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A B S T R A C T  
 

 

In this study, we consider the production environment of no-wait reentrant flow shop with the 
objective of minimizing makespan of the jobs. In a reentrant flow shop, at least one job should visit at 
least one of the machines more than once. In a no-wait flowshop scheduling problem, when the process 
of a specific job begins on the first machine, it should constantly be processed without waiting in the 
line of any machine until its processing is completed on the last one. Integration of the properties of 
both of these environments, which is applied in many industries such as robotic industries, is not 
investigated separately. First, we develop a mathematical model for the problem and then we present 
three methods to solve it. Therefore, we construct simulated annealing (SA), genetic algorithm (GA) 
and a bottleneck based heuristic (BB) algorithms to solve the problem. Finally, the efficiency of the 
proposed methods is numerically analyzed. 

doi: 10.5829/idosi.ije.2015.28.06c.11 

 
 

NOMENCLATURE   

Indexes 
Re jS  

if an operation includes reentrant condition after jth operation equals 
with the machine index which the next operation should be 
processed on it, 0 otherwise 

i job index (i=1,...,n) M very big number which can be considered as sum of processing 
times of all the operations 

j operation index {1,2,..., }ij n=    
k machine index (k=1,...,m) Variables Particle Specific density 
h Order of jobs on each machine {1,2,..., }kh h=  maxC  Maximum completion time of jobs 

Parameters ijs  starting time of the jth operation of ith job  

ijp  processing time of jth operation of the job i  khpb  Processing time of the job positioned in hth order of kth machine 

jka  
1 if jth operation of a job is performed on machine 
k, 0 otherwise khsb  

Starting time for processing the job positioned in hth order of kth 
machine 

Re j  
1 if an operation includes reentrant condition after 
jth operation, 0 otherwise 

h
ijkr

 
1 if jth operation of ith job which needs to be operated on kth 
machine type k is positioned in hth order, 0 otherwise 

 
1. INTRODUCTION1 
 
Many manufacturing layouts are in the form of job 
shops or flow shops in which jobs are being processed 
from one stage to another without ever visiting the same 
stage twice. However, in some industries such as 
semiconductor manufacturing, product design may be 
such that one or some of the jobs should recirculate or 
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revisit a certain stage or machine more than once. 
Generally, a reentrant flow shop is a kind of flow shop 
in which at least one job should visit at least one of the 
machines more than once. There are many instances of 
reentrant flow shop in production industries such as 
photolithography, printed circuit boards and assembly 
and testing of electronic circuits. Photolithography is 
one of the most complex steps in the wafer fabrication 
process of semiconductor production which is an optical 
process used for mapping multiple layers of circuit 
patterns on silicon wafers that during this process it can 
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visit this stage more than once. Another instance is the 
assembly and testing of electronic circuits that are 
placed on each other. Whenever a new circuit is added 
to the set, it must revisit a series of machines again. 
Printed circuit boards (PCB), two-machine cyclic shops, 
signal processing, painting shops and production 
planning for facilities based on hubs can be mentioned 
as other instances in this context.  

In a no-wait flow shop scheduling problem, when 
the process of a specific job begins on the first machine, 
it should constantly go through the production route 
without any interruption until its processing is 
completed on the last machine. This kind of 
manufacturing approach can be used in many 
manufacturing systems and firms such as metal 
processing where steel should be processed among the 
machines continuously without losing its temperature, 
food industries where the food must be packed as 
conserves immediately after being prepared, plastic 
modeling where the plastic must shaped to the desired 
form before it loses temperature, and so on. The root 
cause of such issues in manufacturing environments can 
be mentioned as the nature of processes and lack of 
stores between the stages or machines. In order to 
achieve the desired result and to avoid undesirable 
changes in temperature or other characteristics of the 
material (such as adhesion), the operations need to be 
taken care of sequentially and without any waiting time 
during the process. 

In this paper, we present a simulated annealing (SA) 
and a genetic algorithm (GA) based on heuristics for 
scheduling problem of jobs in no-wait reentrant flow 
shop environment. The remainder of this paper is 
structured as follows: In Section 2, literature review of 
the related works is provided. In Section 3, we formally 
define the problem addressed in this paper and the its 
mathematical modeling. In Sections 4 and 5, we discuss 
the main elements of the proposed metaheuristic 
approaches. Section 6 includes the results obtained from 
the implementation of the proposed algorithms and 
Section 7 of this paper deals with the validation of the 
proposed algorithms. Finally, in Section 8, conclusions 
and suggestions for future research are presented. 
 
