
IJE TRANSACTIONS C: Aspects Vol. 28, No. 3, (March 2015) 410-418

Please cite this article as: H. Akbarpour, G. Karimi, A. Sadeghzadeh, Discrete Multi Objective Particle Swarm Optimization Algorithm for FPGA
Placement, International Journal of Engineering (IJE), TRANSACTIONS C: Aspects Vol. 28, No. 3, (March 2015) 410-418

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

Discrete Multi Objective Particle Swarm Optimization Algorithm for FPGA
Placement

H. Akbarpour, G. Karimi*, A. Sadeghzadeh

Department of Electrical Engineering, Faculty of Engineering, Razi University, Kermanshah, Iran

P A P E R I N F O

Paper history:
Received 10April2014
Received in revised form 26October2014
Accepted 13November2014

Keywords:
Discrete MOPSO
Optimization Algorithm
FPGA Placement
VLSI Design
Wire Length Cost Function
Overlap Removal

A B S T R A C T

Placement process is one of the vital stages in physical design. In this stage, modules and elements of
the circuit are placed in distinct locations based on optimizationprocesses. Hence, each placement
process influences one or more optimization factor. On the other hand, it can be statedunequivocally
that FPGA is one of the most important and applicable devices in our electronic world. So, it is vital to
spend time forbetter learning of its structure. VLSI science looks for new techniques for minimizing
the expense of FPGA in order to gain better performance. Diverse algorithms are used for running
FPGA placement procedures. It is known that particle swarm optimization (PSO) is one of the practical
evolutionary algorithms for this kind of applications. So, this algorithm is used for solving placement
problems. In this work, a novel method for optimized FPGA placement has been used. According to
this process, the goal is to optimize two objectives defined as wire length and overlap removal
functions. Consequently, we are forced to use multi-objective particle swarm optimization (MOPSO)
in the algorithm. Structure of MOPSO is such that it introduces set of answers among which we have
tried to find a unique answer with minimum overlap. Itis worth noting that discrete nature of FPGA
blocks forced us to use a discrete version of PSO. In fact, we need a combination of multi-objective
PSO and discrete PSO for achieving our goals in optimization process. Tested results on some of
FPGA benchmark (MCNC benchmark) are shown in “experimental results” section, compared with
popular method “VPR”. These results show that proper selection of FPGA’s size and reasonable
number of blocks can giveus good response.

doi: 10.5829/idosi.ije.2015.28.03c.10

1. INTRODUCTION1

Placement is one of the important steps in circuit
design. In this stage, modules and elements are placed
in distinct locations. A very large scale integration
(VLSI)application has improved control implementation
performance. Indeed, an application of specific
integrated circuit (ASIC) or FPGAs solution can
exploitefficiently specification of the control algorithms
that fixed hardware architecture cannot do[1]. In total
design process of circuit, this stage consumes largest
portion of the time. Therefore,algorithms with fast
response and better convergence are expected tomeet
the requirements. Placement problem is considered as
NP-complete problem; meaning that it is a difficult
problem in computation aspect. Therefore, a unique

1*Corresponding Author’s Email: ghkarimi@razi.ac.ir (G. Karimi)

answer cannot be dedicated to it and algorithms are used
to get a set of answers for solving design necessities.
Structure of applied algorithms is heuristic in nature.

A Field Programmable Gate Array (FPGA) is a
prefabricated silicon device comprised of an array of
uncommitted circuit elements (logic blocks) and
interconnection resources. In other words, it is an IC
designed to be configured by end user after
manufacturing carry out any function that Application
Specific Integrated Circuit (ASIC) can perform. FPGAs
are gaining importance both in commercial as well as
research settings. The recent increase in FPGA
functionality, accompanied with a significant reduction
in their price resulted in a rise in their market share in
the VLSI industry. The reconfigurability of FPGA has
made this mode of digital circuit synthesis more popular
among system designers. It provides fast and riskless
means of realization of digital circuits. The structure
ofFPGAs consists of three important elements: Logic

RESAECH
NOTE

mailto:ghkarimi@razi.ac.ir

411 H. Akbarpouret al./ IJE TRANSACTIONS C: Aspects Vol. 28, No. 3, (March 2015) 410-418

Blocks or CLBs, Input/Output Blocks or IOBs and
interconnections. CLBs are used for creating functions,
IOBs are interface between FPGA pins and internal
signal lines and interconnections provide the path of
passing signal. Running a function by means of a FPGA
is based on CLBs. In fact, the main structure of a FPGA
is its CLBs. Several important methods have been
introduced for FPGA placement. In the placement
design phase of FPGAs, the CLB and IOB blocks of a
given design are distributed among the physical logic
and I/O pad locations, respectively, in the FPGA fabric.
Placement algorithms try to minimize the longest delay
along the path in the circuit and/or minimize the total
wire length. The FPGA placement problem is
considered as one of the most difficult CAD problems
in the very large scale integration (VLSI) design
process. It is very difficult to have a mathematical
formulation of the problem, since it does not depend
only on finding an optimal placement for the logic
blocks to minimize the total wire length. While for
structures with fixed location of blocks, we donot need
this complexity. Because fixed places are not able to be
optimized by changing the location. All placement
algorithms include partitioning based placement,
simulated annealing based placement, quadratic
placement and hybrid and hierarchical placement. There
are three types of optimization objectives:
• Wire length driven placement: tries to place

connected logic elements close together to minimize
the required wiring.

