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A B S T R A C T  
 

 

The nonlinear bending behavior of sector graphene sheets is studied subjected to uniform transverse 
loads resting on a Winkler-Pasternak elastic foundation using the nonlocal elasticity theory. 
Considering the nonlocal differential constitutive relations of Eringen theory based on first order shear 
deformation theory and using the von-Karman strain field, the equilibrium partial differential equations 
are derived. The nonlinear partial differential equations system is solved using the differential 
quadrature method (DQM) and a new semi analytical polynomial method (SAPM). By using the DQM 
or SAPM, the partial differential equations are converted to nonlinear algebraic equations, then the 
Newton–Raphson iterative scheme is applied to solve the resulting nonlinear algebraic equations 
system. The obtained results from DQM and SAPM are compared. It is observed that the SAPM results 
are so close to DQM. The SAPM’s formulations are considerably simpler than the DQM. Different 
boundary conditions including clamped, simply supported and free edges are considered. The obtained 
results are validated with available researches, then the small scale effects is investigated on the results 
due to various conditions such as outer radius to thickness ratio, boundary conditions, linear to 
nonlinear analysis, nonlocal to local analysis ratio, angle of the sector and stiffness value of elastic 
foundation. 
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1. INTRODUCTION1 

 
Nanostructures are attended by many researchers due to 
their special mechanical, thermal and electrical 
properties. In recent years, nano materials are widely 
used in nano-systems, therefore, studying their 
mechanical behavior is considered. A graphene sheet is 
the network of carbon atoms that arranged in hexagonal 
form. In this network, each atom has the covalent bond 
with three atoms around that leads to high flexibility, 
enormous resistance in tension and low thermal 
expansion. 
     In recent years, many researchers have studied the 
mechanical behavior of nanostructures. Aside from 
experimental works, simulating methods such as atomic 

                                                        
1 *Corresponding Author’s Email: jabbarzadeh@mshdiau.ac.ir (M. 
Jabbarzadeh) 

simulation, combination of atomic simulation and 
continuum mechanics, and only continuum mechanics 
are used to study the mechanical behavior of 
nanostructures [1]. Whereas the control in experimental 
methods is so difficult in nano scale size and also the 
atomic simulation methods are expensive in 
calculations, consequently, the continuum mechanics 
method is applied considerably because of convenience 
in formulation and acceptable results in comparison 
with the other methods [2]. The continuum mechanics 
methods are categorized into several methods such as 
the Couple Stress Theory [3], Modified Strain Gradient 
Elasticity [4] and Eringen Nonlocal Elasticity Theory 
[5]. Between the mentioned methods, the Eringen 
Nonlocal Elasticity Theory is widely used for studying 
mechanical behavior of nanostructures. Based on 
Eringen theory, the stress at a reference point is a 
function of strain field at every point in the body. On the 
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other hand, the covalent bond between atoms has the 
significant effects on mechanical properties at nano 
scale size and using the local elasticity theory leads to 
unacceptable results [6, 7]. For the first time, Hans 
Pieter Bohem [8] described a carbonic structure with 
hexagonal shape in title of the graphene. Graphite is 
built from several layers of graphene on each other. As 
well as, nanotubes discovered by Iijima [9] in Tesokoba 
laboratory in 1991. Thereafter, many researchers used 
the nonlocal elasticity theory to study the mechanical 
properties of nanostructures, especially vibrational and 
buckling issues. Investigations show that the amount of 
literatures in one dimensional nanostructures such as 
nanotubes and nanobeams is considerably more than the 
two dimensional ones. Lima and He [10] improved a 
von Karman nonlinear model for ultra-thin, elastically 
isotropic films with surface effect. Khanchehgardan et 
al. [11] are studied thermo-elastic damping in nano-
beam Resonators Based on Nonlocal Theory. They 
concluded that with increasing the amount of nonlocal 
parameter and also with decreasing the length of the 
nano-beam, difference of the results of classical and 
nonlocal theory increases. Pradhan [12] investigated the 
buckling of rectangular graphene sheets, and proved that 
the ratio of critical buckling load in nonlocal to local 
theory is equal or less than one and found that using 
higher order shear deformation theories is much more 
accurate for thick nano plates. Reddy [13] obtained the 
governing equations for orthotropic beams and plates in 
nonlocal form considering the Von Karman nonlinear 
strain field that allows for large deformations. Ansari et 
al. [14] are studied the effects of small scale parameter 
for vibrations of multilayered graphene sheets in 
polymer environment. To this effect, they merged the 
equations of nonlocal elasticity and Mindlin theories 
and calculated the van der Waals interactions. Samayi et 
al. [15] studied the buckling of monolayer graphene 
sheets in embedded elastic foundation based on 
nonlocal elasticity theory. Jomezadeh and Saidi [16] 
investigated vibration of multilayered graphene sheets 
based on nonlocal elasticity theory considering 
nonlinear Von Karman strain field. Shen et al. [17] 
studied the nonlinear vibrational behavior for a simply 
supports single layer Graphene sheet in thermal 
environments in order to obtain the nonlocal parameter. 
Golmakani and Rezatalab [18] studied the nonlinear 
bending of an orthotropic rectangular graphene sheet 
resting on a Winkler-Pasternak elastic foundation. They 
found that with increase of nonlocal parameter, the 
maximum deflection is decreased. 
   In present study, the nonlinear bending of a sector 
graphene sheet is investigated based on the first-order 
shear deformation theory considering Von Karman 
strain field. In order to study the small scale effects on 
deflection, the Eringen’s nonlocal theory is applied. The 
DQM which is a numerical method and a new semi 
analytical polynomial method (SAPM) are applied to 

