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A B S T R A C T  
 

 

In this paper the earth’s magnetic field is simulated precisely while the intensity and direction of the 
field are verified with one of the standard references for selected points on the earth and the results are 
compared with some low-order models. In another simulation, the complete model is compared with a 
common approximate model. The magnetic field in orbital frame is described and to employ earth’s 
magnetic field in spacecraft attitude control applications, it is transferred into the spacecraft body 
frame. Transformation between orbital frame and body frame can be linear or nonlinear; the validity of 
linear transformation is investigated regarding various attitude angles. The divergence plots and the 
plot and table of error percentage illustrate the result based on the defined acceptable error. 
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1. INTRODUCTION1 

 
Nowadays, space missions are operational; either, in 
near earth, or deep space. This is achieved with advances 
in optimal trajectory techniques which meet the energy 
resources limitations for such missions [1]. These limits 
have also leaded us to use the available natural resources 
such as magnetic field. The magnetic field has been an 
interesting research topic in several aspects of science. 
For instance, its effects on fluids are numerically 
investigated [2, 3]. 

In recent decades, employing satellites in low earth 
orbit (LEO) has an increasing trend. The LEO satellites 
functionally experience the earth’s magnetic field more 
than other ones. The earth’s magnetic field is used to 
control the attitude of spacecraft by the interaction 
between the earth’s magnetic field and the magnetic 
dipoles generated in the satellite body. Initially, in order 
to use this phenomenon, the intensity and the direction of 
the earth’s magnetic field is obtained. One of the best 
ways to model is utilizing the harmonic coefficients and 
the earth’s magnetic field mathematical model. In this 
study, the earth’s magnetic field is modeled based on the 
                                                        
1*Corresponding Author’s Email: Civil.space.edu@gmail.com (M. 
Navabi) 

11th generation of the IGRF (International Geomagnetic 
Reference Field) coefficients and the results are verified 
with the reference standard. In the next step, to utilize 
the earth magnetic field in the attitude control of a 
spacecraft, it is necessary to transform the magnetic field 
into the spacecraft body frame. The transformation 
between orbital and body frames may be linear or 
nonlinear. In the following, based on the comparison of 
the results of linear and nonlinear transformation, the 
validity of linear transformation is studied regarding 
spacecraft attitude angles. 

A rigid spacecraft can be described as a system of 
particles that their relative distances are fixed during the 
time. The spacecraft attitude equation is as follows [4]. 

.I B BT = h = h +ω×h& &  (1) 

where T  denotes the external moments vector, h the 
angular momentum vector, and ωthe angular velocity 
vector. The subscripts I  and B  refer to the inertial 
frame and body frame, respectively. In derivation of the 
spacecraft attitude equations, external moments are 
shown as the sum of disturbance ( )dT  and control ( )cT
torques: c dT = T + T and the total angular momentum as 
the sum of rigid body ( )h  and momentum exchange 
devices ( )wh  angular momentum: B w= +h h h . 

TECHNICAL 
NOTE 
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One of the conventional methods in satellite attitude 
control is to use magnetic actuators [5-7]. Magnetic 
actuators operate based on the interaction between 
current-driven coils and the geomagnetic field. Due to 
sharp decrease in earth magnetic field intensity regarding 
altitude rise, low earth orbits are emphasized in this 
work. The magnetic control torque ( )c mag=T T is 
produced by cross product of the magnetic dipole ( )m
and the earth’s magnetic field vector ( )B [4, 8]. 

c mag= = ×T T m B  (2) 

 
 

2. MODELLING THE EARTH’S MAGNETIC FIELD  
 

The existence of the earth’s magnetic field was known in 
China more than 1000 years ago. The first study of this 
subject refers to Gilbert in 1600. He indicated that the 
earth’s magnetic field is a dipole that its axis is alongside 
with the axis of rotation of the earth. Changes in the 
main magnetic field with time, known as secular 
variation, have been recognized since Henry Gellibrand 
compared magnetic declination measurement he made in 
London in 1643 with measurements made by Gunter and 
Borough 12 and 54 years earlier, respectively [9]. 

