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ABSTRACT

The nonlinear bending behavior of sector graphene sheets is studied subjected to uniform transverse
loads resting on a Winkler-Pasternak elastic foundation using the nonlocal elasticity theory.
Considering the nonlocal differential constitutive relations of Eringen theory based on first order shear
deformation theory and using the von-Karman strain field, the equilibrium partial differential equations
are derived. The nonlinear partial differential equations system is solved using the differential
quadrature method (DQM) and a new semi analytical polynomial method (SAPM). By using the DQM
or SAPM, the partial differential equations are converted to nonlinear algebraic equations, then the
Newton—Raphson iterative scheme is applied to solve the resulting nonlinear algebraic equations
system. The obtained results from DQM and SAPM are compared. It is observed that the SAPM results
are so close to DQM. The SAPM’s formulations are considerably simpler than the DQM. Different
boundary conditions including clamped, simply supported and free edges are considered. The obtained
results are validated with available researches, then the small scale effects is investigated on the results
due to various conditions such as outer radius to thickness ratio, boundary conditions, linear to
nonlinear analysis, nonlocal to local analysis ratio, angle of the sector and stiffness value of elastic
foundation.
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1. INTRODUCTION

simulation, combination of atomic simulation and
continuum mechanics, and only continuum mechanics

Nanostructures are attended by many researchers due to
their special mechanical, thermal and electrical
properties. In recent years, nano materials are widely
used in nano-systems, therefore, studying their
mechanical behavior is considered. A graphene sheet is
the network of carbon atoms that arranged in hexagonal
form. In this network, each atom has the covalent bond
with three atoms around that leads to high flexibility,
enormous resistance in tension and low thermal
expansion.

In recent years, many researchers have studied the
mechanical behavior of nanostructures. Aside from
experimental works, simulating methods such as atomic
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are used to study the mechanical behavior of
nanostructures [1]. Whereas the control in experimental
methods is so difficult in nano scale size and also the
atomic  simulation methods are expensive in
calculations, consequently, the continuum mechanics
method is applied considerably because of convenience
in formulation and acceptable results in comparison
with the other methods [2]. The continuum mechanics
methods are categorized into several methods such as
the Couple Stress Theory [3], Modified Strain Gradient
Elasticity [4] and Eringen Nonlocal Elasticity Theory
[5]. Between the mentioned methods, the Eringen
Nonlocal Elasticity Theory is widely used for studying
mechanical behavior of nanostructures. Based on
Eringen theory, the stress at a reference point is a
function of strain field at every point in the body. On the
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other hand, the covalent bond between atoms has the
significant effects on mechanical properties at nano
scale size and using the local elasticity theory leads to
unacceptable results [6, 7]. For the first time, Hans
Pieter Bohem [8] described a carbonic structure with
hexagonal shape in title of the graphene. Graphite is
built from several layers of graphene on each other. As
well as, nanotubes discovered by lijima [9] in Tesokoba
laboratory in 1991. Thereafter, many researchers used
the nonlocal elasticity theory to study the mechanical
properties of nanostructures, especially vibrational and
buckling issues. Investigations show that the amount of
literatures in one dimensional nanostructures such as
nanotubes and nanobeams is considerably more than the
two dimensional ones. Lima and He [10] improved a
von Karman nonlinear model for ultra-thin, elastically
isotropic films with surface effect. Khanchehgardan et
al. [11] are studied thermo-elastic damping in nano-
beam Resonators Based on Nonlocal Theory. They
concluded that with increasing the amount of nonlocal
parameter and also with decreasing the length of the
nano-beam, difference of the results of classical and
nonlocal theory increases. Pradhan [12] investigated the
buckling of rectangular graphene sheets, and proved that
the ratio of critical buckling load in nonlocal to local
theory is equal or less than one and found that using
higher order shear deformation theories is much more
accurate for thick nano plates. Reddy [13] obtained the
governing equations for orthotropic beams and plates in
nonlocal form considering the Von Karman nonlinear
strain field that allows for large deformations. Ansari et
al. [14] are studied the effects of small scale parameter
for vibrations of multilayered graphene sheets in
polymer environment. To this effect, they merged the
equations of nonlocal elasticity and Mindlin theories
and calculated the van der Waals interactions. Samayi et
al. [15] studied the buckling of monolayer graphene
sheets in embedded elastic foundation based on
nonlocal elasticity theory. Jomezadeh and Saidi [16]
investigated vibration of multilayered graphene sheets
based on nonlocal elasticity theory considering
nonlinear Von Karman strain field. Shen et al. [17]
studied the nonlinear vibrational behavior for a simply
supports single layer Graphene sheet in thermal
environments in order to obtain the nonlocal parameter.
Golmakani and Rezatalab [18] studied the nonlinear
bending of an orthotropic rectangular graphene sheet
resting on a Winkler-Pasternak elastic foundation. They
found that with increase of nonlocal parameter, the
maximum deflection is decreased.