solve the partial differential governing equations. First 
of all, the two methods are compared with each other 
and concluded that although the new method is 
extremely simple, but it is an accurate method. Since, 
there are not any literatures available on bending of 
sector graphene sheets and in order to demonstrate the 
accuracy of obtained results, the nonlocal parameter is 
considered to be zero and the results are validated with 
available literature. The effects of different conditions 
such as radius and thickness of the graphene nanoplate, 
outer radius to thickness ratio, nonlocal to local 
deflection ratio, linear to nonlinear analysis, different 
types of boundary conditions, and the effects of 
nonlocal parameter and the value of stiffness matrix on 
the results are investigated. 
 
 
2. GOVERNING EQUATIONS 
 
A sector graphene sheet is considered with thickness h, 
inner radius ir , outer radius or , and the total angle of τ 
under uniform transverse loading q resting on an elastic 
foundation. The geometry of the plate is shown in 
Figure 1. In this paper, all the governing equations are 
derived based on the first-order shear deformation 
theory (FSDT) that includes the neglected assumptions 
in classical plate theory. According to the first-order 
shear deformation theory of plates, the displacement 
field can be expressed as: 

( ) ( ) ( )1, , , ,U r z u r z rθ θ ψ θ= +  (1) 

( ) ( ) ( )2, , , ,V r z v r z rθ θ ψ θ= +  (2) 

( ) ( ), , ,W r z w rθ θ=  (3) 

     In Equations (1)-(3), u, v and w are the displacement 
components of the mid-plane along the r, θ and z 
directions, respectively. 1ψ  and 2ψ  explain the rotation 
functions of the transverse normal about circumferential 
and radial directions. 
 