• Routability driven placement: balances the wiring
density across the FPGA

• Timing driven placement: maximizes the speed of
the circuit.

To date, the best algorithms for performing placement
on FPGAs are based on simulated annealing (SA) [2].
The SA is based on random movement of logic
elements with a very robust cost function. It provides a
global optimal solution of the problem, but its speed is
limited. The FPGA CAD tool, VPR, which uses the SA
method, has become the state of art tool in this field [3].
Surveys in [4] present a FPGA placement algorithm
based on ant colony optimization (ACO) with stochastic
decision policy and swarm intelligence. Genetic
Algorithm (GA) is one of the evolutionary algorithms
that have been used in FPGA placement. GA is a
stochastic search algorithm based on biological
evolution models, whose main advantages lie in its
robustness of search and problem independence.
Although GA has characteristics of robustness and a
wide range search space, it normally takes a long time
to converge to optimum. This makes fast prototyping of
FPGA difficult. As a result, many times, a modified
genetic algorithm is introduced. GA (Genetic
Algorithm) method, mentioned in [5], is a stochastic
search algorithm in the field of biological evolution
models, whose main advantages lie in its robustness of

search and problem independence. Genetic algorithm
and other evolutionary algorithms have been applied to
solve many optimization problems; the application areas
are very diverse. However, in particular in the field of
FPGA placement, their application is limited to data
with less number of blocks or the specific FPGA
format. In fact, this does not mean that genetic
algorithms or other evolutionary algorithms cannot be
used in the FPGA placement process.Analytic methods
have also been applied in many of used algorithms.
Partitioning based placement algorithms have been fast
and hence scalable for large scale ASIC's placement and
have also been applied to FPGAs. One of the recent
partitioning based placement methods, named min-cut
placement, recursively applied by partitioning to map
netlist of a circuit into the FPGA layout region Particle
Swarm Optimization (PSO) has been used for FPGA
placement in [6]. Different variants of PSO for FPGA
placement problem is introduced in [7, 8], along with
advantages and disadvantages of each one. In [9], both
continuous and discrete versions of PSO algorithm for
FPGA placement are compared. In this paper, two new
algorithms for the optimization of FPGA placement are
proposed. The first approach utilizes a discrete PSO
version, while the second approach solves the
placement problem in the continuous domain. It was
observed that for small and medium-sized problems, the
continuous PSO algorithm is the most suitable approach
due to its quality of results, run-time, and convergence
rate. However, for large-sized benchmarks, VPR
achieves better results compared to the PSO algorithms
even though the DPSO algorithms have faster
convergence rate. In [10], two important Discrete PSO
(DPSO) algorithms in placement of FPGAs were
introduced. The paper introduced a discrete PSO
(DPSO) algorithm applied to the FPGA placement
problem. The proposed DPSO placement algorithm is
applied to several FPGA benchmarks with increased
dimensionality and compared to the academic VPR
placement tool, which is based on simulated annealing.
The work also proposed the use of a cooperative DPSO
version where the placement of the I/O and logic block
is being optimized by different swarms.In this work, a
multi-objective discrete PSO (Discrete MOPSO)
algorithm is used for FPGA placement. The way we
solve this problem was based on using a multi-objective
PSO optimization function (two-objective in our work).
The difference between our project and which described
in [10] is fundamentally different structure of used PSO
algorithm. The problem designed in mentioned article
has the primary assumption that no overlap
happens.(Logical conditions that will prevent the
occurrence of overlapping),but this cost function is not
inserted in algorithm directly and the algorithm analyses
the problem in the field of wire length, so one objective
PSO algorithm is used. But, we defined overlap as the
second objective function and it was inserted in

