature.
The second is to achieve all of the generated
neighborhoods or all of the accepted replacements
during algorithm running time. Parameters of SA are
defined in two phases. In phase one, parameters of
Table 3 were considered in order to obtain the best
combination for ε and kN the. In the second phase,

through values gained from the first phase for ε and kN
.We defined the Initial temperature, final temperature
and Boltzmann constant for the problem and conducted
20 runs of proposed algorithms to obtain the best
combination for ε and kN . The results of phase one
showed that for small scale, the best combination for ε
and kN are0.008 and 3, respectively. For large scale
problems the values were set as 0.003 and 10. The result
of phase two determined values of initial temperature,
final temperature and Boltzmann constant as 50,1 and 1
for small scale problems, respectively, and 100, 1 and 1
for large scale ones.

5. 3. Bottleneck Based Heuristic A bottleneck-
based heuristic is proposed to solve the candidate
problem. This algorithm was proposed by Chen and
Chen [4]. They developed a bottleneck-based heuristic
for flow line (BBFFL) to solve a flexible flow shop
problem with a bottleneck stage, where unrelated
parallel machines exist in all the stages, with the
objective of minimizing the makespan.

TABLE 1. Parameter tuning for small scale problems

Initial population Number of generation Crossover percentage Mutation percentage Elite percentage Number of local search
100 50 0.8 0.13 0.07 5

TABLE 2. Parameter tuning for large scale problems
Initial population Number of generation Crossover percentage Mutation percentage Elite percentage Number of local search

250 150 0.8 0.1 0.1 7

S. Tasouji Hassanpour et al. / IJE TRANSACTIONS C: Aspects Vol. 28, No. 6, (June 2015) 903-912 908

TABLE 3. Phase one parameters
Initial temperature 100
Constant value of temperature function 0.8
Final temperature 1
Boltzmann constant 1

The essential idea of BBFFL is that scheduling jobs
at the bottleneck stage may affect the performance of a
heuristic for scheduling jobs in all stages. After defining
some notations, the steps of the BBFFL will be
described.
i job index, i = 1,2,3, ...,n
j stage index, j = 1,2,3, ...,J
b bottleneck stage index, b ∈ [1,2,3, ...,J]
s machine index at stage j, s = 1,2,3, ...,mj
mj number of unrelated parallel machines at stage j

ijp average processing time of job i at stage j

ibsP processing time of job i on machine s at bottleneck
stage b

jR the workload of stage j

ijC completion time of job i at last stage J

min
ifp total minimum processing time required for job i

before the bottleneck stage b
min
ilp total minimum processing time required for job i

after the bottleneck stage b

Step 1. Set Ω to∅ .
Step 2. Divide the system into upstream, bottleneck and
downstream subsystems. Compute the total minimum
processing times of the upstream subsystem (min

ifp) and

the downstream subsystem (min
ilp) for each job.

Step 3. Assign jobs to set U if the jobs satisfy the
following condition: min min

i ifp lp≤ ; assign jobs to set L
if the jobs satisfy the following condition:

min min
i ifp lp> .

Step 4. If U = ∅ , go to Step 5. Select the job with the
smallest value of min

ifp for i ∈ U. If there is more than

one job having the same smallest value of min
ifp , select

the job with the maximum average processing time at
the bottleneck stage (ibp). If the figures are once again
the same, break the tie arbitrarily. Append the selected
job to Ω and remove the job from set U; redo Step 5.
Step 5. If L = ∅ , go to Step 6. Select the job with the
maximum value of min

ilp for i ∈ L. If there is more than

one job having the same smallest value of min
ilp , select

the job with the maximum average processing time at
the bottleneck stage (ibp). If the figures are once again
the same, break the tie arbitrarily. Append the selected
job to Ω and remove the job from set L; redo Step 5.
Step 6. Obtain an initial sequence of the jobs in Ω.
Step 7. Stop.