 
 

 
Figure 1. Geometry of sector graphene sheet 
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Considering von-Karman assumptions, the strain 
field is expressed as follows: 

2
1 1

2r
u wz
r r r

ψ
ε

∂ ∂ ∂ = + +  ∂ ∂ ∂ 
 (4) 

2
2

1
1 1 1

2
v z wu

r r rθ

ψ
ε ψ

θ θ θ
∂ ∂ ∂     = + + + +     ∂ ∂ ∂     

 (5) 

1rz
w
r

γ ψ∂
= +

∂
 (6) 

2
1

z
w

rθγ ψ
θ

∂
= +

∂
 (7) 

1 2
2

1 1
r

u v w wz v z z
r r r r rθ

ψ ψ
γ ψ

θ θ θ
∂ ∂ ∂ ∂ ∂ ∂ = + − − + + + ∂ ∂ ∂ ∂ ∂ ∂ 

 (8) 

   In nonlocal elasticity theory, the effects of small scale 
and atomic forces directly come into the constitutive 
equations as material parameters [5]. In this theory, the 
stress at reference point X is a function of strain field in 
every point on plate. Eringen presented a differential 
form of the nonlocal constitutive equation from 
nonlocal balance law as follow [5]: 

( ) ( )22
01 ,NL L e aµ σ σ µ− ∇ = =  (9) 

    in which, a  is internal characteristic length, and 0e  
is material constant which is defined by experiment. 
The parameter 0e a  is the small-scale parameter 
revealing the small-scale effect on the responses of 
nano-size structures. The value of the small-scale 
parameter depends on boundary conditions, chirality, 
number of walls, and the nature of motions. The 
nonlocal stresses using the Equation (9) can be defined 
in polar coordinates system as follows [5]: 
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     In Equations (10)-(14), ∇2  is the Laplacian operator 
in polar coordinates system as follow: 

2 2
2

2 2 2

1 1
r r r r θ

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
 (15) 

   The nonlocal force, moment and shear force 
components ( , , )NL

iN i r rθ θ= , ( , , )NL
iM i r rθ θ=  and 

( , )NL
iQ i r θ= , are as follows: 

( )2

2

( , , ) , ,
h

NLNL
r r r rhM M M zdzθ θ θ θσ σ σ
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= ∫  (16) 
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    By using Equation (9), the relations between local 
and nonlocal force, moment and shear force components 
can be expressed as follows: 

( )21 , ( , , )NL L
i iN N i r rµ θ θ− ∇ = =  (18) 

( )21 , ( , , )NL L
i iM M i r rµ θ θ− ∇ = =  (19) 

( )21 , ( , )NL L
i iQ Q i rµ θ− ∇ = =  (20) 

     , ( , , )L L
i iN M i r rθ θ= and ( , )L

iQ i r θ=  are the local in-
plane force, moment and the shear force resultants 
which are defined for isotropic material as: 
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   Using the principle of stationary total potential 
energy, the governing equations as well as the related 
boundary conditions along the edges of sector plate can 
be derived. The equations of the total potential energy in 
case of nonlocal form are expressed as:  

0Uδ δ δΠ = + Ω =  (29) 

(

)
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     U and Ω  are the strain energy and potential of 
applied forces, respectively. κ s  is the transverse shear 
correction coefficient and in this study is taken as 5 /6  
for the isotropic material and wk  and pk  are the 

Winkler and Pasternak stiffness coefficient of elastic 
matrix. 
     Using the variation principals, the nonlocal 
equilibrium equations of sector graphene sheets are 
obtained in cylindrical coordinates system in terms of 
nonlocal force, moment and the shear force resultants 
as: 
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   Substituting Equations (10)-(14) in Equations (16)-
(17) and then inserting the resulted nonlocal form of 
force, moment and shear force resultants into Equations 
(32)-(36) leads to five equilibrium Equations (37)-(41) 
which can be defined in local form as follows: 
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     Because of small numbers, for sake of generality and 
convenience, the following non-dimensional terms are 
introduced as follow: 
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3. NUMERICAL SOLUTION 
 
In this paper, two different methods are used to obtain 
the results. First, the DQM method is applied which is a 
popular method for solving differential equations. Then, 
a new semi analytical polynomial method is introduced. 
 