 
2. LITERATURE REVIEW 
 
In recent years, a considerable amount of studies has 
been devoted to the no-wait flow shop and reentrant 
scheduling problem. However, integration of properties 
of both of these environments, which is applied in many 
industries such as robotic industries, is not investigated 
separately. Robotic flow shops are widely used in steel 
industry and electronics in which according to the 
characteristics of the technology itself after the process 
is finished on a machine, the part should be removed 

immediately and transferred without interruption to the 
next machine in the process route. Initial researches 
about no-wait flow shop have been presented by 
Artanary in 1971 and 1974 [12]. Hall and 
Sriskandarajah [9] surveyed this class of scheduling 
problem extensively and published their research 
results. Aldowasian and Allahverdi [1] developed 
genetic algorithm and simulated annealing based 
heuristics considering makespan of jobs as the objective 
function for no-wait flow shop problems. 
Comprehensive survey on studies performed in the last 
50 years about this class of machine scheduling problem 
was presented by Gupta and Standford [8]. First model 
was about flow shop environment with two machines 
and the second was about assembly line. Attar et al. [2] 
surveyed flexible flow shop scheduling problem under 
the assumptions such as sequence-dependent setup 
times, waiting times and ready times for jobs. They 
developed a new algorithm named ICA to solve the 
problem and compared it to a simulated annealing 
algorithm to validate their algorithm. Shafaei et al. [16] 
studied no-wait two-stage flexible flow shop problem 
with the objective of minimizing the maximum 
completion time of the jobs. They developed a method 
named ANFIS to predict the solution time of this class 
of problems and compared it to 6 heuristic methods in 
order to evaluate the effectiveness of the method. 

Interest in the reentrant environment scheduling 
problem is increasing in the recent published papers. 
McCormick and Rao [13] have shown that minimizing 
the work in progress (which is equivalent to the sum of 
the completion time) in a reentrant flow shop system is 
NP-hard. Yang et al. [17] presented a lower bound for 
makespan in an environment including two machine 
reentrant permutation flow shop characteristic. Chen [3] 
presented a branch and bound procedure to solve a 
reentrant permutation flow shop problem of makespan 
minimization. Pan and Pan [14] provide different mixed 
binary integer program to solve the reentrant flow shop 
problem. Hsieh et al. [10] used a three phase algorithm 
in order to minimize the makespan considering three 
performance criteria which are the mean cycle time, the 
variation of cycle time, and the smoothness to optimize 
the policy allocation. Dugardin et al. [5] focused on the 
multi-objective resolution of a reentrant hybrid flow 
shop scheduling problem including two objectives: 
maximization of the utilization rate of the bottleneck 
and minimization of the maximum completion time. 
They solved this problem with a new multi-objective 
genetic algorithm called L-NSGA which uses the 
Lorenz dominance relationship. Emmons and 
Vairaktarakis [6] studied reentrant flow shop thoroughly 
and established properties that facilitate a branch-and-
bound algorithm, and presented two simple, but very 
effective heuristics. For cyclic production of a single 
production the general m-machine reentrant shop, they 
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present an algorithm for finding the efficient frontier 
between cycle time and flow time, and a heuristic for 
larger instances. They declared that in the hybrid 
reentrant system, dispatching rules are recommended 
and compared in conditions which all jobs require the 
same time for each production step but have different 
due dates Qian et al. [15] presented a differential 
evolution (DE) algorithm with two strategies for solving 
m-machine reentrant permutation flow-shop scheduling 
problem with different job reentrant times. Huang et al. 
[11] develop a farness particle swarm optimization 
algorithm (FPSO) to solve reentrant two-stage 
multiprocessor flow shop scheduling problems in order 
to minimize earliness and tardiness. Jing et al. [12] used 
a k-insertion technique for solving the reentrant flow 
shop problem for minimizing the total flow time. 

As already mentioned, no-wait scheduling problems 
occur in those manufacturing environments in which a 
job should be processed without interruptions on a 
machine or between the machines. According to the 
previous research, it is needed to research on the field of 
no-wait reentrant flow shop scheduling. 
 