In this work the earth’s magnetic field is modeled 
employing the earth’s potential function and the 11th 
generation of the IGRF coefficients. One of the best 
references verifies the accuracy of the results. The 
dominant portion of the earth’s magnetic field can be 
represented as the gradient of a scalar potential function, 
B V= −∇ . V can conveniently be represented by a series 
of spherical harmonies [8]: 

1

1 0

( , , )

( ) [ cos( ) sin( )] ( )
N n

n m m m
n n n

n m

V r long colat
aa g mlong h mlong P colat
r

+

= =

=

+∑ ∑
 (3) 

where a  is the equatorial radius of the earth, m
ng and m

nh  
are Gaussian coefficients, r , long  and colat  are the 
geocentric distance, co-elevation and East longitude 
from Greenwich which define any point in the space 
respectively. The Gaussian coefficients are determined 
by a least square fit on observations of the geomagnetic 
field. These measurements include the direction and 
magnitude of the earth’s magnetic field in lots of points 
on the earth. 

Generally, the global observatory network collects 
magnetic data only at a limited number of non-uniform 
distributed points. The progress in technology has 
provided the opportunity to obtain high quality 
information by launching satellites that carry vector 
magnetometers. The first mission defined for this task 
was the MAGSAT satellite that operated from 
November 1979 to May 1980. Although this mission 
provided the most accurate model of the earth’s 

magnetic field at that time span, it did not last long 
enough to provide an accurate model of the secular 
variation. Before the successful mission of the Orsted 
satellite that provides data of a similar quality to 
MAGSAT allowing a second highly accurate figure of 
the earth’s magnetic field, the geomagnetic community 
had waited for 20 years [10]. 

In its simplified forms, Equation (3) is called dipole 
when N=1, quadrupole when N=2 and octupole when 
N=3. Obviously more coefficients lead to more accurate 
model. The 11th generation of IGRF coefficients that 
accepts dates in the range 1900 to 2020 whose ‘N’ is 
equal to 1312. Because of the conservative nature of the 
magnetic field 0B∇ × = , the earth’s magnetic field in 
spherical coordinates is obtained by the gradient of the 
potential function in (3), as following: 
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where ( )m
nP cola t  and ( )m

nP colat
colat

∂
∂

 are associated Lagrange 

functions and their derivatives.  
The recursive formulas for the Gaussian normalized 

associated Legendre polynomials and their derivatives 
are as follows (Equations (7) and (8)) [8].  
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Since associated Legendre polynomial ,( )n mP  is 
displayed in the Gaussian normalized form ,( )n mP , the

,n mS  (Equation (9)) is used to calculate the Gaussian 
normalized form of Gaussian coefficients , ,( , )n m n mg h  as 
well. 
                                                        
1http://www.geomag.bgs.ac.uk/data_service/models_compass/igrf.html 
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The Kronecker delta is defined as 1j
iδ = if i j= , and 

0j
iδ = , otherwise. Using mathematical induction,it is 

possible to derive the following recursion relation for
,n mS as Equation (10). 
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The factor ,n mS  is independent of ,r long and colat
and so must be calculated only once. Thus, we define 
Equation (11). 
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Using the above relations, the field is calculated as 
follows: 
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(12) 

The spherical coordinates ( , , )r θ φ , which is called 
local tangent plane coordinate system is very similar to 
NED (North-East-Down) coordinates.  
 
 
3. TRANSFORMATION OF THE EARTH’S 
MAGNETIC FIELD FROM LOCAL TANGENT PLANE 
COORDINATE TO BODY FRAME 

 
The magnetic field literature normally refers to three 
components consisting of North, East and Down (nadir 
relative to the earth). These components are obtained 
from Equation (13). 
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where 0.2oε λ δ≡ − <  and λ  is the geodetic latitude and 
90 latδ ≡ − is the declination.  
In order to use the earth’s magnetic in attitude 

control applications, the filed in body frame is 
needed.(see Equation (2)). As the first step, the earth’s 
magnetic field in local tangent plane coordinates is 

transformed to the fixed earth inertial coordinates 
utilizing Equation (14). 
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where rB , Bθ  and Bφ are field components in spherical 
coordinates. δ and gθ indicate declination and celestial 
time in Greenwich. The next step is to transform the 
magnetic field to the orbital frame using Equation (15). 
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Θ , Ω  and i are the orbital parameters. Θ is true 
anomaly, Ω and i  show the right ascension of the 
ascending node and inclination respectively. s and c  
denote sine and cosine. Finally, transforming the 
magnetic field to the satellite body frame would be as 
Equation (16). 
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, ,φ θ ψ indicate roll, pitch and yaw angles respectively. 
Equation (16) shows the nonlinear matrix 

transformation from the orbital frame to the body frame. 
Assuming small Euler angles, the cosine is 
approximately equal to 1 and the sine is approximated by 
the value of the angles in radians, the equation is 
linearized as Equation (17). 
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(17) 