In present study, the nonlinear bending of a sector
graphene sheet is investigated based on the first-order
shear deformation theory considering Von Karman
strain field. In order to study the small scale effects on
deflection, the Eringen’s nonlocal theory is applied. The
DQM which is a numerical method and a new semi
analytical polynomial method (SAPM) are applied to

solve the partial differential governing equations. First
of all, the two methods are compared with each other
and concluded that although the new method is
extremely simple, but it is an accurate method. Since,
there are not any literatures available on bending of
sector graphene sheets and in order to demonstrate the
accuracy of obtained results, the nonlocal parameter is
considered to be zero and the results are validated with
available literature. The effects of different conditions
such as radius and thickness of the graphene nanoplate,
outer radius to thickness ratio, nonlocal to local
deflection ratio, linear to nonlinear analysis, different
types of boundary conditions, and the effects of
nonlocal parameter and the value of stiffness matrix on
the results are investigated.

2. GOVERNING EQUATIONS

A sector graphene sheet is considered with thickness h,
inner radius r; , outer radius r, , and the total angle of ©

under uniform transverse loading g resting on an elastic
foundation. The geometry of the plate is shown in
Figure 1. In this paper, all the governing equations are
derived based on the first-order shear deformation
theory (FSDT) that includes the neglected assumptions
in classical plate theory. According to the first-order
shear deformation theory of plates, the displacement
field can be expressed as:

U(r,0,z)=u(r,0)+zy,(r,0) (1)
V(r,0,z)=v(r,0)+zy,(r,0) 2)
W (r,0,z)=w(r,0) (3)

In Equations (1)-(3), u, vand ware the displacement
components of the mid-plane along the r, 6 and z

directions, respectively. W, and Y, explain the rotation

functions of the transverse normal about circumferential
and radial directions.

Figure 1. Geometry of sector graphene sheet
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Considering von-Karman assumptions, the strain
field is expressed as follows:
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In nonlocal elasticity theory, the effects of small scale
and atomic forces directly come into the constitutive
equations as material parameters [5]. In this theory, the
stress at reference point Xis a function of strain field in
every point on plate. Eringen presented a differential
form of the nonlocal constitutive equation from
nonlocal balance law as follow [5]:

(l—uvz)oNL=6L,u=(eOa)2 9

in which, a is internal characteristic length, and e
is material constant which is defined by experiment.

The parameter e,a is the small-scale parameter

0
revealing the small-scale effect on the responses of
nano-size structures. The value of the small-scale
parameter depends on boundary conditions, chirality,
number of walls, and the nature of motions. The
nonlocal stresses using the Equation (9) can be defined
in polar coordinates system as follows [5]:
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In Equations (10)-(14), V? is the Laplacian operator
in polar coordinates system as follow:
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The nonlocal force, moment and shear force
components N (i=r,0,r0), M (i=r,0,r0) and
QM (i =r,0), are as follows:

h
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By using Equation (9), the relations between local
and nonlocal force, moment and shear force components
can be expressed as follows:

(1—uv2)NiNL =N}.i=(1.0,r0) (18)
(1—uv2)MiNL =ML,i=(r.0,10) (19)
(1-nv?)oM =0fi = (r.0) (20)