 
3. PROBLEM DECRIPTION 
 
In flow shop scheduling we assume that there exists a 
set of jobs {1,....., }J n=  that should be processed on a set 
of {1,....., }M m=  machines. In this problem there are m 
machines in series that each of the tasks is to be 
processed in a specific route on the machines. All jobs 
have the same processing route, meaning that each job 
is processed first on machine 1, then machine 2, and so 
on, until the last machine finishes its work on the job. 
Permutation flow shop is considered for this problem 
which means that jobs are being processed in a similar 
sequence on the machines. Another assumption 
intended for the problem is waiting time limitation that 
can occur in multi machine environments like flow shop 
and job shop. This assumption leads the processing of 
jobs to be performed on machines without interruption 
and waiting time. In addition to the assumptions 
mentioned above, there is an assumption that the 
jobscan go a few steps back and continue their 
processing operation after being processed on some 
machines. The problem including these assumptions is 
called no-wait reentrant permutation flow shop 
scheduling problem. 
This problem can be described as: 

max| , , |FSS pmu rcrc no wait C− due to the notation 
introduced by Graham et al. [7]. Minimizing makespan 
of the jobs is considered as the objective function of the 
problem. In addition to the previously mentioned 
assumptions, the following assumptions are considered 
for the study: 

Each job has a pre-determined processing route and 
should get through machines according to the scheduled 
program. Each operation of a job has a specified 
processing time on the related machines which is 
independent of the job's processing route and processing 
order. No preemption and no cancellation is allowed in 
the model. All jobs are available at zero time. We are 
not allowed to move the machines. The machine setup 
time is independent of job sequence and is considered as 
a part of processing time. The transportation time can be 
disregarded. Breakdown and maintenance times and 
costs are not considered in the model. Machines may be 
idle for some time. Each machine cannot process more 
than one task simultaneously. Technical limitations are 
known and they are unchangeable. There are no random 
modes meaning that processing times, setup times, 
arrival time of parts and number of jobs are definite. 
Machines are available continuously during the 
planning horizon. 
 
 
4. PROBLEM MODELING 
 
The parameters and variables used in this model are 
presented as follows: 

(1) Minimize 
maxC  

(2) ; , ,
k

ijk jk i j k
h

r a ∀=∑  

(3) 1; ,h
ijk

i j
r k h≤ ∀∑∑

 

(4) , 1, 1 ; , 1, 1, Re( 1) 1h h
i j k ijkr r i j k h j− − = ∀ > > − ≠  

(5) '

' '

, 1, 1
; , , 1, , Re( 1) 1, Re( )h h

i j k ijk
r r i j k k h j S j k

− −
= ∀ > − = =  

(6) , ; , , ,h
ij ijk k hp r pb i j k h× ≤ ∀  

(7) , 1 , ;, 1,, 1,
, 1h

i j i j
k h

i j ki j k
s s i jp r− −−

+ × = ∀ >∑∑  

(8) , 1 , 1 , ; , 1k h k h k hsb pb sb k h− −+ ≤ ∀ >
 

(9) (1 ) ; , , ,h
ij ijk khs r M sb i j k h≤ − × + ∀  

(10) (1 ) ; , , ,h
kh ijk ijsb r M s i j k h≤ − × + ∀  

(11) max ; ,h
ij ij ijk

k h
C s p r i j≥ + × ∀∑∑  
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(12) ,{0,1}, 0, 0, , , ,h
ijk i j khr s sb i j k h= ≥ ≥ ∀  

Objective function consists of minimizing maximum 
completion time of the jobs. Equation (2) denotes that 
when operation of one job is assigned to any particular 
machine, this operation can be positioned in any order 
of the machine. Constraints (4) and (5) are added to the 
problem in order to comply with the assumption of the 
permutation flow shop problem. Constraint set (6) is 
added to the model to determine starting time for 
processing the job which is positioned in the order of 
related machine. Constraint set (7) adjusts the starting 
time of operations which are positioned in the 
processing route. In other words, it makes sure that 
successive operations of any machine are performed 
after the preceding ones. Constraints (9) and (10) have 
been added to the model to adjust the starting time of 
each operation of each job and starting time of jobs on 
machines. Constraint (11) calculates the maximum 
completion time of the jobs. Constraint set (10) shows 
the earliness and tardiness of each job according to the 
completion time and due date of that job. Finally, 
constraint set (12) determines the nature of the model 
variables. 
 