H. Akbarpouret al./IJE TRANSACTIONS C: Aspects Vol. 28, No. 3, (March 2015) 410-418 412

algorithm. The second objective function was acting in
the reverse direction to the first objective and we were
required to use the structure of two objective functions.
So, our projects compared with the projects presented in
[10] uses different constructs of PSO algorithm. It is
worth noting that MOPSO structure is different from the
PSO in many aspects.Some of MCNC benchmarks are
tested with this novel method. We compare discrete
MOPSO with another VLSI placement, “VPR”. VPR is
one of the most applicable algorithms in FPGA
placement. VPR (Versatile Placement and Routing) is a
FPGA placement and routing tool that was designed to
enable FPGA architecture exploration, carries out a
technology-mapped circuit (i.e. a netlist, or hyper graph,
composed of FPGA logic blocks and I/O pads and their
required connections) in a Field-Programmable Gate
Array (FPGA) chip. VPR is an example of an integrated
circuit computer-aided design program, and
algorithmically it belongs with the combinatorial
optimization class of programs.Two cost functions are
wire length and overlap removal. Trade off issue can be
observed in this Discrete MOPSO structure for FPGA
placement. In fact, we tried to work on a new algorithm
with fast convergence rate that can optimize our
conflicting objectives simultaneously. First theoretically
and then in simulation and software testing process,
PSO optimization method is used. As mentioned several
times in the text, the PSO is known as an algorithm that
has a very high growth rate. This high growth rate is
due to the inherent nature of the algorithm and step by
step techniques to achieve the optimal solution. On the
other hand, we claim that both objective functions enter
in process simultaneously to be optimized. Wire length
and overlap are observed somehow that the increasing
of one of them has imposed over the other one a
decreasing trend and vice versa. So, the conflicting
property is established between these two.

Nevertheless, why we decide to work on wire length
and overlap? Wire length has direct effect on power
consumption. If the wire length cost becomes smaller,
we will have more economical circuits. On the other
hand, overlaps make our chip design full of fabrication
and routing obstacles, so its optimization is mandatory.
As compared to other methods, we describe
characteristics of algorithms used in mentioned
references. In [6], a swarm of 25 particles is used to
carry out FPGA placement. The PSO particles start with
randomly initialized position vectors for the CLBs
placement on the FPGA. In this article, a structure of
14×14 array (196 blocks) has been used; this means that
we have less number of CLB blocks involved;meaning
that this method has a smaller number of CLB blocks
used. Although the PSO algorithm is used, but much
smaller number of blocks in this method compared to
our technique, shows the lack of its applications in
larger scales. In [7], some methods of PSO algorithm,
like simple PSO, constricted PSO and time varying

interia weight (TVIW) PSO are proposed. These
designs also count 7 CLBs and 14 IOBs in FPGA
device.In [9], discrete and continuous PSO algorithms
for FPGA placement are introduced. These algorithms
used smaller sized benchmarks that were compared to
VPR. The only cost function in this problem was wire
length that optimized time delay.The difference between
our work and algorithm introduced in [9] is that we
consider both wire length and overlap, and multi
objective PSO in discrete version is used, but in the
mentioned article wire length is the only cost
function.Ideas raised in [6] to [10] contribute very
significantly to creation and solving of this problem.
However, the point is that the same general criteria
should be established in all of this question. Selected
data used from MCNC benchmark that we posed,
differs from presented problems. In the mentioned
articles, data used were much smaller than what we
used in our work; wetwo cost functions, whereas they
employedonly one. Allmethods listed in [5] to [8] have
somehow used PSO algorithm to solve optimization
problems in FPGA placement. But, many differences in
terms of the number of blocks or definition of variables
used can be observed. As explained before, each of
them has unique technical characteristics. To insert in
the paper and to compare with these methods, a valid
identity should be satisfied.
The problem of comparing the results of our article with
the results of the references listed here was restrictions
on the use of the outcomes of benchmarks. Therefore,
these papers were used as instrumental resources in
creating and solving the concept of our project. But, for
a complete comparison the general and functional
method “VPR” was used, whichin many respects is a
reliable method in FPGA placement issue. Since in all
above method VPR procedure is used, the best way to
judge our algorithm was to compare it with VPR
algorithm in time delay aspect. The remaining of the
paper is as follows:

In Section 2, we explain particle swarm optimization
(PSO)'s theory, history and principles. Its concept of
optimization is discussed briefly. Then, multi-objective
PSO (MOPSO), Discrete PSO (DPSO) and discrete
multi-objective PSO (Discrete MOPSO) are introduced
and explained. Section 3 is dedicated to cost function.
Wire length structure and overlap issue are points of
survey in this section. Experimental results and
benchmark tests are shown in Section 4. Finally, we
have conclusion in Section 5.