Nl M (i=r,0,r0)and Q] (i =r,0) are the local in-
plane force, moment and the shear force resultants
which are defined for isotropic material as:
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Using the principle of stationary total potential
energy, the governing equations as well as the related
boundary conditions along the edges of sector plate can
be derived. The equations of the total potential energy in
case of nonlocal form are expressed as:

ST =6U +8Q =0 (29)

SU = j j j (oM se, 10N Segy + 0Ny
v (30)
+Kscr§L5yrz + KSGGZ\;L&/GZ )dV

I fT
SQ:j j(q—kww+ka2W)5Wrdrd9 31)
r; 40

Uand Q are the strain energy and potential of
applied forces, respectively. x_ is the transverse shear
correction coefficient and in this study is taken as 5/6

for the isotropic material and k, and k, are the

Winkler and Pasternak stiffness coefficient of elastic
matrix.

Using the wvariation principals, the nonlocal
equilibrium equations of sector graphene sheets are
obtained in cylindrical coordinates system in terms of
nonlocal force, moment and the shear force resultants
as:

1
5u:N,’j’,L+7(N,’\9’f9+N,NL—N9’\’L):o (32)
1
sv: NNE +7(N9"f§ +2N ) =0 (33)
1 o*w
6w:Q,’:],L+7(Q(;‘fg +QrNL)+(q—kww+ka2w +NrNLF
r
2 2 (34)
+N9NL la_w_'.l_a w +2NTI\éL l_a w _la_w =0
r or r? o602 rorod % o0
N, L NL NL NL NL
5W1:Mr,r +7(Mr9,9+Mr _MQ )_Qr =0 (35)
NL ] NL NL NL
Sy, Mg, +7(M9,9 +2M g )—Qe =0 (36)

Substituting Equations (10)-(14) in Equations (16)-
(17) and then inserting the resulted nonlocal form of
force, moment and shear force resultants into Equations
(32)-(36) leads to five equilibrium Equations (37)-(41)
which can be defined in local form as follows:
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Because of small numbers, for sake of generality and
convenience, the following non-dimensional terms are
introduced as follow:
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3. NUMERICAL SOLUTION

In this paper, two different methods are used to obtain
the results. First, the DQM method is applied which is a
popular method for solving differential equations. Then,
a new semi analytical polynomial method is introduced.

3. 1. Solution using Differential Quadrature
Method (DQM) The DQ method based on the
approximation of partial derivative of a function at a
point is affected by the values of the function in the
whole domain [19].

According to DQ Method, the derivatives of a two
dimensional function f{r,0) at points r, 8 can be defined
as a linear sum of the function values [18, 20]. The
number of discrete grid points and point distribution in
DQM is arbitrary. However, it has been shown that the
grid point distribution which is based on Gauss-
Chebyshev-Lobatto points, gives more accurate results
[21]. This method distributes points in unequal distances
in a way that the points set mainly near the boundaries.

By use of DQM, partial differential equations turn to
nonlinear algebraic equations system. Now, this system
can be solved using several numerical methods. Because
of high rate of convergence, in this paper, the Newton-
Raphson iterative method is used to solve the nonlinear
algebraic equations system.

3. 2. Semi Analytical Polynomial Method (SAPM)
In this method, every function of differential equations
is approximated by a polynomial in general form
depends on the grid point distribution. Contrary to
collocation method [22], there is no need for the
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introduced polynomial functions to satisfy the boundary
conditions. Every PDE or set of PDE’s system will be
solved conveniently and quickly with different types of
boundary conditions. Contrary to DQM, in this method
it is not needed to calculate weighted residuals
coefficients for each derivative. Considering a partial
differential equation as follow:

o't (r0) 3" Ve(ro)  of(r0) o"f(r)

oy a(n—l)r or "0
(n—l) n n
A" r(r0)  of (r0) F'F(r0) OF(r0)
ol Vg 20 arel" Vg ar2eln2g
n
+m:0
o ag

The two variables function f{r,0) is considered as
follow:

N M
i-1)p(j-1
f(r’e)zzlzla(iJrj(l(i1)(M1)))r( ot~ (43)
1=l j=

In Equation (43), N is the number of grid points in r
direction and M for 0 direction. The grid points are
shown in Figure 2. By substituting Equation (43) in
(42), the partial differential equation converts to
algebraic equations. According to the Figure 2, the
numbers of 2N + 2M - 4 equations are derived
from boundary conditions (dark points) and
(N-2)-(M-2)=N-M-2N-2M +4  equations from
Equation (43) (bright points). So, there are M -N
algebraic equations and M -N unknown a;. By
a;,i=1.M -N in Equation (43), the
function f{x,y) will be determined. For the set of partial
differential equations, the similar method will apply.