As it will be shown in the next section, the “small 
angle” definition, however usually seems a general 
definition, it is strongly dependent on the desired 
accuracy of the mission. Therefore, its upper bound 
value should be investigated in any specific case. 

 
 

4. SIMULATIONS AND RESULTS 
 

A MATLAB code has been developed by the authors in 
order to model the earth’s magnetic field. In the first 
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step, the code results in zero altitude on some points on 
the earth are compared with the BGS (British Geological 
Survey) results. The results are found satisfactory 
enough to be employed in attitude control issues.The 
results for London in Table 1 indicate that the error is 
less than two percent. 

According to the table, the results are accurate 
enough. In Figure 1 the North component of the earth 
magnetic field are compared using four different models: 
dipole, quadrupole, octupole and the model based on the 
11th generation of IGRF coefficients. In this figure, the 
positive association between the number of coefficients 
and the accuracy of the results is clearly visible. 

As it is mentioned, the earth’s magnetic field has to 
be expressed in body frame to be used in attitude control 
problems. Figure 2 shows the earth’s magnetic field 
components in the orbital frame for a circular orbit with 
500 km altitude and polar inclination.  

One of the most popular approximate models of the 
Earth magnetic field is a dipole approximation of it, that 
when coupled with the assumptions of no Earth rotation 
and no orbit precession, yields to the following periodic 
model in orbital frame [11]. 

1
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TABLE 1. The BGS and our code results for the earth’s 
magnetic field and the error percentage, for London. 
London BGS results 

(NanoTesla) 
Our code results 

(NanoTesla) Error Percentage 

NorthB  19364 19074 1.50% 

EarthB  -558 -565.6 1.36% 

DownB  44571 44604 0.07% 

B  48599 48514 0.17% 

 
  

  
Figure 1. The north component of the earth’s magnetic field 
based on dipole, quadrupole, octupole models and the 
11thgeneration of IGRF in three orbital periods. 

  
Figure 2. The earth’s magnetic field components in the 
orbital frame in three orbital periods for a polar orbit. 

  
 

In the Equation (18) mi is the inclination of the 
spacecraft’s orbit respect to the magnetic equator and a
is the semi-major axis.  The field’s dipole strength is 

157.9 10f Wb mµ = × − . Here we use 11.4o
mi i= + as the 

spacecraft’s inclination relative to the magnetic equator. 
Figure 3 shows a comparison between the results of 

the Equation (18) and the results of our code in orbital 
frame for an orbit with i=60 in 500km altitude. 

In the next step the earth magnetic field in the body 
frame of the spacecraft is simulated. According to 
Equations (16) and (17), there are two transformations in 
order to transform the magnetic field from orbital frame 
to the body frame. Figure 4 shows the magnetic field 
intensity in the satellite body frame utilizing linear 
transformation. 

In order to study the divergence of the magnetic field 
using linear approximation from the nonlinear 
transformation, a specific point in orbit with various 
attitude angles from 0o  to30o  is considered. The results 
of magnetic field intensity error in body frame are shown 
for linear and nonlinear transformation in roll, pitch and 
yaw angles in Figure 5. Table 2 indicates the error 
percentage in three principal angles regarding various 
attitude axes. Equation (19) is used to calculate the error 
percentage of linearization. 