2.OPTIMIZATION ALGORITHM

2. 1. Principles of Algorithm This algorithm of
optimization was introduced by Kennedy and Eberhart
in 1995.PSO algorithm is one of the newest heuristic
algorithms. This algorithm is a powerful technique for

413 H. Akbarpouret al./ IJE TRANSACTIONS C: Aspects Vol. 28, No. 3, (March 2015) 410-418

solving problems in which the optimal solution can be
expressed as a point or an n-dimension surface in the
search space. PSO algorithm optimizes an objective
function by doing a population-based search. This
population includes potential solutions which are called
particle that are a similitude of the population of birds
when finding food. The initial values of these particles
are determined randomly and then is freely moved in
the multi-dimensional space of the problem[11]. A
swarm in PSO consists of number of particles. Each
particle represents a potential solution of optimization
task [12]. PSO acts according to swarming theory and is
inspired of social behavior of some animals, like bird
flocking and fish schooling. In fact, this method is a
population-based method.Each particle in PSO has its
own position and velocity, finding a better answer
encourages position and velocity to change value
toward that. So, adequate iteration can make a good
answer.Beside other evolutionary algorithms, this is a
simpler one and the convergence rate is faster. We start
the algorithms by set of random answers and search is
done in parallel to get the best answers. Structure of
each particle is influenced by 2 factors:
• Best state that particle has been achieved or pbest
• Best state that is achieved by all of the particles or

gbest
The algorithm uses concepts of velocity and position;
new position of each particle is obtained from previous
velocity and position.
• PSO
For each particle i, we have position and velocity
vectors as:

xi=[xi1,xi2,….xin] (1)

vi=[vi1,vi2,….,vin] (2)

where n is number of decision parameters of an optimal
problem. And we have:
pid=position of previous “pbest”
gid=position of previous “gbest
And we assume that xid(t) and vid(t) are position and
velocity of i-th particle in t-th iteration. By all of these
considerations we have:

vin=vin+c1r1(pid-xin)+c2r2(gid-xin) (3)

xin=xin+vin (4)

where w is inertia weight of velocity between [0,1] and
c1,c2 named acceleration coefficients; also, r1 and r2
are two random numbers uniformly generated between
0 and 1. The first term of (3) is called inertia and
considers the current state of particle. The second term,
or the cognitive term, shows distance from best state in
the neighborhood. The third term, or social learning
term shows distance from the best answers in the entire
search space. If the sum of these three values exceeds
the maximum value defined for velocity (Vmax), vid

should be equal to Vmax. Algorithm with bigger Vmax
has bigger steps in the search space and considers far
away points, while smaller Vmax has the potential of
local optimizations. Based on these expressions, the
Pseudo code of standard PSO algorithm is as follows:
Initialize positions and velocities of all particles in the swarm
randomly
Repeat
For each particle in the swarm
Calculate the fitness value f(xi)
If f(xi) < f(pid) then pid=xi
End for
Update Pg, if the best particle in the current swarm has lower f(x) than
f(gid)
For each particle in the swarm
 r1=rand (); r2=rand ();
Calculate particle velocity according to Equation (1)
Restrict the velocity of particles by [-Vmax, Vmax]
Update particle’s position according to Equation (2)
End for until maximum iteration or a minimum error criterion is
attained.
PSO algorithm is one of the modern algorithms that like
many other evolutionary algorithms applied to different
problems. One of the issues that attracted the attention
of many VLSI designers, is placement, and in particular
FPGA placement. Simplicity of application and facility
in the creation of a cost function, make PSO algorithm
suitable for many problems. Besides, this algorithm has
a good growth rate and the time delay will be in
noticeable performance. PSO algorithm acts based on
the position and velocity of the two mentioned
formulas. According to mathematical equations, the
defined characteristics of algorithm are updated. Now
the question is how this algorithm can be used in FPGA
placement. Clearly, the number of IOBs is less than that
of CLB blocks; so, we insert just CLBs to algorithm
cycle to have an appropriate circuit time delay. Placing
matrix of CLB blocks is the “x” matrix in PSO
algorithm, and these positions are updated according to
the velocity matrix in order to optimize goals. Finally,
an acceptable structure can be achieved

2. 2. MOPSO The successful application of PSO in
many single objective problems reflects its
effectiveness, and it seems to be suitable for multi-
objective optimization due to its efficiency in yielding
better quality solutions while requiring less run time. In
optimization problems with multi-cost function, we
must set a trade-off between objectives. Sometimes in
two objective problems, both objectives may be in
conflict and compete with each other. In this situation,
we cannot find a unique answer for the problem, but
often we have a set of answers that logically can
optimize cost functions; this set of answer is known as
Pareto answers. We are going to minimize a function
defined as:

f(x)={f1(x),f2(x),….,fm(x)} xєD (5)

where “m” is number of the objectives and D is feasible
search space [13]. The algorithm should optimize f(x)

H. Akbarpouret al./IJE TRANSACTIONS C: Aspects Vol. 28, No. 3, (March 2015) 410-418 414

and produces Pareto solution, Pareto is a set of non-
dominated solutions. If no objective can be improved
without sacrificing other objectives, we must set a trade-
off. The main difficulty in extending PSO to multi-
objective problem is to find the best way for selecting
the guides of particles in that intended swarm, the
difficulty is manifested as there are no clear concepts of
personal and global bests that can be clearly identified
when dealing with objectives rather than a single
objective [14, 15]. For classification of answer set, we
use an abstract space called “repository”. Members of
repository are our answers. Steps of an ordinary
MOPSO algorithm are:

1. Initialize first population
2. Find non-dominated members and put them in repository
3. Grid the search space
4. Choose leader for each particle from repository members
5. Update best state
6. Add new non-dominated members to repository
7. Delete dominated members of repository
8. Check size of repository and compare in with max size

2. 3. DPSO and Discrete MOPSO Dealing with
functions that are composed of a set of discrete values
in the optimization process is inevitable. There are
several systems with discrete cost function, and
continuous feature of these functions is not intended to
be. Thus, there is a need to change the structure of the
algorithms to meet optimized objectives. We consider
discrete variable as integer, but PSO in a continuous
algorithm, an interval can be regarded as a continuous
region and continuous variables can be converted to a
discrete one in this certain range. Basic definitions of
discrete and continuous structures of PSO are similar to
each other, except that a coefficient is defined for
conversion continuous to discrete mode. But, the major
difference in a changing continuous to discrete PSO is
its cost function. Cost function inputs of each particle in
each of iterations are rounded to integers for discrete
mode. The obtained function enters the basic cycle of
PSO and is finally the best answers can be reached after
all iterations. In fact, for changing PSO to MOPSO, the
main body of the PSO algorithm must be modified to
define repository, creating leader, grid, etc. On the other
hand, DPSO needs a coefficient for conversion simple
PSO to DPSO. So, for a Discrete MOPSO we need both
these conditions. MOPSO influences on the primary
definitions of algorithms and DPSO concentrates on the
structure of cost function.

3. COST FUNCTIONS

Solving the problem makes us to introduce wire length
and overlap as cost functions of MOPSO theory.
Because there is no exact answer that can optimize both
cost functions, we are forced to consider a set of
answers. Attention to random access of the algorithm,

often it is needed to run it for many times, to achieve
one reasonable answer. We assume overlap is much
more important than wire length, because if two CLBs
have overlap with each other, optimized wire length
cannot lead to a proper structure mapped on a chip. So,
between repository members, we select the answer with
minimum value of overlap. It is seen according to PSO
algorithm that if we consider only wire length as cost
function, locating CLBs for minimizing turns on plenty
of overlaps. So, it is clear that two cost functions must
be optimized with respect to each other. Two cost
functions are described as:

3. 1. Wire Length One of the major parameters
based on optimization structure is the wire length. This
factor also is one of the important elements in circuit
designs. Both wire length and wire congestion are types
of optimization goals in FPGA placement issue, but
running fully optimization rules for these two factors is
unattainable. So, for having good optimization manner,
there must be trade-off between them. In this work, we
concentrate on the wire length as first member of the
cost function vector. In a discrete set of CLB s, lay in
surface of a chip, wiring is done between common-net
CLBs. Diverse methods are reported for calculating
wire length in FPGAs. According to them, distance
between two points can be written as:

Wire length= |xi-xj|+ |yi-yj| (6)

The wire length calculated as the length of the bounding
box of each wire. Cost function is computed by the sum
of wire length values. We will have pseudo code of wire
length issue as:
Wtot=0
For each row of matrix “net”
Wtot1=0
For each two separated columns of “net”
Calculate x,y of each two columns
Wtot1=wtot1+|x1-x2|+|y1-y2|
Wtot=wtot+wtot1
So, wire length can be considered as a row of total cost
function vector.

3. 2. Overlap Undoubtedly, one of the important
and basic goals in placement process is that CLBs have
no overlap with each other. Overlap causes fabrication
problems, routing problems and many others. Overlap
function, as a cost function, seeks in search spaces in a
way to remove overlap between CLBs by iterations.
There is only one state in this process that overlap
occurs, if we have:
xi=xj && yi=yj

Each of the existing overlaps produces a factor of
penalty. In the overlap removal process, minimizing the
penalty factor is followed (when we have no overlap,
Minimum value is accessed). Based on initial location
of modules, (x, y) that is assigned by PSO and

415 H. Akbarpouret al./ IJE TRANSACTIONS C: Aspects Vol. 28, No. 3, (March 2015) 410-418

corresponding values of w and h, we can show overlaps.
In this algorithm, we try to look for answers of
“placement”, involved wire length and overlap
optimizations. A set of answers, called “repository” and
concepts like “cost” and “best cost” in the MOPSO
structure are defined. Repository has limited capacity
and only non-dominated answers can enter it. For each
of iterations, it is updated. Repository members are
answers of Discrete MOPSO algorithm (Pareto
answers). In our problem, cost functions are wire length
and overlap that a trade off is needed between them.
Minimum overlap cost value states are chosen and
compared with other answers to find minimum wire
length, so thatfrom a set of answers, we can get a single
one.