6. COMPUTATIONAL RESULTS

The developed mathematical model for solving the
proposed problem is coded in GAMS/Cplex 22.5
optimization software and GA and SA algorithms are
coded in C++ Borland 6.0 on a computer with 4GB
RAM,Intel Core2 Duo P7550 CPU, 2.26 GHz
processor. Time limitation for each generated problem
is 3600 seconds. Final results for small and large scale
of the mentioned problem are summarized in Tables 4
to 9. In large scale problems, considering the very long
computational time required by GAMS for solving the
problems, the results of proposed methods are compared
with each other.

6. 1. Analyzing Small Scale Problems According
to the values obtained from the Table 4, we can show
the results in Figure3. According to Figure 3, we can see
that in small scale problems, objective function values
are almost close to each other. By comparing these
solutions with the ones obtained from GAMS software,
the model and the results of the proposed algorithms can
be properly validated. According to Figure 4, it can be
seen that in all cases the time taken to achieve the
optimal solution in the BB algorithm is less than the SA
and GA algorithms.As it is shown in Table 6, SA excels
other algorithms in number of optimal solutions and
average error of methods compared to GAMS. BB
performs worse than the other two algorithms in finding
optimal solutions, so this algorithm does not seem
appropriate for solving the problem in small scale. On
the contrary, results of SA are very well in terms of both
time and optimal solutions. In order to check the
equality of the values resulting from the proposed
objective function in GA, SA and BB, we use the
hypothesis testing. First, using the objective functions
values, we checked the normality of them at 95%
confidence level according to the results. In small scale
problems, the p-value was less than 0.05 which
indicates that the results are not normal.Hence, we use
non-parametric statistical tests to check for equality of
medians obtained from the use of the proposed
algorithms. In this article, Kruskal-Wallis non-
parametric test was used. The results of this test for
small scale can be seen in Figure 8.

909 S. Tasouji Hassanpour et al. / IJE TRANSACTIONS C: Aspects Vol. 28, No. 6, (June 2015) 903-912

TABLE 4. Computational results for small scale problems for GAMS, SA, GA and BB
m×n GAMS SA GA BB

Solution Time Local/
Optimal

Average
Solution

Best
Solution

Time Average
Solution

Best
Solution

Time Solution Time

3×4 718 0.928 Optimal 720.5 718 0.19 718 718 0.182 718 0.014
5×4 773 1.154 Optimal 773 773 0.225 773 773 0.188 784 0.001
7×4 826 1.354 Optimal 826 826 0.129 826 826 0.193 841 0.002
10×4 857 2.882 Optimal 857 857 0.258 857 857 0.19 857 0.003
15×4 1180 6.967 Optimal 1183.5 1180 0.156 1180 1180 0.18 1180 0.006
20×4 1448 16.78 Optimal 1448 1448 0.46 1448 1448 0.204 1448 0.012
3×6 973 7.953 Optimal 988.25 986.5 0.178 977 973 0.187 1001 0.003
5×6 1166 12.198 Optimal 1166 1166 0.15 1168.5 1166 0.194 1168 0.005
7×6 1336 16.56 Optimal 1338.75 1336 0.149 1336.25 1336 0.197 1361 0.010
10×6 1220 69.015 Optimal 1221.75 1220 0.218 1230.5 1220 0.181 1227 0.016
15×6 1763 119.192 Optimal 1782 1763 0.257 1776.75 1763 0.213 1815 0.029
20×6 1798 286.482 Optimal 1812 1798 0.284 1812 1798 0.201 1826 0.051
3×8 1320 642.987 Optimal 1320.75 1320 0.162 1324 1320 0.226 1321 0.010
5×8 1464 1340.37 Optimal 1464.5 1464 0.153 1480.25 1479 0.258 1469 0.018
7×8 1273 953.441 Optimal 1281.5 1273 0.255 1378 1365 0.199 1303 0.027
10×8 1314 2717.215 Optimal 1321 1314 0.199 1442 1438 0.218 1353 0.054
15×8 1754 3600 Local 1759 1754 0.276 1787.25 1770 0.229 1760 0.090
20×8 2322 3600 Local 2285 2276 0.281 2285.75 2282 0.22 2281 0.163