3. 1. Solution using Differential Quadrature 
Method (DQM)     The DQ method based on the 
approximation of partial derivative of a function at a 
point is affected by the values of the function in the 
whole domain [19]. 
     According to DQ Method, the derivatives of a two 
dimensional function f(r,θ) at points r, θ can be defined 
as a linear sum of the function values [18, 20]. The 
number of discrete grid points and point distribution in 
DQM is arbitrary. However, it has been shown that the 
grid point distribution which is based on Gauss-
Chebyshev-Lobatto points, gives more accurate results 
[21]. This method distributes points in unequal distances 
in a way that the points set mainly near the boundaries. 
   By use of DQM, partial differential equations turn to 
nonlinear algebraic equations system. Now, this system 
can be solved using several numerical methods. Because 
of high rate of convergence, in this paper, the Newton-
Raphson iterative method is used to solve the nonlinear 
algebraic equations system. 
 
3. 2. Semi Analytical Polynomial Method (SAPM) 
In this method, every function of differential equations 
is approximated by a polynomial in general form 
depends on the grid point distribution. Contrary to 
collocation method [22], there is no need for the 
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introduced polynomial functions to satisfy the boundary 
conditions. Every PDE or set of PDE’s system will be 
solved conveniently and quickly with different types of 
boundary conditions. Contrary to DQM, in this method 
it is not needed to calculate weighted residuals 
coefficients for each derivative. Considering a partial 
differential equation as follow: 
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(42) 

The two variables function f(r,θ) is considered as 
follow: 

( ) ( )( )( )( )
( ) ( )1 1

1 1 1
1 1

,
N M

i j
i j i M

i j

f r a rθ θ− −
+ − − − −

= =

= ∑∑  (43) 

     In Equation (43), N is the number of grid points in r 
direction and M for θ direction. The grid points are 
shown in Figure 2. By substituting Equation (43) in 
(42), the partial differential equation converts to 
algebraic equations. According to the Figure 2, the 
numbers of 2 2 4N M+ −  equations are derived 
from boundary conditions (dark points) and 
( ) ( )2 2 2 2 4N M N M N M− ⋅ − = ⋅ − − +  equations from 
Equation (43) (bright points). So, there are M N⋅

algebraic equations and M N⋅ unknown ia . By 
substituting , 1..ia i M N= ⋅ in Equation (43), the 
function f(x,y) will be determined. For the set of partial 
differential equations, the similar method will apply. 
     If the differential equations are nonlinear, by 
substituting Equation (43) in governing equations, the 
resulted algebraic equations will be nonlinear. So, a 
numerical method must be applied to solve the set of 
nonlinear equations. In this paper, as the procedure is 
explained for DQM, the Newton-Raphson numerical 
method is investigated to solve the nonlinear algebraic 
equations system. Now, the dimensionless 
displacements and rotations are introduced in 
dimensionless form as follows: 
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   Substituting the polynomial functions (44-48) into the 
governing equations, the PDE’s was inverted to 
algebraic equations. Comparison between Equations 
(44-48) with the relations for DQM, it is obvious that 
the formulations and coding by computer programs in 
SAPM method are significantly simpler than DQM. 

 
 

4. BOUNDARY CONDITIONS 
 
In this paper, the boundaries are considered in the 
category of the simply supported (S), clamped (C) and 
free edges (F) which the conditions in each one are 
defined as Figure 3. 

S: 2

1

0                       ,
0                       0,

r i ou v w M r r r
u v w Mθ

ψ
ψ θ τ

= = = = = =
= = = = = =

 

C: 2 1

2 1

0                        ,
0                        0,

i ou v w r r r
u v w

ψ ψ
ψ ψ θ τ

= = = = = =
= = = = = =

 

F: 
0              ,
0            0,

r r r r r i o

r r r

N N Q M M r r r
N N Q M M

θ θ

θ θ θ θ θ τ
= = = = = =
= = = = = =

 

 
  

 
Figure 2. The division of two directional domain for sector 
plate 
 

 
Figure 3. Definition of boundary conditions 
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TABLE 2. Comparison dimensionless deflection with the references 

 

[26] [25] [24] [23] 