If the differential equations are nonlinear, by
substituting Equation (43) in governing equations, the
resulted algebraic equations will be nonlinear. So, a
numerical method must be applied to solve the set of
nonlinear equations. In this paper, as the procedure is
explained for DQM, the Newton-Raphson numerical
method is investigated to solve the nonlinear algebraic
equations  system. Now, the  dimensionless
displacements and rotations are introduced in
dimensionless form as follows:

substituting

U*: N M . r*(i_l) (j—l)
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Substituting the polynomial functions (44-48) into the
governing equations, the PDE’s was inverted to
algebraic equations. Comparison between Equations
(44-48) with the relations for DQM, it is obvious that
the formulations and coding by computer programs in
SAPM method are significantly simpler than DQM.

4. BOUNDARY CONDITIONS

In this paper, the boundaries are considered in the
category of the simply supported (S), clamped (C) and
free edges (F) which the conditions in each one are
defined as Figure 3.

S: u=v=w=y,=M_ =0 r=r,r,
"u=v=w=y, =M, =0 0=0,1
C: u=v=w=y,=y,=0 =11,
u=v=w=y,=y,=0 =0,7
F: Nr:NrG_Qr:Mr:MrG_O r=r,r,
"N,=N,,=Q,=M,=M,, =0 6=0,1

plate

Figure 3. Definition of boundary conditions
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TABLE 2. Comparison dimensionless deflection with the references
v [ijw "
4
ar,
Preset study r.
i
[26] [25] [24] [23] SAPM DQM r,
9x9 7x7 9x9 7x7
2.840 2.760 2.841 2.860 2.848 2.801 2.835 2.788 0.25
1.410 1.420 1.426 1.430 1.438 1.415 1.433 1.414 0.5
0.100 0.090 1.043 0.099 0.093 0.090 0.09 0.088 0.75
5. NUMERICAL RESULTS Figure 5 shows the dimensionless deflection versus
nonlocal parameter for two types of boundary

First, it is considered a sector nano-plate to check the
convergence of DQM and SAPM. Figure 4, shows that
the desirable converged results are obtained for only
seven nodes in each direction. As well as, it is
concluded that with the same nodes in each direction,
the results are so close to each other using DQM and
SAPM. Because of convenience in formulations and
coding by computer programs, using of SAPM is highly
recommended.
E =1.06x10"%Pa, ¢" =1x10" / E, ;1 =1 nm?
1; /1,=02,h=034nm,c=7/2

One of the benefits of sectorial shape is capability for
obtaining the rectangular, annular and circular
geometry. In this paper, a rectangular graphene sheet is
estimated by a sector and the results are compared with
available paper. The dimensionless deflection with
u=4nm* and the transverse load q =1GPa is compared
with rectangular graphene sheet in Table 1 for SSSS
boundary conditions. Since no research exist in nonlocal
bending of sector plates; therefore, in order to validate
with the other researches, the nonlocal parameter is
considered to be zero. The central deflection reported in
references [23-26] is compared with the ones obtained
by the present solution with two methods DQM and
SAPM with 7x7 and 9x9 grid points in Table 2. The
properties of the plate are given as follow:

(ty—1;)/ h =100, ¢=1Pa,E =200x10° Pa, t=7/3
Now, a sector graphene plate is considered with the
properties below ( 6 =7,k ,=0):

E =1.06x10"*Pa, Q" =50x10’ / E k. =0.005331, r; /1, =0.2

The central deflection is given using two methods
DQM and SAPM for ea=1nm and 7x7 grid point

distribution in Table 3. It is observed that the obtained
results from two different methods are so close.
Consequently, by using the SAPM method, the expected
accuracy of the result is obtained with the same grid
point distribution toward DQM, but shorter in
processing time by computer.

conditions SSSS and CCCC both with and without an
elastic foundation (g* =4x10°/ E).