/ / / /

/ /

100.
NL L
Roll Pitch Yaw Roll Pitch Yaw
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B B
Error

B

−
= ×  (19) 

Now, according to these results, it is possible to 
determine the border of validity of the linear 
transformation for this mission based on the desired 
accuracy. Based on Figure 5, it is clear that when the 
acceptable error for the mission is definedat about 10%, 
the upper bound of the attitude angle to be used in linear 
transformation is about 22o  on roll axis, 14o  on pitch 
axis and 15o on yaw axis. Based on Table 2, for 10% 
acceptable error the average attitude angle on all three 
axes should not exceed16o .  It means that when the 
defined desired accuracy for the mission is about 10 
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percent utilizing the linearization transformation is not 
valid for the attitude angles greater than16o . In this way, 
it is possible to find the upper bound of the “small angle” 
definition for any specific case. It should be mentioned 
that the validity of the “small angle” depends on the orbit 
properties and the defined acceptable error for any case. 

 
 

  
Figure 3. Comparison between the results of Equation (18) 
and the results of our code in orbital frame for an orbit with 
i=60 in 500km altitude. 
 

  
Figure 4. The earth magnetic field components in the body 
frame for 10o attitude angle, utilizing linear transformation, 
three orbital periods. 
 

Figure 5. The error percentage of magnetic field components 
using linear transformation relative to nonlinear, regarding 
attitude angles. 

TABLE 2. The error percentage of magnetic field components 
using linear transformation relative to nonlinear 

 Error Percentage 
Attitude Angle Roll Pitch Yaw Average 

1 0.03 0.08 0.037 0.05 
5 0.67 1.59 0.95 1.07 
10 2.42 5.26 3.94 3.87 
15 4.98 10.46 9.40 8.28 
20 8.18 17.11 18.23 14.51 
25 11.88 25.33 32.20 23.14 
30 15.98 35.30 55.15 35.48 

  
 

5. CONCLUSION 
 

Utilizing magnetic torque for spacecraft attitude control 
is a common way since the actuator is light, non-
expensive and relatively easy to use. The contribution of 
this paper is to simulate the earth’s magnetic field 
precisely and to study the accuracy of some common 
approximate models as well. In addition, utilizing the 
earth’s magnetic field as a way for spacecraft attitude 
control and its considerations, such as using different 
transformations, are investigated. In order to apply this 
torque, the earth’s magnetic field has to be modeled 
accurately. In this study, the 11th generation of IGRF 
coefficients is used to simulate the earth’s magnetic 
field, and the results are verified with one of the standard 
references. For comparing the trend of accuracy of 
different models with various orders, the simulation in 
orbital frame has been done for dipole, quadrapole and 
octupole models and the complete model. Another 
comparison has been made between a well-known dipole 
model and our developed code. In the next step, the 
earth’s magnetic field is transformed into the body 
coordinates of the spacecraft in order to be used in 
attitude control problems. The transformation from 
orbital frame to body frame can be either linear or 
nonlinear. Here both of them are simulated and the 
validity of linear transformation is investigated regarding 
the attitude angles. In addition, utilizing these 
simulations and considering the defined acceptable error 
for any mission makes it possible to define the upper 
limit of the “small angle” term. Notice that for any 
specific case, based on the orbital parameters and the 
desired accuracy, it is important to determine the small 
angle term by simulating and determining the validity of 
the linear transformation. Moreover, it has been shown 
that the error percentage of linear transformation has a 
rising tendency regarding the increase in attitude angles.  
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  چکیده
  

  
سازي شده با مقایسه با  شدت و جهت میدان شبیه. سازي شده است در این مقاله میدان مغناطیسی زمین با دقت بالا شبیه

نتایج با چند مدل ساده شده و درجه پایین از جمله . یک مرجع استاندارد براي نقاطی روي زمین اعتبارسنجی گردیده است
ن مغناطیسی در دستگاه مداري بیان شده و سپس براي کاربرد در کنترل میدا. استشدهمدل دوقطبی شناخته شده مقایسه 

. دادبه دو صورت خطی و غیرخطی انجام توان را میاین انتقال . وضعیت به دستگاه بدنی فضاپیما انتقال داده شده است
به ان خطاي مورد قبول نتایج با توجه به میز. اعتبار مدل خطی براي زوایاي وضعیت مختلف مورد بررسی قرار گرفته است

 .صورت نمودار واگرایی و جدول خطا ارائه گردیده است
 

doi: 10.5829/idosi.ije.2015.28.05b.01 
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