TABLE 5. Computational results for large scale problems for SA,GA and BB

m×n
 SA GA BB

Average Solution Best Solution Average Time Average Solution Best Solution Average Time Solution Time
3×20 3228 3225 0.157 3262.75 3216 0.193 3216 0.419
5×20 3389 3380 0.302 3477.5 3434 0.196 3434 0.785
7×20 3239 3232 0.269 3451.5 3347 0.246 3186 1.265
10×20 3477 3465 0.406 3550.5 3531 0.192 3480 2.160
15×20 4317 4295 1.854 4552 4532 0.204 4372 7.339
20×20 4151.5 4117 3.05 4560 4537 0.206 4154 24.654
3×30 4593.25 4560 0.829 4587.75 4569 0.199 4524 8.935
5×30 4564.25 4532 0.586 4802.5 4801 0.221 4514 17.334
7×30 5071 5046 2.43 5250.75 5250 0.206 4957 25.962
10×30 5277 5270 2.606 5589.5 5589 0.231 5270 44.409
15×30 5571.75 5537 5.469 6149 6106 0.228 5615 83.837
20×30 5870 5743 7.95 6381.75 6349 0.222 5770 132.747
3×40 6353.5 6306 0.767 6448.5 6312 0.201 6366 31.298
5×40 6306.25 6285 0.789 6627 6609 0.254 6326 50.832
7×40 6387 6350 2.27 6731.25 6659 0.217 6234 84.726
10×40 6576.25 6564 4.185 6952.5 6942 0.218 6462 147.632
15×40 6808 6762 10.95 7516 7514 0.203 6693 273.558
20×40 7755 7687 12.95 8324 8237 0.231 7812 455.716

TABLE 6.Computational results for small scale (1)
Number of optimal

solutions
Number of better solution than

GAMS
Average error of methods compared to

GAMS Average computational time (s)

SA GA BB SA GA BB SA GA BB SA GA GAMS BB
16 13 4 1 1 1 0.0023 0.0126 0.0097 0.2211 0.2033 744.1932 0.285

S. Tasouji Hassanpour et al. / IJE TRANSACTIONS C: Aspects Vol. 28, No. 6, (June 2015) 903-912 910

Figure 3.Time series plot for proposed algorithms in small
scale

Figure 4.Time series plot for computational time in small
scale

Figure5. Normality test for the proposed GA in small scale

Figure6. Normality test for the proposed SA in small scale

Figure7. Normality test for the proposed BB in small scale

Figure8. Results of Kruskal-Wallis test for small scale

TABLE 7.Computational results for small scale (2)
Method Objective function average value
GAMS 1305.833

SA 1308.139
GA 1322.236
BB 1317.389

As it can be seen from Figure8, as well as the

P=0.961, the p-value is above 0.05.So, we can declare
that the result is not statistically significant, or there is
not a statistically significant difference between the
algorithms.

6. 2. Analyzing Large Scale Problems
Considering Figure 9, we can see that in the large scale
problems, SA and BB are very close to each other in
most cases and both excel GA algorithm clearly.
Totally, the proposed BB outperforms the GA and SA
algorithms in large scale problems considering the
objective function value. In Figure10, it can be seen that
in most cases, the time taken to reach optimal solution
in proposed GA is less than the proposed SA and BB
algorithms. This leads the proposed BB to be more
efficient in solving the large scale problems due to the
computation time.

As can be seen in Table 8, both SA and BB
outperform GA regarding objective function average
value and computational time average value. Both
algorithms generate relatively close results, but the
computational time of SA is much less than BB. Given
the importance of computational time and objective
function value, one can select one of these two
algorithms for solving the problem in large scale. In
large scale problems, the p-value for normality test was
less than 0.05, which indicates that the results are non-
normal. Therefore, we use non-parametric statistical
tests to check for equality of mediansof proposed
algorithms. The results of Kruskal-Wallis non-
parametric test can be seen in Figure14. Based onFigure
14 and P = 0.637, we can conclude that equality
assumption of the values from the proposed algorithms
in large scale problems cannot be rejected at a
confidence level of 95%.The results of Kruskal-Wallis
test can be seen in Figure 14.