TABLE 1. Comparison dimensionless deflection with Ref
[18]

Dimensionless deflection x1000

[18] Present
q (GPa) h= h= h= h=
0.34nm 0.68nm 0.34nm 0.68nm
0.01 0.6 0.4 0.591 0.392
0.05 2.8 1.9 2.76 1.87
0.1 5.6 3.7 5.56 3.67
0.5 28 18.6 27.83 18.45
1 56 37.3 55.65 37

TABLE 3. Comparison of dimensionless deflection for two
DQM and SAPM methods

Central dimensionless Deflection

q
(GPa) DQM SAPM
0.15  0.0030321056189380  0.0030321056187031
ccee 02 0.0040428074919197  0.004042807491599
05 0.0101070187298200  0.01010701872884
—&— SFSF DQM —— SSSS baM —a&— CCCCDQM
—3— SSSS SAPM —3¥— SFSF SAPM —@— CCCCSAPM
0.0018 -
0.0015
0.0012
. 0.0009
%
0.0006
0.0003

0

01

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Node number in each direvtion (NxN)

Figure 4. Dimensionless deflection versus the number of grid
points for DQM and SAPM domain
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~~~~~~ @ ---- CCCCwithout elastic foundation
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Figure 5. Variation of dimensionless deflection versus the
nonlocal parameter in presence and absence of elastic

foundation (kp =1.13 Pam)