Preset study 

 
SAPM DQM 

9×9 7×7 9×9 7×7  
2.840 2.760 2.841 2.860 2.848 2.801 2.835 2.788 0.25 
1.410 1.420 1.426 1.430 1.438 1.415 1.433 1.414 0.5 
0.100 0.090 1.043 0.099 0.093 0.090 0.09 0.088 0.75 

 
 
5. NUMERICAL RESULTS 
 
First, it is considered a sector nano-plate to check the 
convergence of DQM and SAPM. Figure 4, shows that 
the desirable converged results are obtained for only 
seven nodes in each direction. As well as, it is 
concluded that with the same nodes in each direction, 
the results are so close to each other using DQM and 
SAPM. Because of convenience in formulations and 
coding by computer programs, using of SAPM is highly 
recommended. 

12 * 7 21.06 10 ,  1 10 / , 1 nm
/ 0.2, 0.34 nm, / 2i o

E Pa q E
r r h

µ
τ π

= × = × =
= = =

 

     One of the benefits of sectorial shape is capability for 
obtaining the rectangular, annular and circular 
geometry. In this paper, a rectangular graphene sheet is 
estimated by a sector and the results are compared with 
available paper. The dimensionless deflection with 
µ = 24nm  and the transverse load 1GPaq =  is compared 
with rectangular graphene sheet in Table 1 for SSSS 
boundary conditions. Since no research exist in nonlocal 
bending of sector plates; therefore, in order to validate 
with the other researches, the nonlocal parameter is 
considered to be zero. The central deflection reported in 
references [23-26] is compared with the ones obtained 
by the present solution with two methods DQM and 
SAPM with 7×7 and 9×9 grid points in Table 2. The 
properties of the plate are given as follow: 
( ) 9

0 / 100,  1 Pa, 200 10 Pa, = / 3ir r h q E τ π− = = = ×  
     Now, a sector graphene plate is considered with the 
properties below (  , =0pkθ π ∗= ): 

12 * 71.06 10 Pa, 50 10 / , =0.005331, / 0.2w i oE Q E k r r∗= × = × =   

    The central deflection is given using two methods 
DQM and SAPM for =0 1nme a  and 7×7 grid point 
distribution in Table 3. It is observed that the obtained 
results from two different methods are so close. 
Consequently, by using the SAPM method, the expected 
accuracy of the result is obtained with the same grid 
point distribution toward DQM, but shorter in 
processing time by computer. 

     Figure 5 shows the dimensionless deflection versus 
nonlocal parameter for two types of boundary 
conditions SSSS and CCCC both with and without an 
elastic foundation ( 64 10 /q E∗ = × ).  
 
 
TABLE 1. Comparison dimensionless deflection with Ref 
[18] 

Dimensionless deflection ×1000 
Present [18] 

q (GPa) h= 
0.68nm 

h= 
0.34nm 

h= 
0.68nm 

h=  
0.34nm 

0.392 0.591 0.4 0.6 0.01 
1.87 2.76 1.9 2.8 0.05 
3.67 5.56 3.7 5.6 0.1 
18.45 27.83 18.6 28 0.5 

37 55.65 37.3 56 1 
 
 
TABLE 3. Comparison of dimensionless deflection for two 
DQM and SAPM methods 

 q 
(GPa) 

Central dimensionless Deflection 

DQM SAPM 

CCCC 

0.15 0.0030321056189380 0.0030321056187031 

0.2 0.0040428074919197 0.004042807491599 

0.5 0.0101070187298200 0.01010701872884 

 
 

 
Figure 4. Dimensionless deflection versus the number of grid 
points for DQM and SAPM domain 
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Figure 5. Variation of dimensionless deflection versus the 
nonlocal parameter in presence and absence of elastic 
foundation ( =1.13 Pa.mpk ) 
 

 
Figure 6. Linear to nonlinear deflection ratio sR versus 
nonlocal parameter 
 
 

 
Figure 7. Diagram of sR  versus the nonlocal parameter for 
different sector angles (SSSS) 

 
 

     It is observed that the maximum deflection in CCCC 
boundary conditions is significantly less than SSSS. 