4. EXPERIMENTAL RESULTS

According to the above discussed issue, this PSO
algorithm can be applied to set of data. We
implemented the proposed algorithm on an Intel core i7
with 8GB memory using MATLAB (R2009a) with
windows operating system. By iterations states with
minimum overlap, reasonable wire length could be
reached. We applied the algorithm to 4 of tested data,
which are distributed according a FPGA benchmark.
This benchmark circuit comes from the
Microelectronics Center of North Carolina (MCNC)
circuit benchmark suite [16]. In the application of test
data for the algorithm MCNC benchmark test data are
used. We only worked on some of them. Number of
CLBs and their connectivity status are available for us
by the benchmark features. Using the algorithms and
number of repetitions achieved CLBs final location. It is
noteworthy in this project that only CLB’s location is
changed, and IOBs are placed according to VPR
placement values. With displacement and minimizing
the cost function, the position of each CLB can be
obtained. Due to the random nature of the algorithm, the
position of each repeat will be different with the next
iteration. But, how VPR is used for comparison with
this method? We have place of each block in VPR, this
place can be inserted in the cost function, and gets us a
specified value. This specified value is used as base
comparison in the CLB locations in PSO. In fact, we
divide wire length vector value of cost function of PSO
to wire length cost of VPR.

TABLE 1. Ratio of Discrete-MOPSO to VPR in wire length

Circuit Best result of wire
length

Number of
CLBs

Array
size

tseng 0.934229 925 33*33
ex5p 0.978723 1001 33*33
diffeq 1.415585 1497 39*39
alu4 2.061282 1514 40*40

A decimal value is reached; this could indicate PSO
is in what condition in aspect of wire length. Table 1,
shows the ratio of wire length cost function in best
results of Discrete-MOPSO to VPR cost for the
mentioned test data. Also, we have number of CLBs and
FPGA size.

Using this table, we can say that this algorithm is
more efficient in cases with smaller numbers of CLBs.
The much larger size is of required FPGA; the more
loses in algorithm reliability. Changes of both cost
functions (wire length and overlap) for best results, the
average and the worst results are summarized in Table
2; overlap field refers to the percentage of overlap
occurrence in total circuit, and as mentioned, wire
length is ratio of two considered cost functions. Fromthe
data obtained in this study, it can be concluded that the
Discrete-MOPSO algorithm has a more favorable result
for smaller benchmarks, and for larger data, VPR would
be more efficient method. Since only CLB blocks are
inserted, more appropriate placement may be gained.
PSO algorithm is one of the modern algorithm.The
number of iterations is 50; this number has a direct
relationship with the confidence factor of results. This
means that, for example, in 10 iterations, data will have
larger dispersion and the results will have no
appropriate correlation, but with increasing the number
of iterations, this dispersion is less tangible. This
number is chosen in order to achieve stability in the
results of the algorithm and remove bound of very high
or very low answers. However, this parameter is not
used as a variable in the problem definition. By
increasing the number of repetitions, more reliable
results can be obtained. With less than 20 iterations,
distribution of results prevents us from correct analysis.
Figures 1(a) and 1(b) depict the mentioned concept of
Table 2 for the used benchmarks for wire length and
overlap respectively:

TABLE 2. Range of answers for each benchmark

Circuit
Best results Average results Worst results

Wire length overlap Wire length overlap Wire length overlap
tseng 0.934229 0.037668 0.974436 0.034115 1.001847 0.024048
ex5p 0.978723 0.080977 0.990932 0.074221 1.088682 0.070191
diffeq 1.125585 0.118276 1.273212 0.100417 1.531486 0.099552
alu4 2.061282 0.128128 2.169168 0.101992 2.816025 0.086722

H. Akbarpouret al./IJE TRANSACTIONS C: Aspects Vol. 28, No. 3, (March 2015) 410-418 416

(a) (b)
Figure 1. (a): Comparison of results for wire length, (b): comparison of results for wire length

Figure 2. Two cost function of (a):"tseng", (b): "ex5p", (c):
diffeq", (d): “alu4

Using reasonable number of iterations, a good result

can be obtained. Figure2 shows cost functions (wire
length and overlap removal) of benchmarks. These
figures consist of black circles and red stars; red stars
are repository members. Final answer has been chose
between the repository members. The spots in
mentioned plots are considered as PSO particles in the
last update and best results in one algorithm process.
Asshown, only limited numbers of particles can be laid
in repository. First objective is devoted to wire length
cost function and is the calculation of wires of CLBs, so
each of these figures may have different values of its
objective. Times of overlap occurrence also are shown
in the second objective. Minimum overlap case is
selected between members in lowest level of vertical
axis (overlap axis). Drawing of these figures is
completely random, meaning that each time we repeat
the algorithm, we get a new one. The art of using
Discrete MOPSO algorithm is that to propel the results
to decreasing two cost functions, and choose the best
answer according to optimization benefits.Following
figures are related to the mentioned benchmarks, the
main idea for showing them is “Trade-off” issue in

optimization process. To consider both, the cost
function the normalized wire length and overlap values
are used. Normalized wire length actually is obtained by
dividing the wire length of PSO to the results of using
VPR. Also, overlap is divided by a specific coefficient
according to simulation results. Figures 3 to 6, in the
optimal overlap cases, draw overlap and its
corresponding wire length in each of tested data. As
seen, any increase in one of the cost functions, changes
the other in a reduction process.