 
5. PROPOSED ALGORITHMS 
 
The flow shop scheduling problem is a branch of 
production scheduling which is among the hardest 
combinatorial optimization problems. It is well known 
that this problem with current algorithms, even 
moderately sized problems, cannot be solved to 
guaranteed optimality. Pen and Chen [14] showed that 
reentrant flow shop scheduling problem with the 
objective function of minimizing the maximum 
completion time of jobs is considered Np-hard even for 
problems with two machines. Therefore, the problem 
addressed in this paper is Np-hard too. So, to solve the 
problem, genetic and simulated annealing algorithms 
are presented to solve the problem in both small and 
large scales. In the next sections we will discuss 
different elements of the proposed algorithms. 
 
5. 1. Proposed GA Approach        For the problem 
studied in this paper, according to permutational 
property of the problem, a chromosome used to 
represent the solution has a length equal to the number 
of jobs and is independent of the number of 
workstations. In other words, a chromosome including a 
sequence of jobs is displayed as =([1],[2],....,[n])σ  in 
which the number of job repeats only once in each 
chromosome. Priority for processing tasks on each 
machine is in the order of their appearance on the 
chromosome from left to right. In other word, priority 

for processing operations of jobs on each machine is 
based on the earliest event in the sequence vector σ. In 
Figure 1, a chromosome for a problem with 6 jobs has 
been shown. In this chromosome, processing scheme of 
jobs on the machines is as follows: job 1 is processed 
first on all machines. Then, job 6 is processed according 
to the completion of job 1 on each machine and the no-
wait property complying with the predetermined 
processing route. The procedure continues until the 
completion of the last job. 
 
 

1 6 4 5 2 3 
Figure 1. Representation of chromosome 

 
 

This encoding method leads any permutation of 
genes of chromosome to become an acceptable schedule 
for each machine.The initial population for the proposed 
GA algorithm is randomly generated.Fitness function 
chromosome i is calculated by Equation (16) where iFF  

, wOF  and iOF  represent fitness function for ith 
chromosome, the worst objective function available and 
objective function of current chromosome, respectively. 
In order to make it possible for the worst chromosome 
to be selected for the next population the equation is 
added by 1. 

1i w iFF OF OF= − +  (13) 

There are different types of crossover operators used in 
GA, such as one-point, two-point, uniform and 
arithmetic. In this paper, a hybrid of uniform and two-
point crossover has been utilized. Two-point crossover 
calls for two points to be selected on the parent 
organism strings. Everything between the two points is 
swapped between the parent organisms, rendering two 
child organisms. The uniform crossover uses a fixed 
mixing ratio between two parents. Unlike one- and two-
point crossovers, the uniform crossover enables the 
parent chromosomes to contribute the gene level rather 
than the segment level. A number between 0 and 1 is 
randomly generated. When its value is more than 0.5, 
the uniform crossover will be applied and when it is less 
than 0.5, the two-point crossover will be considered.In 
this paper, in order to perform a mutation operator, two 
genes are selected randomly and then their positions are 
replaced by each other. For selecting the survivals, three 
approaches are implemented: crossover operator, 
mutation operator and elites (chromosomes transferred 
to next generation without any change). In order to 
generate better solutions a local search approach is 
performed on 50 percent of the new generation. 
Different end conditions can be applied to a GA 
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algorithm. For the proposed GA algorithm, one of the 
following conditions causes the algorithm to terminate: 

1. Generating a specified number of generations. 
2. No improvement is observed during a specified 

period of generations.  
In this paper, the sample problems are divided into 

two groups, large and small, and tested by the proposed 
algorithms. Small scale includes problems with 4, 6, 8 
and jobs. Large scale problems consist of 20, 30, and 40 
jobs. Taguchi method was used for parameter tuning. 
The results of parameter tuning can be seen in Tables 1 
and 2. 