When there is not any elastic foundation, the increase of 
nonlocal parameter leads to decrease of the deflection 
gently. The maximum deflections are closer to each 
other in CCCC and SSSS boundary conditions in 
presence of Pasternak elastic foundation and the 
increase of nonlocal parameter has the more effects on 
the results. To study the differences between linear to 
nonlinear analyses, the parameter sR  is defined as 
follow [18]: 

Linear
s

Nonlinear

wR
w

∗

∗=  (49) 

     Figure 6 is pictured variation of ratio sR  versus 
nonlocal parameter for two types of boundary 
conditions in presence and absence of Winkler elastic 
foundation with the properties below: 

12 * 71.06 10 Pa, 30 10 / , / 0.2,  i oE Q E r r θ π= × = × = =  

   Existence of elastic foundation causes decrease of 
flexibility, so the effect of boundary conditions 
decreases. Along the increase of the Winkler stiffness 
value, the results of two different boundary conditions 
and linear and nonlinear analysis approach to each 
other. Also, with increase of small scale effects, the sR  
slope decreases gently. With increase of the Winkler 
stiffness value, the small scale effects decreases. 
     The differences between linear and nonlinear 
analysis goes up in absence of elastic foundation. This 
raising of sR  ratio is more significant for SSSS than 
CCCC boundary condition. The increase of nonlocal 
parameter has the more effects on the results in absence 
of elastic foundation especially for SSSS boundary 
conditions. However, these effects are decreased along 
the increase of nonlocal parameter. 
     In Figure 7, it can be concluded that increase of 
sector angle causes increase of dimensionless deflection 
and sR  parameter. With increase of μ, two linear and 
nonlinear FSDT analysis approach to each other and the 
effects of nonlocal parameter on the results are raised 
with increase of sector angle. As well as, the differences 
between sR  parameter along the raise of sector angle 
reduced. 
     The parameter mR  introduces to compare the results 
of nonlocal elasticity theory with local, as follow [18]: 

Nonlocal
m

Local

wR
w

∗

∗=  (50) 

Nonlocalw ∗  and Localw ∗  are the dimensionless deflections in 
nonlocal and local elasticity theory, respectively. Figure 
8, shows the variation of mR  versus dimensionless 
transverse load in presence and absence of elastic 
foundation. 
     According to Figure 8, it is concluded that two local 
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and nonlocal elasticity theories are receded from each 
other in presence of elastic foundation, but along the 
raise of transverse loading the local and nonlocal 
theories approach. The results of nonlocal and local 
elasticity theories have the less difference in absence of 
elastic foundation. Contrary to the statement that the 
elastic foundation exists, the differences between two 
theories are increased along the growing of transverse 
loading. Also, the presence or absence of elastic 
foundation do not have any effects on the differences 
between two nonlocal and local elasticity theories in 
large amount of transverse loads and the results tend to 
a constant value. 
     The effect of sector’s angle on mR  is shown in 
Figure 9 considering the nonlocal parameter 0 1.5nme a =  
for SSSS boundary conditions in absence of elastic 
foundation. The transverse load and the deformation of 
the plate increase with increasing of sector angle. So, 
the differences between the two theories increase with 
the raise of sector angle. Consequently, for greater 
angles use of nonlocal theory is more recommended. 
Also, with increase of sector angle, the two theories are 
separated from each other with higher rate. 
 
 

 
Figure 8. mR  ratio versus the non-dimensional transverse 
loading in presence and absence of elastic foundation (CCCC) 
 

 
Figure 9. Diagram of mR  parameter versus non-dimensional 
transverse loading and different sector angle  

 
Figure 10. Dimensionless deflection versus the variation of 

/or h  

 
 
     The effect of increase of radius on deflection is 
studied in Figure 10 for two different types of boundary 
conditions SSSS and CCCC, with the plate conditions 
below: 

12 71.06 10 Pa, 50 10 / , =1Gpa/nmwE q E k∗= × = ×  
1nm,  / 2,  0.34 nm, =0.01Pa.mi pr h kτ π= = =  

      It is observed that with increase of outer radius         
( /or h , h is constant), the maximum deflection is 
increased. In the beginning, the maximum deflection 
goes up with a rising slope during the increase of outer 
radius. However, in continue of increase of /or h , the 
variation slope tends to go down to a constant value. 
Also, the variations for SSSS boundary conditions are 
more than CCCC. 