Figure 3. Trade off issue of “tseng”

Figure 4. Trade off issue of “ex5p”

Figure 5. Trade off issue of “diffeq”

417 H. Akbarpouret al./ IJE TRANSACTIONS C: Aspects Vol. 28, No. 3, (March 2015) 410-418

Figure 6. Trade off issue of “alu4”

Like other evolutionary algorithms, PSO algorithm
can lead to the conclusion of the convergence or
divergence result. In addition,in basic equation, velocity
is added to the position equation. This increase is
controlled by limiting constraints of velocity (-Vmax ,
Vmax). The Figure 2 shows both cost functions, and
this fact can be realized that the concentrated points
create a diagonal line, which results in the convergence
of the algorithm. In case of divergence, the
accumulation of particles and Pareto answers were not
done on a regular pattern. On the other hand, discrete
structure forced us to use some of Special functions to
have applicable discrete algorithms. Based on
programming codes, CLB blocks are placed only in
certain places and the performance of the algorithm
rises. Naturally CLB’s density in a particular location
increase the overlap. But, this density causes reduction
of wire length. However, minimizing overlap leads
CLBs with more distance from each other, as a result,
length of the wire increases.

5. FUTURE WORKS

Although this study sheds some light on FPGA
placement by PSO, further research can be done on a
number of issue. First: apply the Discrete-MOPSO
algorithm to both CLB and IOB blocks with separate
swarms. Second: apply the optimization algorithm to
3D data of FPGA placement. Third: more efficient
compared with other optimization methods

6. CONCLUSION

In this paper, we introduced a Discrete multi-objective
PSO (Discrete MOPSO) algorithm for placement stage
in VLSI circuit design. It is known that placement is one
of the most important and applicable issues in FPGA
manufacturing process and reaching optimized results
can be done by various procedures. Iteration methods
and evolutionary principles got us to an algorithm that

optimized answer of designs by relocating the CLBs.
The discrete nature of the CLBs forced us use DPSO.
On the other hand, the two functions (wire length and
overlap) need to be optimized simultaneously. So, we
also took advantage of the MOPSO. In addition to being
a multi-objective algorithm that is eventually reached, it
was also used for discrete problems. The algorithm was
tested on a number of standard benchmarks and
compared to VPR, a known method in the field of
FPGA placement. From the results we can say that the
positive performance of the algorithm is increased by
reducing the number of CLBs.Results of simultaneously
surveys of cost functions, based on iterations and trade
off issue of them also discussed.

7. REFERENCES

1. Kebbati, Y., "Modular approach for an asic integration of

electrical drive controls", International Journal of
Engineering-Transactions B: Applications, Vol. 24, No. 2,
(2011), 107-115.

2. Xu, M., Gréwal, G. and Areibi, S., "Starplace: A new analytic
method for fpga placement", Integration, the VLSI jouRnal,
Vol. 44, No. 3, (2011), 192-204.

3. Shi, X., "Fpga placement methodologies: A survey", Dept. of
Computing Science, University of Alberta, (2009)1981-1986.

4. Xu, W., Xu, K. and Xu, X., "A novel placement algorithm for
symmetrical fpga", in ASIC, 7th International Conference on,
IEEE. (2007), 1281-1284.

5. Yang, M., Almaini, A., Wang, L. and Wang, P., "Fpga
placement using genetic algorithm with simulated annealing", in
ASIC, 6th International Conference On, IEEE. Vol. 2, (2005),
806-810.

6. Gudise, V.G. and Venayagamoorthy, G.K., "Fpga placement and
routing using particle swarm optimization", in VLSI, 2004.
Proceedings. IEEE Computer society Annual Symposium on,
IEEE. (2004), 307-308.

7. Rout, P.K., Acharya, D. and Panda, G., "Novel pso based fpga
placement techniques", in Computer and Communication
Technology (ICCCT), International Conference on, IEEE.
(2010), 630-634.

8. Peng, S.-j., Chen, G.-l. and Guo, W.-Z., "A discrete pso for
partitioning in vlsi circuit", in Computational Intelligence and
Software Engineering, CiSE. International Conference on, IEEE.
(2009), 1-4.

9. El-Abd, M., Hassan, H. and Kamel, M.S., "Discrete and
continuous particle swarm optimization for fpga placement", in
Evolutionary Computation, CEC'09. IEEE Congress on, (2009),
706-711.