hamid
Rectangle

hamid
Rectangle

hamid
Rectangle

hamid
Rectangle

hamid
Rectangle

911 S. Tasouji Hassanpour et al. / IJE TRANSACTIONS C: Aspects Vol. 28, No. 6, (June 2015) 903-912

TABLE 8.Computational results for large scale (1)
Method Objective function

average value
Computational time

average value
SA 5163.042 3.2121
GA 5450.819 0.2148
BB 5132.5 77.422

TABLE 9. Computational results for large scale (2)
Average error of
GA compared to

SA

Average error of
GA compared to

BB

Average error of
SA compared to BB

0.936 1.042 0.100

Figure 9. Changes in the objective function of the proposed
algorithms in large scale

Figure 10. Changes of computation times in order to achieve
the optimal solutions of the proposed algorithms in large scale

Figure 11. Normality test for GA in large scale

Figure 12. Normality test for SA algorithm in large scale

Figure 13. Normality test for BB algorithm in large scale

Figure 14. Results of Kruskal-Wallis test for large scale

6. CONCLUSIONS

This paper dealt with the no-wait reentrant flowshop
scheduling problem to minimize makespan. Since this
problem has been proved to be NP-hard, heuristic
algorithms were proposed in this paper to solve it. To
our best knowledge, this should be the first proposed
model for the problem with the above-mentioned
properties. Computational results show that, considering
both small scale and large scale, SA algorithm
outperforms the two other algorithms in finding better
solutions in a proper computational time.

A perspective for future research is to develop other
metaheuristics for the model and compare the results
with the proposed algorithms. In the real world, the
nature of variables is not deterministic, so the fuzzy
approach can be applied to the problem. Finally,
generalizing the model to other layouts such as flexible
flowshop can be an interesting path for future work.

7. REFERENCES

1. Aldowaisan, T., & Allahverdi, A.,"New heuristics for no-wait
flowshops to minimize makespan",Computers & Operations
Research, Vol.30, No.8 , (2003), 1219-1231 .

2. Attar, S., Mohammadi, M., & Tavakkoli-Moghaddam, R.,"A
novel imperialist competitive algorithm to solve flexible flow
shop scheduling problem in order to minimize maximum
completion time",International Journal of Computer
Applications, Vol.28, No,10,(2011), 27-32 .

3. Chen, C.-L., & Chen, C.-L.,"A bottleneck-based heuristic for
minimizing makespan in a flexible flow line with unrelated
parallel machines",Computers & Operations Research, Vol.36,
No.11, (2009), 3073-3081.

4. Chen, J.-S.,"A branch and bound procedure for the reentrant
permutation flow-shop scheduling problem",The International

hamid
Rectangle

hamid
Rectangle

hamid
Rectangle

hamid
Rectangle

hamid
Rectangle

S. Tasouji Hassanpour et al. / IJE TRANSACTIONS C: Aspects Vol. 28, No. 6, (June 2015) 903-912 912

Journal of Advanced Manufacturing Technology, Vol.29,
No.11, (2006), 1186-1193 .

5. Dugardin, F., Yalaoui, F., & Amodeo, L.,"New multi-objective
method to solve reentrant hybrid flow shop scheduling
problem",European Journal of Operational Research,Vol.203,
No.1, (2010), 22-31 .

6. Emmons, H., & Vairaktarakis, G.,"Flow shop scheduling:
theoretical results, algorithms, and applications",Springer
Science & Business Media,Vol. 182,(2012).

7. Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A.
R.,"Optimization and approximation in deterministic sequencing
and scheduling: a survey",Annals of Discrete Mathematics,
Vol.5,(1979), 287-326 .

8. Gupta, J. N., Strusevich, V. A., & Zwaneveld, C. M.,"Two-stage
no-wait scheduling models with setup and removal times
separated",Computers & Operations Research, Vol.24, No.11,
(1997), 1025-31.