 
5. 2. Proposed SA Approach       The search in SA 
starts with a randomized state. In a polling loop, the 
moves decreasing the energy will always be accepted 
while bad moves will only be accepted in accordance 
with a probability distribution dependent on the 
temperature of the system. Therefore, SA will also 

accept bad solution with probability of k

df
KTe

−

where kT , 
K and df represent temperature, Boltzmann constant and 
the amount of degradation (the difference in the 
objective value between the current solution and the 
generated neighboring solution), respectively. When 
this probability is more than a uniform random number 
between 0 and 1, then the bad solution will be accepted. 
Determination of the initial temperature is very 
important in accepting or rejecting the solutions. The 
higher the temperature, the more significant the 
probability of accepting a worst move will be. On the 
other hand, low temperature reduces the acceptance 
probability of bad solutions and increases the chance of 
remaining in a local optima. The representation of 
solutions is the same as the one used in the GA 
algorithm. To create a new neighborhood, two genes are 
selected and interchanged with each other.Different 
methods are available to decrease the temperature. 
These include arithmetical, linear, geometric, 
logarithmic, very slow decrease and non-monotonic. In 
this paper, we will use arithmetical method with the 
constant value of C=0.8. 

1k kT T C+= −  (14) 

We have employed the following constraint to speculate 
equilibrium condition: 

'

'

e e

e

f f

f
ε

−−

−

−
≤

 

(15) 

where ef
−

, '
ef
−

 and ε stand for objective function 
average in the last epoch for all of the accepted 

replacements, average of all amounts of ef
−

, and error, 
respectively. We have considered two termination 
conditions. The first one is to reach final temperature. 
The second is to achieve all of the generated 
neighborhoods or all of the accepted replacements 
during algorithm running time. Parameters of SA are 
defined in two phases. In phase one, parameters of 
Table 3 were considered in order to obtain the best 
combination for ε and kN  the. In the second phase, 

through values gained from the first phase for ε and kN
.We defined the Initial temperature, final temperature 
and Boltzmann constant for the problem and conducted 
20 runs of proposed algorithms to obtain the best 
combination for ε and kN . The results of phase one 
showed that for small scale, the best combination for ε 
and kN are0.008 and 3, respectively. For large scale 
problems the values were set as 0.003 and 10. The result 
of phase two determined values of initial temperature, 
final temperature and Boltzmann constant as 50,1 and 1 
for small scale problems, respectively, and 100, 1 and 1 
for large scale ones.  
 
5. 3. Bottleneck Based Heuristic      A bottleneck-
based heuristic is proposed to solve the candidate 
problem. This algorithm was proposed by Chen and 
Chen [4]. They developed a bottleneck-based heuristic 
for flow line (BBFFL) to solve a flexible flow shop 
problem with a bottleneck stage, where unrelated 
parallel machines exist in all the stages, with the 
objective of minimizing the makespan.  

 
 

 
TABLE 1. Parameter tuning for small scale problems 

Initial population Number of generation Crossover percentage Mutation percentage Elite percentage Number of local search 
100 50 0.8 0.13 0.07 5 

 
 

TABLE 2. Parameter tuning for large scale problems 
Initial population Number of generation Crossover percentage Mutation percentage Elite percentage Number of local search 

250 150 0.8 0.1 0.1 7 
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TABLE 3. Phase one parameters 
Initial temperature 100 
Constant value of temperature function 0.8 
Final temperature 1 
Boltzmann constant 1 
 
 

The essential idea of BBFFL is that scheduling jobs 
at the bottleneck stage may affect the performance of a 
heuristic for scheduling jobs in all stages. After defining 
some notations, the steps of the BBFFL will be 
described. 
i job index, i = 1,2,3, ...,n 
j stage index, j = 1,2,3, ...,J 
b bottleneck stage index, b ∈ [1,2,3, ...,J] 
s machine index at stage j, s = 1,2,3, ...,mj 
mj number of unrelated parallel machines at stage j 

ijp  average processing time of job i at stage j  

ibsP  processing time of job i on machine s at bottleneck 
stage b  

jR  the workload of stage j  

ijC  completion time of job i at last stage J 

min
ifp  total minimum processing time required for job i 

before the bottleneck stage b 
min
ilp  total minimum processing time required for job i 

after the bottleneck stage b 
 
Step 1. Set Ω to∅ . 
Step 2. Divide the system into upstream, bottleneck and 
downstream subsystems. Compute the total minimum 
processing times of the upstream subsystem ( min

ifp ) and 

the downstream subsystem ( min
ilp ) for each job. 