— - M- - CCCCK*w=0.0235
— @ — SSSS K*w=0.0235
~~~~~~ @+ SSSS K*w=0.00235
2 7 - - - CCCCK*w=0.00235
1.9 - —®— SSSS Without Elastic Foundation
| —%— CCcCWithout Elastic Foundation

Rs

H(nm?)
Figure 6. Linear to nonlinear deflection ratio R, versus

nonlocal parameter

— =@ — 1=270(degrees)

1.045
— A— - T=180 (degrees)
N
1.04 S N — B — 1=90 (degrees)
'~ —@— 1=315 (degrees)
~ .
1.035 SN <
TN, ~. <
1.03 B. . N \\
& I
1.025 T kS
S e~
1.02
1.015 T T T |
0 1 2 3 4
K (nm?)

Figure 7. Diagram of R_ versus the nonlocal parameter for
different sector angles (SSSS)

It is observed that the maximum deflection in CCCC
boundary conditions is significantly less than SSSS.

When there is not any elastic foundation, the increase of
nonlocal parameter leads to decrease of the deflection
gently. The maximum deflections are closer to each
other in CCCC and SSSS boundary conditions in
presence of Pasternak elastic foundation and the
increase of nonlocal parameter has the more effects on
the results. To study the differences between linear to
nonlinear analyses, the parameter R, is defined as

follow [18]:

*

W, . .
Rs — Linear ( 49)

*
w Nonlinear

Figure 6 is pictured variation of ratio R, versus

nonlocal parameter for two types of boundary
conditions in presence and absence of Winkler elastic
foundation with the properties below:

E =1.06x10"Pa, Q" =30x10’ / E,r, /1,=0.2, 0 =x

Existence of elastic foundation causes decrease of
flexibility, so the effect of boundary conditions
decreases. Along the increase of the Winkler stiffness
value, the results of two different boundary conditions
and linear and nonlinear analysis approach to each
other. Also, with increase of small scale effects, the R,

slope decreases gently. With increase of the Winkler
stiffness value, the small scale effects decreases.

The differences between linear and nonlinear
analysis goes up in absence of elastic foundation. This
raising of R, ratio is more significant for SSSS than

CCCC boundary condition. The increase of nonlocal
parameter has the more effects on the results in absence
of elastic foundation especially for SSSS boundary
conditions. However, these effects are decreased along
the increase of nonlocal parameter.

In Figure 7, it can be concluded that increase of
sector angle causes increase of dimensionless deflection
and R, parameter. With increase of y, two linear and
nonlinear FSDT analysis approach to each other and the
effects of nonlocal parameter on the results are raised
with increase of sector angle. As well as, the differences
between R, parameter along the raise of sector angle
reduced.

The parameter R introduces to compare the results

of nonlocal elasticity theory with local, as follow [18]:

R, =i (50)
W Local

Wromeew a0d w; . are the dimensionless deflections in

nonlocal and local elasticity theory, respectively. Figure

8, shows the variation of R_ versus dimensionless

transverse load in presence and absence of elastic

foundation.
According to Figure 8, it is concluded that two local
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and nonlocal elasticity theories are receded from each
other in presence of elastic foundation, but along the
raise of transverse loading the local and nonlocal
theories approach. The results of nonlocal and local
elasticity theories have the less difference in absence of
elastic foundation. Contrary to the statement that the
elastic foundation exists, the differences between two
theories are increased along the growing of transverse
loading. Also, the presence or absence of elastic
foundation do not have any effects on the differences
between two nonlocal and local elasticity theories in
large amount of transverse loads and the results tend to
a constant value.

The effect of sector’s angle on R is shown in

Figure 9 considering the nonlocal parameter ej =1.5nm

for SSSS boundary conditions in absence of elastic
foundation. The transverse load and the deformation of
the plate increase with increasing of sector angle. So,
the differences between the two theories increase with
the raise of sector angle. Consequently, for greater
angles use of nonlocal theory is more recommended.
Also, with increase of sector angle, the two theories are
separated from each other with higher rate.

——&—— e0a =1 nm without elastic foundation
— A— - e0a = 1.5 nm without elastic foundation
— —@ - e0a=1nm with elastic foundation

0.9 — @ — e0a = 1.5 nm with elastic foundation
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Figure 8. R ratio versus the non-dimensional transverse

loading in presence and absence of elastic foundation (CCCC)
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Figure 9. Diagram of R, parameter versus non-dimensional

transverse loading and different sector angle
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The effect of increase of radius on deflection is
studied in Figure 10 for two different types of boundary
conditions SSSS and CCCC, with the plate conditions
below:

E =1.06x10"Pa, ¢ =50x10" / E, k, =1Gpa/nm
r, =Inm, T =x/2, h=0.34 nm, k,=0.01Pa.m

It is observed that with increase of outer radius
(r,/h, h is constant), the maximum deflection is

increased. In the beginning, the maximum deflection
goes up with a rising slope during the increase of outer
radius. However, in continue of increase of r, /h, the

variation slope tends to go down to a constant value.
Also, the variations for SSSS boundary conditions are
more than CCCC.

6. CONCLUSION

In this paper, the nonlinear bending analysis for sector
nano graphene plate resting on an elastic matrix with
two parameters. Winkler and Pasternak is investigated
using nonlocal elasticity theory. The first order shear
deformation theory (FSDT) is applied considering the
nonlinear Von Karman strain field. The equilibrium
equations are derived using the principals of minimum
potential energy method. The most important
conclusions can be classified as follows:

- The presented semi analytical polynomial method
(SAPM) is highly accurate, considerably simpler in
formulations and coding by computer programs and
its rate of processing time is about fifty percent
more than DQM.

- Increase in nonlocal parameter has much more
effects on nonlinear analysis in comparison with
the linear analysis.

- The small scale effects on deflection reduce when
the plate is rested on an elastic foundation.
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The differences between two nonlocal and local
elasticity theories are increased in presence of
elastic foundation. However, the effects of elastic
foundation reduce due to the increase of the
transverse loading.

The differences between nonlocal and local
elasticity theories are raised along the increase of
sector angle and the two theories go on each other
with growing of thickness.

Some of possible directions for future research can

be summarized as follows:

Nonlinear bending analysis of multilayers sector
graphene sheets.

Using higher order shear deformation theory
(HSDT) instead of FSDT in order to obtain the
more precise results.

Buckling of sector graphene sheet and deriving the
buckling of circular/annular and rectangular
graphene plates from sectorial shape.
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