9. Hall, N. G., & Sriskandarajah, C.,"A survey of machine
scheduling problems with blocking and no-wait in
process",Operations Research,Vol.44, No.3,(1996), 510-525 .

10. Hsieh, B.-W., Chen, C.-H., & Chang, S.-C.,"Efficient
simulation-based composition of scheduling policies by
integrating ordinal optimization with design of
experiment",Automation Science and Engineering, IEEE
Transactions on, Vol.4, No.4,(2007), 553-568 .

11. Huang, R.-H., Yu, S.-C., & Kuo, C.-W.,"Reentrant two-stage

multiprocessor flow shop scheduling with due windows",The
International Journal of Advanced Manufacturing
Technology, Vol.71,(2014), 1263-1276 .

12. Jing, C., Huang, W., & Tang, G.,"Minimizing total completion
time for re-entrant flow shop scheduling problems",Theoretical
Computer Science, Vol.412, No.48, (2011), 6712-6719 .

13. McCormick, S. T., & Rao, U. S.,"Some complexity results in
cyclic scheduling". Mathematical and Computer Modelling,
Vol.20, No.2, (1994), 107-122 .

14. Pan, J. C.-H., & Chen, J.-S.,"Mixed binary integer programming
formulations for the reentrant job shop scheduling
problem",Computers & Operations Research,Vol.32, No.5,
(2005), 1197-1212 .

15. Qian, B., Wan, J., Liu, B., Hu, R., & Che, G.-L.,"A DE-based
algorithm for reentrant permutation flow-shop scheduling with
different job reentrant times", Paper presented at the
Computational Intelligence in Scheduling (SCIS), (2013).

16. Shafaei, R., Rabiee, M., & Mirzaeyan, M.,"An adaptive neuro
fuzzy inference system for makespan estimation in
multiprocessor no-wait two stage flow shop",International
Journal of Computer Integrated Manufacturing,Vol.24,
No.10,(2011), 888-899 .

17. Yang, D.-L., Kuo, W.-H., & Chern, M.-S., "Multi-family
scheduling in a two-machine reentrant flow shop with setups".
European Journal of Operational Research,Vol.187, No.3,
(2008), 1160-1170.

Solving Re-entrant No-wait Flowshop Scheduling Problem

S. Tasouji Hassanpour, M. R. Amin-Naseri, N. Nahavandi

Department of Industrial Engineering, Tarbiat Modares University, Iran

P A P E R I N F O

Paper history:
Received 29December 2014
Received in revised form 16February 2015
Accepted 11 June 2015

Keywords:
Re-entrant Flowshop
No-wait Flowshop
Genetic Algorithm
Simulated Annealing
Bottleneck

 هچکید

با هدف بودن محیط بدون وقفه و رپذیبرگشتی با در نظر گرفتن خصوصیات کارگاه انیمساله جر يبندمقاله زمان نیدر ا
 کیدر آن حداقل پذیر این است که ویژگی اصلی محیط برگشت. شودیم یکارها بررس لیحداکثر زمان تکم سازينهیکم

،وقتی پردازش کاري بر روي در مسایل جریان کارگاهی بدون وقفه. بگذردکباریاز شیچند مرحله ب ایکیاز تسباییکار م
مسیر پردازشی خود را تا اتمام عملیات روي ،وجود آیده اي در آن ببدون اینکه وقفه بایدشود، ماشین اول شروع می

ه ب اتیکاربرد دارد که در ادب کیربات عیمانند صنا عیاز صنا ياریدر بس اتیخصوص نیا يادغام هردو. کندماشین آخر طی
و سپس با استفاده از سه روش پیشنهادي هیارا یاضیمدل ر مدنظر یکمساله يبرا ابتدا .استنشدهیصورت مجزا بررس

در . باشده میهاي پیشنهادي شامل شبیه سازي تبرید، الگوریتم ژنتیک و یک الگوریتم مبتنی بر گلوگاالگوریتم .استشدهحل
 .است شدههاي ارایه شده ارزیابی و بررسی نهایت، کارآیی روش

doi: 10.5829/idosi.ije.2015.28.06c.11