Step 3. Assign jobs to set U if the jobs satisfy the 
following condition: min min

i ifp lp≤ ; assign jobs to set L 
if the jobs satisfy the following condition: 

min min
i ifp lp> . 

Step 4. If U = ∅ , go to Step 5. Select the job with the 
smallest value of min

ifp  for i ∈ U. If there is more than 

one job having the same smallest value of min
ifp  , select 

the job with the maximum average processing time at 
the bottleneck stage ( ibp ). If the figures are once again 
the same, break the tie arbitrarily. Append the selected 
job to Ω and remove the job from set U; redo Step 5. 
Step 5. If L = ∅ , go to Step 6. Select the job with the 
maximum value of min

ilp  for i ∈ L. If there is more than 

one job having the same smallest value of min
ilp  , select 

the job with the maximum average processing time at 
the bottleneck stage ( ibp ). If the figures are once again 
the same, break the tie arbitrarily. Append the selected 
job to Ω and remove the job from set L; redo Step 5. 
Step 6. Obtain an initial sequence of the jobs in Ω. 
Step 7. Stop.  
 
 
6. COMPUTATIONAL RESULTS 
 
The developed mathematical model for solving the 
proposed problem is coded in GAMS/Cplex 22.5 
optimization software and GA and SA algorithms are 
coded in C++ Borland 6.0 on a computer with 4GB 
RAM,Intel Core2 Duo P7550 CPU, 2.26 GHz 
processor. Time limitation for each generated problem 
is 3600 seconds. Final results for small and large scale 
of the mentioned problem are summarized in Tables 4 
to 9.  In large scale problems, considering the very long 
computational time required by GAMS for solving the 
problems, the results of proposed methods are compared 
with each other. 

 
6. 1. Analyzing Small Scale Problems        According 
to the values obtained from the Table 4, we can show 
the results in Figure3. According to Figure 3, we can see 
that in small scale problems, objective function values 
are almost close to each other. By comparing these 
solutions with the ones obtained from GAMS software, 
the model and the results of the proposed algorithms can 
be properly validated. According to Figure 4, it can be 
seen that in all cases the time taken to achieve the 
optimal solution in the BB algorithm is less than the SA 
and GA algorithms.As it is shown in Table 6, SA excels 
other algorithms in number of optimal solutions and 
average error of methods compared to GAMS. BB 
performs worse than the other two algorithms in finding 
optimal solutions, so this algorithm does not seem 
appropriate for solving the problem in small scale. On 
the contrary, results of SA are very well in terms of both 
time and optimal solutions.  In order to check the 
equality of the values resulting from the proposed 
objective function in GA, SA and BB, we use the 
hypothesis testing. First, using the objective functions 
values, we checked the normality of them at 95% 
confidence level according to the results. In small scale 
problems, the p-value was less than 0.05 which 
indicates that the results are not normal.Hence, we use 
non-parametric statistical tests to check for equality of 
medians obtained from the use of the proposed 
algorithms. In this article, Kruskal-Wallis non-
parametric test was used. The results of this test for 
small scale can be seen in Figure 8. 
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TABLE 4. Computational results for small scale problems for GAMS, SA, GA and BB 
m×n GAMS SA GA BB 