10. El-Abd, M., Hassan, H., Anis, M., Kamel, M.S. and Elmasry,
M., "Discrete cooperative particle swarm optimization for fpga
placement", Applied Soft Computing, Vol. 10, No. 1, (2010),
284-295.

11. Sarvi, M., Derakhshan, M. and Sedighizadeh, M., "A new
intelligent controller for parallel DC/DC converters",
International Journal of Engineering-Transactions A: Basics,
Vol. 27, No. 1, (2013), 131-140.

12. Hsieh, S.-T., Lin, C.-W. and Sun, T.-Y., "Particle swarm
optimization for macrocell overlap removal and placement", in
Proc. of IEEE Swarm Intelligence Symposium (SIS’05). (2005),
177-180.

H. Akbarpouret al./IJE TRANSACTIONS C: Aspects Vol. 28, No. 3, (March 2015) 410-418 418

13. Reddy, M.J. and Nagesh Kumar, D., "Multi‐objective particle
swarm optimization for generating optimal trade‐offs in
reservoir operation", Hydrological Processes, Vol. 21, No. 21,
(2007), 2897-2909.

14. Premalatha, M.B., Divya, M.D., Abinaiya, M.N. and Monisha,
M.S., "Particle swarm optimization based placement and routing
of hardware tasks in 2d homogeneous FPGAS",International

Journal of Scientific & Engineering Research, Vol., 4, No. 3,
(2013), 1-6.

15. Alvarez-Benitez, J.E., Everson, R.M. and Fieldsend, J.E., "A
mopso algorithm based exclusively on pareto dominance
concepts", in Evolutionary Multi-Criterion Optimization,
Springer. (2005), 459-473.

16. MCNC benchmark suits, available: Http://www.Eecg.Toronto.
Edu/~vaughn/vpr/vpr",

Discrete Multi Objective Particle Swarm Optimization Algorithm
for FPGA Placement

RESAECH
NOTE

H. Akbarpour, G. Karimi, A. Sadeghzadeh

Department of Electrical Engineering, Faculty of Engineering, Razi University, Kermanshah, Iran

P A P E R I N F O

Paper history:
Received 10 April 2014
Received in revised form 26 October 2014
Accepted 13November 2014

Keywords:
Discrete MOPSO
Optimization Algorithm
FPGA Placement
VLSI Design
Wire Length Cost Function
Overlap Removal

 هچکید

ها و اجزاي مداري مطابق اصول در این مرحله، ماژول. است VLSI جادهی یکی از مراحل اساسی در طراحی فیزیکی مدارات
بنابراین، هر فرآیند جادهی سعی در بهینه سازي و اثر گذاري بر یک یا چند . گیرندهاي مشخص قرار میبهینه سازي در مکان

ترین ابزارها در دنیاي روز ها، بی شک از مهمترین و کاربرديFPGAتوان گفت که از طرفی می. فاکتور بهینه سازي دارد
به دنبال یافتن راهکارهایی VLSIدانش . الزامی میباشد شانیادگیري و بررسی ساختاريبرایالکترونیک هستند و صرف وقت

هاي متعددي در الگوریتم. هاستها در کنار تضمین عملکرد مناسب آن FPGAهاي مرتبط با جهت حداقل سازي هزینه
هاي تکاملی کاربردي در این قبیل یکی از الگوریتم) PSO(الگوریتم گروه ذرات . اندها به کار رفتهFPGAي جادهی در حوزه

ي جدیدي جهت بهینه سازي شیوه در این پروژه،. ما از این الگوریتم در حل مسئله استفاده کردیم ،بنابراین. استمسائل
 "همپوشانی"و "طول سیم"در طول فرآیند، هدف ، بهینه سازي دو تابع هدف با عناوین .ها ارائه شدFPGAجادهی در
 MOPSOساختار . شدیم) MOPSO(ي گروه ذرات ما مجبور به استفاده از الگوریتم چند هدفه در نتیجه. گردد تعریف می

هاي درست، یک جواب با حداقل و ما از بین این دسته جواب. باشدها میاي از جواببه نحوي است که داراي دسته
، ما را مجبور به استفاده از نسخه ي FPGAي بلوك هاي شایان ذکر است که ماهیت گسسته. همپوشانی را گزینش کردیم

داده هاي تست منطبق بر . ي گسسته داشتیم PSOي چند هدفه و PSOدر واقع، ما نیاز به ترکیبی از . کرد PSOگسسته ي
MCNC benchmark ها با روش معمول تست جادهی این داده. در این پژوهش آورده شده اند)VPR (مقایسه

 . هاي منطقی براي جواب مسئله قابل حصول خواهد بودپاسخ ،FPGAهند که با انتخاب مناسب سایز دنتایج نشان می.شدند

doi: 10.5829/idosi.ije.2015.28.03c.10

http://www.Eecg.Toronto