  
 

6. CONCLUSION 
 
In this paper, the nonlinear bending analysis for sector 
nano graphene plate resting on an elastic matrix with 
two parameters. Winkler and Pasternak is investigated 
using nonlocal elasticity theory. The first order shear 
deformation theory (FSDT) is applied considering the 
nonlinear Von Karman strain field. The equilibrium 
equations are derived using the principals of minimum 
potential energy method. The most important 
conclusions can be classified as follows: 

- The presented semi analytical polynomial method 
(SAPM) is highly accurate, considerably simpler in 
formulations and coding by computer programs and 
its rate of processing time is about fifty percent 
more than DQM. 

- Increase in nonlocal parameter has much more 
effects on nonlinear analysis in comparison with 
the linear analysis. 

- The small scale effects on deflection reduce when 
the plate is rested on an elastic foundation. 
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- The differences between two nonlocal and local 
elasticity theories are increased in presence of 
elastic foundation. However, the effects of elastic 
foundation reduce due to the increase of the 
transverse loading. 

- The differences between nonlocal and local 
elasticity theories are raised along the increase of 
sector angle and the two theories go on each other 
with growing of thickness. 

     Some of possible directions for future research can 
be summarized as follows: 

• Nonlinear bending analysis of multilayers sector 
graphene sheets. 

• Using higher order shear deformation theory 
(HSDT) instead of FSDT in order to obtain the 
more precise results. 

• Buckling of sector graphene sheet and deriving the 
buckling of circular/annular and rectangular 
graphene plates from sectorial shape. 
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  چکیده
  

  
در این تحقیق خمش غیرخطی صفحات قطاعی گرافن بر پایه الاستیک توسط تئوري الاستیسیته غیرموضعی ارینگن مورد 

براي این منظور معادلات تعادل حاکم بر ورق قطاعی گرافن با در نظر گرفتن روابط غیر موضعی . گیردبررسی قرار می
براي حل دستگاه معادلات . کارمن بدست آمده است-رتبه اول برشی و کرنش هاي غیر خطی فونتنش و تئوري م

اي و یک روش نیمه تحلیلی بر پایه چندجمله (DQM)دیفرانسیل غیر خطی، از روش عددي مربعات دیفرانسیلی
)SAPM( رافسون براي حل دستگاه جبري غیرخطی به دست آمده بکار گرفته شده -روش حل نیوتن. استفاده شده است

تر دقت بسیار بندي سادهبا فرمول SAPMو نتایج دو روش با یکدیگر مقایسه و ملاحظه شد نتایج بدست آمده از روش 
. ه گیردار، مفصلی و آزاد در نظر گرفته شده استگاهی مختلف از جملشرایط تکیه. دارد DQMخوبی در مقایسه با روش 

در بررسی نتایج، اثر تغییرات ضریب . هاي تحقیقات دیگر مقایسه شده استبا داده جهت اعتبار سنجی نتایج بدست آمده
غیرموضعی بر نتایج بر حسب تغییرات ضخامت، شرایط مرزي، سختی پایه الاستیک و بار اعمالی، تاثیر تحلیل خطی و 

ها و نیز تاثیر زاویه قطاع و ضریب ها در دامنه هندسه قطاع بر دقت جوابخطی تئوري مرتبه اول برشی، تعداد گرهغیر
 غیرموضعی بر خیز و نسبت خیز غیرموضعی به موضعی در شرایط مختلف مورد بررسی قرار گرفته است

  
doi: 10.5829/idosi.ije.2015.28.05b.19 

 
  
  
 

 