Solution Time Local/ 
Optimal 

Average 
Solution 

Best 
Solution 

Time Average 
Solution 

Best 
Solution 

Time Solution Time 

3×4 718 0.928 Optimal 720.5 718 0.19 718 718 0.182 718 0.014 
5×4 773 1.154 Optimal 773 773 0.225 773 773 0.188 784 0.001 
7×4 826 1.354 Optimal 826 826 0.129 826 826 0.193 841 0.002 
10×4 857 2.882 Optimal 857 857 0.258 857 857 0.19 857 0.003 
15×4 1180 6.967 Optimal 1183.5 1180 0.156 1180 1180 0.18 1180 0.006 
20×4 1448 16.78 Optimal 1448 1448 0.46 1448 1448 0.204 1448 0.012 
3×6 973 7.953 Optimal 988.25 986.5 0.178 977 973 0.187 1001 0.003 
5×6 1166 12.198 Optimal 1166 1166 0.15 1168.5 1166 0.194 1168 0.005 
7×6 1336 16.56 Optimal 1338.75 1336 0.149 1336.25 1336 0.197 1361 0.010 
10×6 1220 69.015 Optimal 1221.75 1220 0.218 1230.5 1220 0.181 1227 0.016 
15×6 1763 119.192 Optimal 1782 1763 0.257 1776.75 1763 0.213 1815 0.029 
20×6 1798 286.482 Optimal 1812 1798 0.284 1812 1798 0.201 1826 0.051 
3×8 1320 642.987 Optimal 1320.75 1320 0.162 1324 1320 0.226 1321 0.010 
5×8 1464 1340.37 Optimal 1464.5 1464 0.153 1480.25 1479 0.258 1469 0.018 
7×8 1273 953.441 Optimal 1281.5 1273 0.255 1378 1365 0.199 1303 0.027 
10×8 1314 2717.215 Optimal 1321 1314 0.199 1442 1438 0.218 1353 0.054 
15×8 1754 3600 Local 1759 1754 0.276 1787.25 1770 0.229 1760 0.090 
20×8 2322 3600 Local 2285 2276 0.281 2285.75 2282 0.22 2281 0.163 

 
 

TABLE 5. Computational results for large scale problems for SA,GA and BB 

m×n  
 SA GA BB 

Average Solution Best Solution Average Time Average Solution Best Solution Average Time Solution Time 
3×20 3228 3225 0.157 3262.75 3216 0.193 3216 0.419 
5×20 3389 3380 0.302 3477.5 3434 0.196 3434 0.785 
7×20 3239 3232 0.269 3451.5 3347 0.246 3186 1.265 
10×20 3477 3465 0.406 3550.5 3531 0.192 3480 2.160 
15×20 4317 4295 1.854 4552 4532 0.204 4372 7.339 
20×20 4151.5 4117 3.05 4560 4537 0.206 4154 24.654 
3×30 4593.25 4560 0.829 4587.75 4569 0.199 4524 8.935 
5×30 4564.25 4532 0.586 4802.5 4801 0.221 4514 17.334 
7×30 5071 5046 2.43 5250.75 5250 0.206 4957 25.962 
10×30 5277 5270 2.606 5589.5 5589 0.231 5270 44.409 
15×30 5571.75 5537 5.469 6149 6106 0.228 5615 83.837 
20×30 5870 5743 7.95 6381.75 6349 0.222 5770 132.747 
3×40 6353.5 6306 0.767 6448.5 6312 0.201 6366 31.298 
5×40 6306.25 6285 0.789 6627 6609 0.254 6326 50.832 
7×40 6387 6350 2.27 6731.25 6659 0.217 6234 84.726 
10×40 6576.25 6564 4.185 6952.5 6942 0.218 6462 147.632 
15×40 6808 6762 10.95 7516 7514 0.203 6693 273.558 
20×40 7755 7687 12.95 8324 8237 0.231 7812 455.716 

 
 

TABLE 6.Computational results for small scale (1) 
Number of optimal 

solutions 
Number of better solution than 

GAMS 
Average error of methods compared to 

GAMS Average computational time (s) 

SA GA BB SA GA BB SA GA BB SA GA GAMS BB 
16  13 4 1 1 1 0.0023 0.0126 0.0097 0.2211 0.2033 744.1932 0.285 
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Figure 3.Time series plot for proposed algorithms in small 
scale 

 

 
Figure 4.Time series plot for computational time in small 
scale 

 

 
Figure5. Normality test for the proposed GA in small scale 

 

 
Figure6. Normality test for the proposed SA in small scale 

 

 
Figure7. Normality test for the proposed BB in small scale 

 
Figure8. Results of Kruskal-Wallis test for small scale 
 
 

TABLE 7.Computational results for small scale (2) 
Method Objective function average value 
GAMS 1305.833 

SA 1308.139 
GA 1322.236 
BB 1317.389 

 
 
As it can be seen from Figure8, as well as the 

P=0.961, the p-value is above 0.05.So, we can declare 
that the result is not statistically significant, or there is 
not a statistically significant difference between the 
algorithms. 

 
6. 2. Analyzing Large Scale Problems       
Considering Figure 9, we can see that in the large scale 
problems, SA and BB are very close to each other in 
most cases and both excel GA algorithm clearly. 
Totally, the proposed BB outperforms the GA and SA 
algorithms in large scale problems considering the 
objective function value. In Figure10, it can be seen that 
in most cases, the time taken to reach optimal solution 
in proposed GA is less than the proposed SA and BB 
algorithms. This leads the proposed BB to be more 
efficient in solving the large scale problems due to the 
computation time. 

As can be seen in Table 8, both SA and BB 
outperform GA regarding objective function average 
value and computational time average value. Both 
algorithms generate relatively close results, but the 
computational time of SA is much less than BB. Given 
the importance of computational time and objective 
function value, one can select one of these two 
algorithms for solving the problem in large scale. In 
large scale problems, the p-value for normality test was 
less than 0.05, which indicates that the results are non-
normal. Therefore, we use non-parametric statistical 
tests to check for equality of mediansof proposed 
algorithms. The results of Kruskal-Wallis non-
parametric test can be seen in Figure14. Based onFigure 
14 and P = 0.637, we can conclude that equality 
assumption of the values from the proposed algorithms 
in large scale problems cannot be rejected at a 
confidence level of 95%.The results of Kruskal-Wallis 
test can be seen in Figure 14. 
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TABLE 8.Computational results for large scale (1) 
Method Objective function 

average value 
Computational time 

average value 
SA 5163.042 3.2121 
GA 5450.819 0.2148 
BB 5132.5 77.422 

 
 

TABLE 9. Computational results for large scale (2) 
Average error of 
GA compared to 

SA 

Average error of 
GA compared to 

BB 

Average error of 
SA compared to BB 

0.936 1.042 0.100 
 
 

 
Figure 9. Changes in the objective function of the proposed 
algorithms in large scale  

 

 
Figure 10. Changes of computation times in order to achieve 
the optimal solutions of the proposed algorithms in large scale  
 

 
Figure 11. Normality test for GA in large scale  

 

 
Figure 12. Normality test for SA algorithm in large scale  

 
Figure 13. Normality test for BB algorithm in large scale  

 

 
Figure 14. Results of Kruskal-Wallis test for large scale 

 
 
6. CONCLUSIONS 
 
This paper dealt with the no-wait reentrant flowshop 
scheduling problem to minimize makespan. Since this 
problem has been proved to be NP-hard, heuristic 
algorithms were proposed in this paper to solve it. To 
our best knowledge, this should be the first proposed 
model for the problem with the above-mentioned 
properties. Computational results show that, considering 
both small scale and large scale, SA algorithm 
outperforms the two other algorithms in finding better 
solutions in a proper computational time.  

A perspective for future research is to develop other 
metaheuristics for the model and compare the results 
with the proposed algorithms. In the real world, the 
nature of variables is not deterministic, so the fuzzy 
approach can be applied to the problem. Finally, 
generalizing the model to other layouts such as flexible 
flowshop can be an interesting path for future work. 
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  هچکید

  

با هدف بودن محیط بدون وقفه  و رپذیبرگشتی با در نظر گرفتن خصوصیات کارگاه انیمساله جر يبندمقاله زمان نیدر ا
 کیدر آن حداقل پذیر این است که ویژگی اصلی محیط برگشت. شودیم یکارها بررس لیحداکثر زمان تکم سازينهیکم

،وقتی پردازش کاري بر روي در مسایل جریان کارگاهی بدون وقفه. بگذردکباریاز  شیچند مرحله ب ایکیاز تسباییکار م
مسیر پردازشی خود را تا اتمام عملیات روي  ،وجود آیده اي در آن ببدون اینکه وقفه بایدشود، ماشین اول شروع می

ه ب اتیکاربرد دارد که در ادب کیربات عیمانند صنا عیاز صنا ياریدر بس اتیخصوص نیا يادغام هردو. کندماشین آخر طی 
و سپس با استفاده از سه روش پیشنهادي هیارا یاضیمدل ر مدنظر یکمساله  يبرا ابتدا .استنشدهیصورت مجزا بررس

در . باشده میهاي پیشنهادي شامل شبیه سازي تبرید، الگوریتم ژنتیک و یک الگوریتم مبتنی بر گلوگاالگوریتم .استشدهحل
  .است شدههاي ارایه شده ارزیابی و بررسی نهایت، کارآیی روش
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